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Abstract: Fixed-time synchronization problem for delayed dynamical complex networks is explored
in this paper. Compared with some correspondingly existed results, a few new results are obtained
to guarantee fixed-time synchronization of delayed dynamical networks model. Moreover, by
designing adaptive controller and discontinuous feedback controller, fixed-time synchronization can
be realized through regulating the main control parameter. Additionally, a new theorem for fixed-
time synchronization is used to reduce the conservatism of the existing work in terms of conditions
and the estimate of synchronization time. In particular, we obtain some fixed-time synchronization
criteria for a type of coupled delayed neural networks. Finally, the analysis and comparison of
the proposed controllers are given to demonstrate the validness of the derived results from one
numerical example.

Keywords: complex networks; feedback control; adaptive control; fixed-time synchronization; delay

1. Introduction

Complex network is a model that describes the relationship between nature and
human society. It is a collection of many nodes and edges between connecting nodes. Nodes
are used to represent different individuals in the real system, such as organisms in the food
chain network and individuals in the social network, while edges are used to represent
the relationship between individuals, such as the predator-prey relationship between
organisms, friendship between people, etc. In fact, complex networks are ubiquitous in the
real world, such as neural networks [1,2] formed by the interaction of a large number of
neuronal cells through neural fibers, computer networks [3] formed by the interconnection
of autonomous computers through communication media, and similar social relationship
networks [4], transportation networks [5], power networks [6], robot networks [7–9],
regulation networks [10], etc.

In the research of complex network dynamic behavior and group behavior, synchro-
nization behavior has attracted more and more experts and scholars’ attention because of
its important practical significance and universality. In short, synchronization is a kind
of overall coordinated dynamic behavior formed by external force or mutual coupling
between dynamic systems. Through long-term observation and research, it is found that
synchronization phenomena widely exist in human society and nature, such as the synchro-
nization of cardiomyocytes and brain nerve cells [11–13], the asymptotic synchronization
of audience applause frequency in the theater, the synchronous luminescence of fireflies,
etc. At present, the synchronization behavior analysis of complex networks has become an
important research hotspot [14–17].

In the current research results of complex network synchronization theory, synchro-
nization generally needs infinite time control to achieve. However, in practice, infinite time
control is unreasonable. In terms of the perspective of cost, infinite time control and high

Entropy 2021, 23, 1610. https://doi.org/10.3390/e23121610 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-2130-0614
https://doi.org/10.3390/e23121610
https://doi.org/10.3390/e23121610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23121610
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23121610?type=check_update&version=1


Entropy 2021, 23, 1610 2 of 19

gain control become uneconomic. For a real complex network, we often hope to realize
the synchronization in a limited time as soon as possible by controlling the cost as low as
possible. For example, in chaotic secure communication networks, based on security con-
siderations, the network is often required to achieve fast synchronization in a limited time,
so as to ensure that the decoded information is sent in a short time without disclosure. At
present, some researchers have begun to study the finite-time synchronization of complex
networks and obtained some valuable results [18–21].

In the theoretical analysis of finite-time synchronization, a key problem is how to
effectively estimate the synchronization settling time and find an upper bound. Generally
speaking, the synchronization settling time and its estimation of the networks under
consideration depend on the initial value. When judging whether the solutions starting
from multiple different initial values converge in finite-time in practical problems, it needs
to calculate the settling time for many times. In order to overcome the inconvenience and
limitation caused by the correlation between settling time estimation and initial value,
Polyakov proposed the concept of fixed-time stability of dynamic system in 2012 and
gave relevant criteria [22], which provides a theoretical basis for analyzing the fixed-
time synchronization problem of complex networks. Therefore, the study of fixed-time
synchronization in complex networks is a problem worthy of consideration by many
scholars [23–35].

As we know, in the process of information transmission and spreading, the communi-
cation delay is a typical phenomenon and may result in oscillation and instability dynamic
behaviors. Hence, it is necessary to study the influence of time delay on network’ dynamic
behavior. At present, many scholars are studying time-delay dynamic networks [28–30]. In
reference [28], Wang et al. studied global synchronization in fixed-time for semi-Markovian
switching complex dynamical networks with hybrid couplings and time-varying delays. In
reference [29], Cao et al. discussed fixed-time synchronization of delayed memristor-based
recurrent neural networks. In reference [30], Chen et al. analyzed fixed-time synchroniza-
tion of inertial memristor-based neural networks with discrete delay. However, as far as I
am concerned, the fixed-time synchronization problem for dynamical delayed complex
networks via feedback control and adaptive control receives litter attention at present.
Hence, this challenging question should be solved in this paper.

Motivated by the above discussion, fixed-time synchronization of complex dynamical
delayed networks will be investigated via feedback control strategy and adaptive control
strategy. Fixed-time synchronization criteria and some corollaries are obtained in our paper
which are very verifiable and useful in application. Compared with the previous results,
our main results are more general and less conservative. The innovations of the paper are
at least the following aspects.

1. The problem synchronization of complex networks has been studied in references
[14,18,19,27]. However, the models they considered do not have time delays. In view of the
importance of time delay, the model considered in this paper is complex network model
with time delay.

2. A new theorem is used to realize fixed-time synchronization of complex networks.
Unlike reference [32], the upper bound of stability time is, respectively, estimated for cases
a < 0 and a > 0 and two different formulas of the estimate were obtained. A unified form
of the estimate is derived for the cases a < 0 and a > 0 in this paper.

