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ABSTRACT Antibiotic-resistant Staphylococcus aureus is an opportunistic pathogen
causing serious human infections worldwide. Here, we report the complete anno-
tated genome of bacteriophage SA75, a member of the Siphoviridae family which
could be an alternative to traditional antibiotics for treating Staphylococcus infec-
tions. We used a hybrid approach combining MinION and Illumina MiSeq se-
quencing, which yielded a 43,134-bp genome and 65 open reading frames.

Staphylococcus aureus, a Gram-positive coccal bacterium, is frequently found in the
upper respiratory tract, intestine, and skin; however, it also causes a wide range of

infections and food poisoning in humans (1, 2). S. aureus infections are difficult to treat
due to an increased rate of resistance to several antibiotics and its ability to quickly
adapt to different conditions (3, 4). The use of bacteriophages to treat S. aureus
infections and as a biocontrol agent has become an attractive alternative/supplemen-
tation to traditional antibiotics and control measures (5–7).

SA75, a novel bacteriophage that infects S. aureus, was isolated from Capra hircus
coreanae (also known as native Korean goat) feces with S. aureus strain RN4220 as the
indicator host strain, using methods previously described (8). Briefly, a fecal sample (25
g) was homogenized in 225 ml of sodium chloride-magnesium sulfate (SM) buffer,
mixed with tryptic soy broth (TSB) supplemented with 10 mM CaCl2, subcultured with
S. aureus RN4220, and incubated at 37°C for 12 h with shaking. After incubation, the
samples were centrifuged at 8,000 � g for 10 min and filtered to remove bacterial cells
and obtain the supernatant containing the bacteriophage. These phages were further
plaque purified three times by the agar overlay method to ensure the purity.

For large-scale phage production, TSB was inoculated with S. aureus RN4220,
incubated at 37°C for 1.5 h prior to the addition of SA75 at a multiplicity of infection
(MOI) of 1, and incubated for 3 h at the same temperature with shaking. The phages
were precipitated with polyethylene glycol (PEG) 6000 and concentrated using CsCl
density gradient ultracentrifugation. Finally, to confirm viability following CsCl purifi-
cation, the supernatant was overlaid on 0.4% molten tryptic soy agar (TSA) and S.
aureus RN4220. Plaques were evident after incubation at 37°C for 12 h. Bacteriophage
genomic DNA was purified as previously described with minor modifications (9). In
brief, 500 �l of phage lysate was treated at 37°C for 1 h with 125 U of Benzonase
(Sigma), 10 U of recombinant DNase I (rDNase I; Invitrogen), and 10 �l of RNA cocktail
solution (Invitrogen) to remove residual S. aureus DNA and RNA. Benzonase was
deactivated by the addition of 50 �l of 0.5 M EDTA and 50 �l of 0.5 M EGTA at 70°C for
10 min. Then, 1.6 U of Proteinase K (New England BioLabs, Inc., Ipswich, MA) and 0.5%
of SDS were added, and the mix was incubated at 56°C for 1 h, followed by phenol-
chloroform DNA extraction.
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Illumina sequencing libraries were prepared using the Nextera XT library kit. Se-
quencing was performed on an Illumina MiSeq instrument using the v2 300-cycle
reagent kit, producing 2,055,788 reads with 620.8 million bases. The MinION sequenc-
ing libraries were prepared using the rapid barcoding kit (SQK-RBK004) and sequenced
using a MinION R9.4 flow cell (Nanopore, Oxford, UK). MinION reads were base called
with Albacore software (Nanopore). Illumina read quality was assessed using FastQC
v0.11.7, and trimming was performed using Trimmomatic v0.32 (9, 10) with the
following settings: ILLUMINACLIP, TruSeq3-PE-2.fa:2:30:10; LEADING, 3; TRAILING, 3;
SLIDINGWINDOW, 4:24; and MINLEN, 60. The MinION reads were demultiplexed and
quality trimmed using Porechop v0.2.3 (11) with default settings. A hybrid Illumina-
MinION de novo assembly was performed using the Unicycler v0.4.7 (12) pipeline and
corrected for errors using Pilon v1.22 (13) with Illumina reads. The average depth of
read coverage for the final assembly, calculated using CLC Genomics Workbench
v10.1.1, was 35� and 11,988� for the MinION and Illumina reads, respectively. Auto-
mated genome annotation was performed with the Rapid Annotations using Subsys-
tems Technology (RAST) server (13, 14). tRNAscan-SE v2.0 (15) was used to search for
tRNAs.

The genome of phage SA75 is 43,134 bp long with 65 predicted open reading
frames (ORFs), no tRNAs, and 34.4% GC content. Despite forming clear plaques on
RN4220, a lysogeny control region was identified consisting of three genes flanked by
an attP identical to that of �80� (16), along with an integrase at one end and a cI-like
repressor at the other end. Although SA75 lacks known phage-encoded S. aureus
virulence genes (lukSF, eta, sasX, sea, sep, sek, seg, sak, chp, and scn; 17–25), it does
encode a dUTPase, which has been shown to facilitate mobilization of S. aureus
pathogenicity islands (26, 27). A Web-based MegaBLAST search was performed to
identify the closest related phages using default settings (https://blast.ncbi.nlm.nih
.gov/Blast.cgi). Average nucleotide identity (ANI) was calculated using the ANI calcula-
tor (https://www.ezbiocloud.net/tools/ani; 28), which indicated that SA75 was most
closely related to S. aureus Siphoviridae phages SA12 (98.98%), SP6 (98.68%), �MR25
(95.89%), �NM2 (95.77%), and �80� (94.59%). PhageTerm v1.0.12 (29) was unable to
identify terminal ends of the phage, suggesting that SA75 was terminally redundant
and uses a headful packaging mechanism, which was supported by phylogenetic
analysis of the predicted large terminase gene (30).

Data availability. The genome sequence of phage SA75 was submitted to GenBank
under accession number MT013111. The associated BioProject, SRA, and BioSample
accession numbers are PRJNA591820, SRP234516, and SAMN13389916, respectively.
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