3. By designing adaptive controller and discontinuous feedback controller, fixed-
time synchronization can be realized through regulating the main control parameter. As
corollaries, some fixed-time synchronization criteria for a type of coupled delayed neural
networks are obtained which are considered in reference [18,19,27,32].

The remainder of this paper is structured as follows. In Section 2, a class of dynamical
complex networks with delay and preliminaries are given. Fixed-time synchronization of
the considered model under the feedback control strategy and adaptive control strategy is
investigated based delay in Section 3. In Section 4, the effectiveness and feasibility of the
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developed methods are presented by one numerical example. Finally, some conclusions
are obtained in Section 5.

Notations: Let RN be the space of N-dimensional real column vectors. For x =

(x1, · · · , xN)
T ∈ RN , ‖x‖ denotes a vector norm defined by ‖x‖ =

( N
∑

i=1
x2

i
) 1

2 . We define

‖ φ ‖=
[ N

∑
i=1
| φi(t) |2

] 1
2 , for all φ = (φ1(t), φ2(t), ..., φN(t))T ∈ C([−τ, 0], RN), which

denotes the Banach space of all continuous functions mapping [−τ, 0] → RN . Define
e(t) = (eT

1 (t), eT
2 (t), ..., eT

N(t))T , |ei(t)|µ =
(
|e1

i (t)|µ, |e2
i (t)|µ, ..., |en

i (t)|µ
)T , sign(ei(t)) =

diag
(
sign(e1

i (t)), sign(e2
i (t)), ..., sign(en

i (t))
)
. IN is the identity matrix with N dimensions.

λmax(A) is the maximum eigenvalues of matrix A.

2. Preliminaries

Consider a general complex network involving N linearly identical nodes which is
depicted by

ẋi(t) = f(t, xi(t), xi(t− τ(t))) + c
N

∑
j=1,j 6=i

bijΓ(xj(t)− xi(t)),

i ∈ I = {1, 2, ..., N},
(1)

where xi(t) = (x1
i (t), x2

i (t), ..., xn
i (t))

T ∈ Rn represents the state variable of the ith node,
f : R × Rn × Rn → Rn is a continuous function governing the dynamics of isolated
nodes, the time-varying delay τ(t) denotes the internal delay, the constant c > 0 is the
coupling strength, Γ = diag{γ1, γ2, ..., γn} is the inner connecting matric with γi > 0,
and B = (bij)N×N stands for the inner topology structure and satisfies the following
conditions [32,33].

bij ≥ 0, i 6= j, bii = −
N
∑

j=1,j 6=i
bij. (2)

Based on the condition (2), network model (1) can be rewritten as follows:

ẋi(t) = f(t, xi(t), xi(t− τ(t))) + c
N

∑
j=1

bijΓxj(t), i ∈ I. (3)

Remark 1. In reference [33], the author studies the following model:

ẋi(t) = f(t, xi(t)) + c
N

∑
j=1

bijΓxj(t), i ∈ I.

By referring the paper of reference [33], we investigate a general complex networks model with time
delay which is described as follows:

ẋi(t) = f(t, xi(t), xi(t− τ(t))) + c
N

∑
j=1

bijΓxj(t), i ∈ I,

where f : R × Rn × Rn → Rn is a continuous nonlinear function governing the dynamics
of isolated nodes, and c ∑N

j=1 bijΓxj(t) is a coupling term, which represents the linear identical
coupling between each node of network.

Definition 1 (reference [34]). The hyperplane

Λ =
{
(xT

1 , ..., xT
N)

T ∈ RnN , x1(t) = · · · = xN(t) = Π(t) ∈ Rn}
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is said to be the synchronization manifold of (3), and Π(t) is called the synchronous state of the
network (3).

Evidently, according to (3), Π(t) satisfies the following dynamic equation:

Π̇(t) = f (t, Π(t), Π(t− τ(t))), i ∈ I. (4)

The dynamic evolution Π(t) satisfying (3) with condition value ϕ ∈ C([−τ, 0], Rn) is called
the synchronization state, which may be an equilibrium point, a periodic orbit, or ever a chaotic
attractor.

Assumption 1 (reference [15]). For the vector-valued function f(t, x(t), x(t− τ(t))), suppose
the uniform semi-Lipschitz condition with respect to the time t holds, i.e., for any x(t), y(t) ∈ Rn,
there exist positive constants l1 > 0 and l2 > 0 such that(

x(t)− y(t)
)T(f(t, x(t), x(t− τ(t)))− f(t, y(t), y(t− τ(t)))

)
≤ l1

(
x(t)− y(t)

)T(x(t)− y(t)
)
+ l2

(
x(t− τ(t))− y(t− τ(t))

)T(x(t− τ(t))− y(t− τ(t))
)
.

Definition 2 (reference [26]). Dynamic systems (3) and (4) are said to realize fixed-time syn-
chronized if, for any solutions of the models (3) and (4) represented by xi(t) = (x1

i , x2
i , ..., xn

i )
T

and Π(t) = (Π1, Π2, ..., Πn)T started from different initial states ϕi and φ, there is a time point
T∗(ϕi, φ) such that

lim
t→T∗(ϕi ,φ)

‖Π(t)− xi(t)‖ = 0, ‖Π(t)− xi(t)‖ = 0, t ≥ T∗(ϕi, φ),

and another time point Tmax can be found such that T∗(ϕi, φ) ≤ Tmax for any ϕi, φ ∈ C([−τ, 0], RN),
and

T(ϕi, φ) = inf{T∗(ϕi, φ) ≥ 0 : ‖Π(t)− xi(t)‖ = 0, t ≥ T∗(ϕi, φ)}

is said to the synchronized settling time.

Lemma 1 (reference [18]). Let a1, a2, ..., an, ω > 1 be positive numbers, and 0 ≤ r1 < r2; then,

( n

∑
i=1

ar2
i

) 1
r2 ≤

( n

∑
i=1

ar1
i

) 1
r1 ,

n

∑
i=1

aω
i ≥ n1−ω

( n

∑
i=1

a2
i

) ω
2

.

Especially, if we select r2 = 1 and r1 = 1+µ
2 (0 ≤ µ < 1), then, 0 < r1 < r2, and the following

inequality holds:

(a1 + a2 + · · ·+ an)
1+µ

2 ≤ a
1+µ

2
1 + a

1+µ
2

2 + · · ·+ a
1+µ

2
n .

Lemma 2 (reference [15]). If Y and Z are real matrices with appropriate dimensions, then, there
exists a positive constant ς > 0 such that

YTZ + ZTY ≤ ςYTY +
1
ς

ZTZ.

Lemma 3 (reference [26]). If there exists a nonzero real number a, positive numbers b and
c, β ∈ [0, 1), θ > 1 satisfying a < min{b, c} such that

V̇(x(t)) ≤ aV(x(t))− bVβ(x(t))− cVθ(x(t)), x(t) ∈ Rn\{0},

then, V(x(t)) = 0 and x(t) = 0 for any t ≥ T, where

T ≤ T∗ =


1

a(1− β)
ln(

b
b− a

) +
1

a(θ − 1)
ln(

c
c− a

), a 6= 0,

1
b(1− β)

+
1

c(θ − 1)
, a = 0.
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In order to make the states of network (3) fixed-time synchronize with Π(t), then, we
have the following controlled delayed dynamical network:

ẋi(t) = f
(
t, xi(t), xi(t− τ(t))

)
+ c

N

∑
j=1

bijΓxj(t) + ui(t), (5)

where ui(t) is an appropriate control gain.

3. Fixed-Time Synchronization

In this section, the coupling networks model with time-varying delay will be investi-
gated. With the help of Lemma 3, how to design suitable η1, η2, η3, η4 and µ, δ, such that
the delayed controlled network (5) can achieve fixed-time synchronization will be shown.
The main results are given as follows.

3.1. Discontinuous State Feedback Control

In order to get the main results, we design the following state feedback control.

ui(t) = −η1ei(t)− η2ei(t− τ(t))− η3sign(ei(t))|ei(t)|µ − η4sign(ei(t))|ei(t)|δ, (6)

where η1, η2, η3, η4 > 0 are the control gains, and µ satisfies 0 ≤ µ < 1, δ satisfies δ > 1.
Let ei(t) = (e1

i (t), e2
i (t), ..., en

i (t))
T = xi(t)−Π(t) (i ∈ I) be synchronization errors.

According to the control law (6), the error dynamical network is then governed as follows:

ėi(t) = f̃(t, xi, Π, xτ
i , Πτ) + c

N

∑
j=1

bijΓej(t)− η1ei(t)− η2ei(t− τ(t))

−η3sign(ei(t))|ei(t)|µ − η4sign(ei(t))|ei(t)|δ,

(7)

where f̃
(
t, xi, Π, xτ

i , Πτ
)
= f
(
t, xi(t), xi(t− τ(t))

)
− f
(
t, Π(t), Π(t− τ(t))

)
.

Theorem 1. Under Assumption 1 and the controller (6), if

p1 < min{2η3, 2η4(nN)−δ}, 2l2 −
η2

ς
≤ 0,

where p1 = λmax

((
2l1 − 2η1 − η2ς

)
IN + 2cγk

BT+B
2

)
, then, the controlled delayed dynamical

network (5) is the fixed-time synchronized. Moreover, the synchronized settling time is estimated by

T ≤ T∗1 =
1

p1(1− 1+µ
2 )

ln
( 2η3

2η3 − p1

)
+

1
p1(

1+δ
2 − 1)

ln
( 2η4(nN)−δ

2η4(nN)−δ − p1

)
.

Proof. Construct the Lyapunov function as

V(t) =
N

∑
i=1

eT
i (t)ei(t). (8)

Then, its derivative along with solutions of (7) can be given as below.

V̇(t) = 2
N

∑
i=1

eT
i (t)

[
f̃(t, xi, Π, xτ

i , Πτ) + c
N

∑
j=1

bijΓej(t)− η1ei(t)

−η2ei(t− τ(t))− η3sign(ei(t))|ei(t)|µ − η4sign(ei(t))|ei(t)|δ
] (9)
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≤ 2l1
N

∑
i=1

eT
i (t)ei(t) + 2l2

N

∑
i=1

eT
i (t− τ(t))ei(t− τ(t)) + 2c

N

∑
i=1

N

∑
j=1

eT
i (t)

×bijΓej(t)− 2η1

N

∑
i=1

eT
i (t)ei(t)− 2η2

N

∑
i=1

eT
i (t)ei(t− τ(t))

−2η3

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|µ − 2η4

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|δ

≤
N

∑
i=1

n

∑
k=1

ek
i (t)

(
2l1 − 2η1 − η2ς

)
ek

i (t) + 2c
N

∑
i=1

N

∑
j=1

n

∑
k=1

γkek
i (t)

×
bji + bij

2
ek

j (t) + (2l2 −
η2

ς
)

N

∑
i=1

eT
i (t− τ(t))ei(t− τ(t))

−2η3

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|µ − 2η4

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|δ

≤
n

∑
k=1

(ẽk(t))T
[(

2l1 − 2η1 − η2ς
)
IN + 2cγk

BT + B
2

]
ẽk(t)

−2η3

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|µ − 2η4

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|δ,

where ẽk = (ek
1, ek

2, ..., ek
N)

T for k = 1, 2, ..., n. Since ∑N
i=1 eT

i (t)sign(ei(t))|ei(t)|µ =

∑N
i=1 |eT

i (t)||ei(t)|µ = ∑N
i=1 ∑n

k=1 |ek
i (t)|1+µ and by Lemma 1,

( N

∑
i=1

n

∑
k=1
|ek

i (t)|1+µ
) 1

1+µ ≥
( N

∑
i=1

n

∑
k=1
|ek

i (t)|2
) 1

2
.

Hence,
N

∑
i=1

n

∑
k=1
|ek

i (t)|1+µ ≥
( N

∑
i=1

n

∑
k=1
|ek

i (t)|2
) 1+µ

2

=
( N

∑
i=1

eT
i (t)ei(t)

) 1+µ
2

.

Similarly,

N

∑
i=1

n

∑
k=1
|ek

i (t)|1+δ ≥ (nN)−δ

( N

∑
i=1

n

∑
k=1
|ek

i (t)|2
) 1+δ

2

= (nN)−δ
( N

∑
i=1

eT
i (t)ei(t)

) 1+δ
2

.

Then, combining with (9), we can obtain

V̇(t) ≤ p1V(t)− 2η3V
1+µ

2 (t)− 2η4(nN)−δV
1+δ

2 (t), (10)

where p1 = λmax

((
2l1 − 2η1 − η2ς

)
IN + 2cγk

BT+B
2

)
.

Hence, from Lemma 3, the network (5) is fixed-time synchronized with the time
T∗1 .

3.2. Adaptive State Control

To obtain the fixed-time synchronization, we design the following adaptive control
scheme.

ui(t) = −η1
i (t)ei(t)− η2ei(t− τ(t))− η4sign(ei(t))|ei(t)|δ, (11)

where η2, η4 > 0 are the control strengths, the real number δ satisfies δ > 1, and the
adaptive update law is given by

η̇1
i (t) = ε1eT

i (t)ei(t)− ε2sign(η1
i (t)− η̃1)− ε3sign(η1

i (t)− η̃1)|η1
i (t)− η̃1|δ, (12)

where ε1, ε2, ε3 > 0, η̃1 is a constant to be determined.
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According to the control law (12), the error dynamical system is then governed as
follows:

ėi(t) = f̃(t, xi, Π, xτ
i , Πτ) + c

N

∑
j=1

bijΓej(t)− η1
i (t)ei(t)− η2ei(t− τ(t))

−η4sign(ei(t))|ei(t)|δ,

(13)

where f̃
(
t, xi, Π, xτ

i , Πτ
)
= f
(
t, xi(t), xi(t− τ(t))

)
− f
(
t, Π(t), Π(t− τ(t))

)
.

Theorem 2. Under Assumption 1 and the controller (11), if

2l2 −
η2

ς
≤ 0, λmax

((
2l1 − 2η̃1 − η2ς + 1

)
IN + 2cγk

BT + B
2

)
< 0,

where p2 = min{1, 2ε2√
ε1
}, λ1 = min{2η4, 2ε3(ε1)

δ−1
2 }, then, the controlled delayed dynamical

network (5) is the fixed-time synchronized. Moreover, the synchronized settling time is estimated by

T ≤ T∗2 =
1

p2(1− 1
2 )

+
1

λ1((n + 1)N)−δ( 1+δ
2 − 1)

.

Proof. Construct the Lyapunov function as

V(t) =
N

∑
i=1

eT
i (t)ei(t) +

N

∑
i=1

1
ε1
(η1

i (t)− η̃1)
2. (14)

Then, its derivative along with solutions of (13) can be given as below.

V̇(t) = 2
N

∑
i=1

eT
i (t)

[
f̃(t, xi, Π, xτ

i , Πτ) + c
N

∑
j=1

bijΓej(t)− η1
i (t)ei(t)

−η2(t)ei(t− τ(t))− η4sign(ei(t))|ei(t)|δ
]

+2
N

∑
i=1

1
ε1
(η1

i (t)− η̃1)
[
ε1eT

i (t)ei(t)− ε2sign(η1
i (t)− η̃1)

−ε3sign(η1
i (t)− η̃1)|η1

i (t)− η̃1|δ
]

≤ 2l1
N

∑
i=1

eT
i (t)ei(t) + 2l2

N

∑
i=1

eT
i (t− τ(t))ei(t− τ(t)) + 2c

N

∑
i=1

N

∑
j=1

eT
i (t)

×bijΓej(t)− 2η1
i (t)

N

∑
i=1

eT
i (t)ei(t)− 2η2

N

∑
i=1

eT
i (t)ei(t− τ(t))

−2η4

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|δ + 2

N

∑
i=1

(η1
i (t)− η̃1)eT

i (t)ei(t)

−2
N

∑
i=1

ε2

ε1
|η1

i (t)− η̃1| − 2
N

∑
i=1

ε3

ε1
|η1

i (t)− η̃1|δ+1

≤
N

∑
i=1

n

∑
k=1

ek
i (t)(2l1 − η2ς− 2η̃1)ek

i (t) + 2c
N

∑
i=1

N

∑
j=1

n

∑
k=1

γkek
i (t)

×
bji + bij

2
ek

j (t) + (2l2 −
η2

ς
)

N

∑
i=1

eT
i (t− τ(t))ei(t− τ(t))

−2η4

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|δ

−2
N

∑
i=1

ε2

ε1
|η1

i (t)− η̃1| − 2
N

∑
i=1

ε3

ε1
|η1

i (t)− η̃1|δ+1

(15)
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≤
n

∑
k=1

(ẽk(t))T
[(

2l1 − η2ς− 2η̃1 + 1
)
IN + 2cγk

BT + B
2

]
ẽk(t)

−
N

∑
i=1

n

∑
k=1
|ek

i (t)| − 2η4

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|δ

−2
N

∑
i=1

ε2

ε1
|η1

i (t)− η̃1| − 2
N

∑
i=1

ε3

ε1
|η1

i (t)− η̃1|δ+1,

≤ −
N

∑
i=1

n

∑
k=1
|ek

i (t)| − 2η4

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|δ

−2
N

∑
i=1

ε2

ε1
|η1

i (t)− η̃1| − 2
N

∑
i=1

ε3

ε1
|η1

i (t)− η̃1|δ+1

≤ −
[ N

∑
i=1

n

∑
k=1
|ek

i (t)|2 + 4
N

∑
i=1

(ε2)
2

(ε1)2 |η
1
i (t)− η̃1|2

] 1
2

−2η4

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|δ − 2

N

∑
i=1

ε3

ε1
|η1

i (t)− η̃1|δ+1.

Since ∑N
i=1 eT

i (t)sign(ei(t))|ei(t)|δ = ∑N
i=1 |eT

i (t)||ei(t)|δ = ∑N
i=1 ∑n

k=1 |ek
i (t)|1+δ, hence,

2η4

N

∑
i=1

eT
i (t)sign(ei(t))|ei(t)|δ + 2

N

∑
i=1

ε4

ε1
|η1

i (t)− η̃1|1+δ

= 2η4

N

∑
i=1

n

∑
k=1
|ek

i (t)|1+δ + 2ε3(ε1)
δ−1

2

N

∑
i=1

( 1√
ε1
|η1

i (t)− η̃1|
)1+δ

≥ λ1

[ N

∑
i=1

n

∑
k=1
|ek

i (t)|1+δ +
N

∑
i=1

( 1√
ε1
|η1

i (t)− η̃1|
)1+δ]

≥ λ1((n + 1)N)−δV
1+δ

2 (t),

where λ1 = min{2η4, 2ε3(ε1)
δ−1

2 }. Then, combining with (15), we can obtain

V̇(t) ≤ −p2V
1
2 (t)− λ1((n + 1)N)−δV

1+δ
2 (t), (16)

where p2 = min{1, 2ε2√
ε1
}.

Hence, the network (5) is fixed-time synchronized with the time T∗2 .

As a special case, a type of coupled delayed neural network is considered.

ẋi(t) = −Axi(t) + Dg(xi(t)) + Cg(xi(t− τ(t))) + c
N

∑
j=1

bijΓxj(t) + ui(t), (17)

where i ∈ I, bij is defined in (2), xi(t) = (x1
i (t), x2

i (t)..., xn
i (t))

T ∈ Rn denotes the state
variable associated with the ith neuron, A = diag{a1, a2, ..., an} is the decay constant matrix
with ai > 0 for i = 1, 2, ..., n, D = (dij)n×n and C = (cij)n×n are the connection matrix and
delayed connection matrix, respectively, and g(xi(t)) = (g1(x1

i (t)), g2(x2
i (t)), ..., gn(xn

i (t)))
T

is the activation function of the neurons and satisfies the following condition.

Assumption 2. There exists a positive constant s > 0 such that(
g(x)− g(y)

)T(g(x)− g(y)
)
≤ s(x− y)T(x− y),

for any x, y ∈ Rn.

Correspondingly, the synchronization equation Π(t) of (17) is represented by

Π̇(t) = −AΠ(t) + Dg(Π(t)) + Cg(Π(t− τ(t))). (18)
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Theorem 3. Under Assumption 2 and the controller (6), if

p1 < min{2η3, 2η4(nN)−δ}, s− η2

ς
≤ 0,

where p1 = λmax

((
λ− 2η1 − η2ς

)
IN + 2cγk

BT+B
2

)
, λ = λmax(−A−AT + DDT + CCT +

sIN), then, the controlled delayed dynamical network (17) is the fixed-time synchronized. Moreover,
the synchronized settling time is estimated by

T ≤ T∗1 =
1

p1(1− 1+µ
2 )

ln
( 2η3

2η3 − p1

)
+

1
p1(

1+δ
2 − 1)

ln
( 2η4(nN)−δ

2η4(nN)−δ − p1

)
.

Proof. Under Assumption 1, the network is fixed-time synchronized from Theorem 1.
Using Lemma 2 and Assumption 2, we can get

(xi(t)− yi(t))T
(

f(t, xi(t), xi(t− τ(t)))− f(t, yi(t), yi(t− τ(t)))
)

= (xi(t)− yi(t))T
[
−A(xi(t)− yi(t)) + D(g(xi(t))− g(yi(t)))

+ C(g(xi(t− τ(t)))− g(yi(t− τ(t))))
]

≤ 1
2
(xi(t)− yi(t))T

(
−A−AT + DDT + CCT + sIN

)
(xi(t)− yi(t))

+
s
2

(
xi(t− τ(t))− yi(t− τ(t)))

)T
(

xi(t− τ(t))− yi(t− τ(t)))
)

≤ λ

2
(xi(t)− yi(t))T(xi(t)− yi(t)) +

s
2

(
xi(t− τ(t))− yi(t− τ(t)))

)T

×
(

xi(t− τ(t))− yi(t− τ(t)))
)

,

where λ = λmax(−A−AT + DDT + CCT + sIN), which shows that assumption 1 holds,

and l1 =
λ

2
, l2 =

s
2

. Hence, from Theorem 1, the coupled network (17) is fixed-time
synchronized to (18). The proof of Theorem 3 is completed.

Theorem 4. Under Assumption 2 and the controller (11), if

s− η2

ς
≤ 0, λmax

((
λ− 2η̃1 − η2ς + 1

)
IN + 2cγk

BT + B
2

)
< 0,

where p2 = min{1, 2ε2√
ε1
}, λ1 = min{2η4, ε3(ε1)

δ−1
2 }, λ = λmax(−A−AT +DDT +CCT +

sIN), then, the dynamical network (17) is the fixed-time synchronized. Moreover, the synchronized
settling time is estimated by

T ≤ T∗2 =
1

p2(1− 1
2 )

+
1

λ1((n + 1)N)−δ( 1+δ
2 − 1)

.

Suppose τ(t) = 0, network model (5) can be rewritten as follows.

ẋi(t) = f(t, xi(t)) + c
N

∑
j=1

bijΓxj(t) + ui(t). (19)

The feedback control gain ui(t) in Equation (6) becomes the following form.

ui(t) = −η1ei(t)− η3sign(ei(t))|ei(t)|µ − η4sign(ei(t))|ei(t)|δ, (20)

where η1, η3, η4 > 0 are the control gains, and µ satisfies 0 ≤ µ < 1, δ satisfies δ > 1.
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Moreover, the adaptive control gain ui(t) in Equation (11) becomes the following
form.

ui(t) = −η1
i (t)ei(t)− η4sign(ei(t))|ei(t)|δ, (21)

where η4 > 0 is the control gain, δ satisfies δ > 1, and the adaptive update law is given by

η̇1
i (t) = ε1eT

i (t)ei(t)− ε2sign(η1
i (t)− η̃1)− ε3sign(η1

i (t)− η̃1)|η1
i (t)− η̃1|δ,

where ε1, ε2, ε3 > 0, η̃1 is constant to be determined.
Correspondingly, the synchronization equation associated with (19) is depicted by

Π̇(t) = f(t, Π(t)), i ∈ I. (22)

Based on Theorems 1–4, we can get the following Corollaries 1–4, respectively.

Corollary 1. Under Assumption 1 and the controller (20), if

p1 < min{2η3, 2η4(nN)−δ},

where p1 = λmax

((
2l1 − 2η1

)
IN + 2cγk

BT+B
2

)
, then, the dynamical network (19) is the fixed-

time synchronized. Moreover, the synchronized settling time is estimated by

T ≤ T∗1 =
1

p1(1− 1+µ
2 )

ln
( 2η3

2η3 − p1

)
+

1
p1(

1+δ
2 − 1)

ln
( 2η4(nN)−δ

2η4(nN)−δ − p1

)
.

Corollary 2. Under Assumption 1 and the controller (21), if

λmax

((
2l1 − 2η̃1 + 1

)
IN + 2cγk

BT + B
2

)
< 0,

where p2 = min{1, 2ε2√
ε1
}, λ1 = min{2η4, ε3(ε1)

δ−1
2 }, then, the dynamical network (19) is the

fixed-time synchronized. Moreover, the synchronized settling time is estimated by

T ≤ T∗2 =
1

p2(1− 1
2 )

+
1

λ1((n + 1)N)−δ( 1+δ
2 − 1)

.

Corollary 3. Under Assumption 2 and the controller (20), if

p1 < min{2η3, 2η4((nN)−δ},

where p1 = λmax

((
λ− 2η1

)
IN + 2cγk

BT+B
2

)
, λ = λmax(−A−AT + DDT + CCT + sIN),

then, the dynamical network (19) is the fixed-time synchronized. Moreover, the synchronized
settling time is estimated by

T ≤ T∗1 =
1

p1(1− 1+µ
2 )

ln
( 2η3

2η3 − p1

)
+

1
p1(

1+δ
2 − 1)

ln
( 2η4(nN)−δ

2η4(nN)−δ − p1

)
.

Corollary 4. Under Assumption 2 and the controller (21), if

λmax

((
λ− 2η̃1 + 1

)
IN + 2cγk

BT + B
2

)
< 0,
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where p2 = min{1, 2ε2√
ε1
}, λ1 = min{2η4, ε3(ε1)

δ−1
2 }, λ = λmax(−A−AT +DDT +CCT +

sIN), then, the dynamical network (19) is the fixed-time synchronized. Moreover, the synchronized
settling time is estimated by

T ≤ T∗2 =
1

p2(1− 1
2 )

+
1

λ1((n + 1)N)−δ( 1+δ
2 − 1)

.

Remark 2. As we know, in the process of information transmission and spreading, the communica-
tion delay is a typical phenomenon and may result in oscillation and instability dynamic behaviors.
Hence, it is necessary to study the influence of time delay on network’ dynamic behavior. Other-
wise, time delays were not considered in other works [14,18,19,27]. In this paper, by establishing
Lyapunov function, the synchronization of delayed dynamical networks has been realized. When
τ(t) = 0, Corollary 3 in this paper is equivalent to Theorem 1 in the works of Li [18] and Ji [19]. In
other words, results in the papers of Li [18] and Ji [19] are the special case of our results. Moreover,
for τ(t), we do not require that its derivative is bounded. Hence, the model we considered in this
paper is more general.

Remark 3. In recent work [32], fixed-time synchronization of dynamic system via improving
fixed-time stability was studied. However, the upper bound of synchronization time is, respectively,
estimated for cases a < 0 and a > 0 and two different formulas of the estimate were obtained, which
inevitably results in some inconvenience in applications. Different from the result of reference [32],
a unified form of the estimate is derived for the cases a < 0 and a > 0 in Lemma 3, and it is more
convenient in practice.

Remark 4. Using Lemma 3, the network can realize fixed-time synchronization under linear
feedback control and adaptive control in this paper. Feedback control and adaptive control are
continuous control approaches. For continuous control approaches, such as intermittent control
and impulse control, a lot of results have been obtained. However, the fixed time synchronization of
networks cannot be received by using Lemma 3 under intermittent control and impulse control.

Remark 5. Until now, for articles that have been published on fixed-time synchronization, feedback
control was mainly used [19,26,27]. Unfortunately, only very few articles have considered the
fixed-time synchronization through adaptive control method [18,31] to reduce the conservativeness
of synchronization criteria. In this paper, both adaptive controller and feedback controller are
designed to ensure the fixed-time synchronization of delayed complex networks.

4. Numerical Simulations

In this section, a delayed network is provided to present fixed-time synchronization.

Example 1. Consider the coupled networks model with variable delay as follows.

ẋi(t) = −Axi(t) + Dg1(xi(t)) + Cg2(xi(t− τ(t))) + c
8

∑
j=1

bijΓxj(t) + ui(t),

i = 1, 2, ..., 8,

(23)

where xi(t) = (x1
i (t), x2

i (t)) ∈ R2, i = 1, 2, ..., 8, g1(u) = g2(u) = (tanh(u1), tanh(u2)),
c = 2, and

A =

(
1 0
0 1

)
, C =

(
−1.5 −0.1
−0.1 −1.5

)
, Γ =

(
1 0
0 1

)
, D =

(
2 −0.1
−4 3

)
,
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B =



−2 0.2 0.4 0.2 0.3 0.3 0.32 0.28
0.72 −4 0.48 0.48 0.72 0.56 0.64 0.4
0.1 0.1 −1 0.16 0.13 0.17 0.15 0.19
0.8 0.6 0.32 −4 0.64 0.6 0.64 0.4

0.48 0.72 0.6 0.68 −4 0.68 0.44 0.4
0.2 0.3 0.3 0.32 0.2 −2 0.32 0.36

0.68 0.56 0.64 0.52 0.48 0.36 −4 0.76
0.52 0.72 0.56 0.64 0.64 0.52 0.4 −4


.

In the case that network (23) reaches complete synchronization, that is, lim
t→∞
‖xi(t)−Π(t)‖ =

0, i = 1, 2, ..., 8, we have the following synchronized state equation:

Π̇(t) = −AΠ(t) + Dg1(Π(t)) + Cg2(Π(t− τ(t))). (24)

The dynamic property of (24) with the differential initial values (Π1(s), Π2(s))T =
(0.8, 0.6)T or (Π1(s), Π2(s))T = (0.8,−0.6)T and differential time delays τ(t) = et/(1 + et)
or τ(t) = 0.9et/(1 + et) with s ∈ [−1, 0] can be emerged, which is revealed in Figure 1 and
the states is chaotic attractor in this case. Moreover, the different dynamic properties of (23)
with the initial values x1

1 = 0.1, x1
2 = −0.45, x1

3 = 0.45, x1
4 = 0.2, x1

5 = −0.2, x1
6 = 1, x1

7 =
2, x1

8 = −1, x2
1 = −2, x2

2 = 2, x2
3 = −0.5, x2

4 = 1, x2
5 = 0.8, x2

6 = −0.4, x2
7 = 0.6, x2

8 = 0.4
with s ∈ [−1, 0] are given in the following.

4.1. Discontinuous Feedback Control

Let η1 = 2, η2 = 5, η3 = 4, η4 = 8, µ = 0.9, δ = 1.05, s = 1, ς = 4. By computation,
λ = λmax(−A−AT + DDT + CCT + sIN) = 24.5047, p1 = 0.5077, then, the conditions in
Theorem 3 are satisfied. From Theorem 3, the networks (23) under the controller (6) can be
synchronized with fixed-time T < T∗1 = 71.65. Figures 2 and 3 show the dynamics of Π1
and Π2, respectively. Figures 4 and 5 show the synchronization of dynamics, and Figures 6
and 7 show the errors of dynamics.

−1 −0.5 0 0.5 1
−5

0

5

Π
1

Π
2

(a) Initial values (Π1(s), Π2(s))T = (0.8, 0.6)T and
time delays τ(t) = et/(1 + et).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Π
1

Π
2

(b) Initial values (Π1(s), Π2(s))T = (0.8, 0.6)T and
time delays τ(t) = 0.9et/(1 + et).

.

Figure 1. Cont.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
−4

−3.5

−3

−2.5

−2

−1.5

Π
1

Π
2

(c) Initial values (Π1(s), Π2(s))T = (0.8,−0.6)T and
time delays τ(t) = 0.9et/(1 + et).

−1 −0.5 0 0.5 1
−5

0

5

Π
1

Π
2

(d) Initial values (Π1(s), Π2(s))T = (0.8,−0.6)T and
time delays τ(t) = et/(1 + et).

.

Figure 1. Dynamical behavior of neural networks (24) with differential initial values and differential
time delays.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

t

Π
1

Figure 2. The state of Π1(t) with (Π1(s),Π2(s))T = (0.8, 0.6)Tand τ(t) = et/(1 + et).

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

t

Π
2

Figure 3. The state of Π2(t) with (Π1(s),Π2(s))T = (0.8, 0.6)Tand τ(t) = et/(1 + et).
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0 5 10 15 20 25 30
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−0.5

0
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1

1.5

2

t

Π
1
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x
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(
i=

1
,2

,.
..

,8
)

Figure 4. The synchronization of state x1
i (t) and Π1(t).
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x
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1
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Figure 5. The synchronization of state x2
i (t) and Π2(t).
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||e
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Figure 6. The synchronization error ||e1|| =
8
∑

i=1
|x1

i −Π1|.
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0 5 10 15 20 25 30
−1

0

1

2

3

4

5

6

7

t

||
e

2
(
t
)
||

 

 

||e
2
(t)||

Figure 7. The synchronization error ||e2|| =
8
∑

i=1
|x2

i −Π2|.

4.2. Adaptive State Control

Let η2 = 5, η4 = 8, µ = 0.9, δ = 1.05, s = 1, ς = 4, and ε1 = 2, ε2 =
0.2, ε3 = 20, η̃1 = 3. By computation, λ = λmax(−A − AT + DDT + CCT + sIN) =

24.5047, λmax

((
λ− 2η̃1 − η2ς + 1

)
IN + 2cγk

BT+B
2

)
= −0.4923 < 0, p2 = 0.2829, λ1 =

7.7276, then, we can obtain the conditions of Theorem 4 are satisfied. From Theorem 4, the
networks (23) under the controller (11) can be synchronized with fixed-time T < T∗2 = 62.37.
Figures 8 and 9 show the synchronization of dynamics, and Figures 10 and 11 show the
errors of dynamics. Time evolution of adaptive control gain η1

i (t) with η1
i (0) = 0.1 for

i = 1, 2, ..., 8 is given in Figure 12.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

2

t

Π
1
, 
x

1 i
(
t
)
(
i=

1
,2

,.
..
,8

)

Figure 8. The synchronization of state x1
i (t) and Π1(t).
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Figure 9. The synchronization of state x2
i (t) and Π2(t).
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Figure 10. The synchronization error ||e1|| =
8
∑

i=1
|x1

i −Π1|.
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Figure 11. The synchronization error ||e2|| =
8
∑

i=1
|x2

i −Π2|.
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η
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Figure 12. Adaptive control gain η1
i (t) with η1

i (0) = 0.1 for i = 1, 2, ..., 8.

Remark 6. From Figure 1, the system (24) with time delay is a chaotic system. Eight nodes are
chosen in the slave system and by simple computing the values of some corresponding parameters
and choosing the values of η1, η2, η3, η4, µ, δ, ε1, ε2, ε3, the conditions of Theorems 3 and 4 are
satisfied. From Lemma 3, by applying the adaptive and feedback controllers to the system (23), the
system (23) and the corresponding system (24) can be reached synchronization. The synchronized
states of systems (23) and (24) are given in Figures 4, 5, 8 and 9, and the errors of the systems (23)
and (24) are shown in Figures 6, 7, 10 and 11. It can be seen that the synchronization of systems
(23) and (24) is indeed solved, and the simulation results demonstrate the theoretical analysis very
well.

5. Conclusions

In this paper, the fixed-time synchronization for a class delayed complex networks
model is investigated under feedback control strategy and adaptive control strategy. Firstly,
the complex network model we studied has time delay. Secondly, by constructing simple
Lyapunov function, we give some ordinary yet useful sufficient criteria of delayed complex
networks. Furthermore, when τ(t) = 0, we get a special cases, which is considered in
reference [14,18,19,27,35]. In addition, for τ(t), we do not require that its derivative is
bounded. In this meaning, the results obtained in this paper are more general. Finally, the
numerical examples are given to show the validness of the corresponding scheme.

Generally speaking, the fixed-time synchronization settling time and its estimation
of the networks depend on the initial value. However, the synchronized time in PAT
synchronization can be independent of any initial value and any parameter and pre-
specified according to actual needs. As we know, PAT synchronization of delayed dynamic
networks are few investigated. Hence, it is meaningful to address this problem in our
recent research topics.
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Abbreviations
The following abbreviations are used in this manuscript:

MASs Complex networks model
FONMASs Delayed complex networks model
SMC Feedback control and adaptive control
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