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Shiga toxin-producing Escherichia coli (STEC) are a group of diarrheagenic bacteria

associated with foodborne outbreaks. Infection with these agents may result in grave

sequelae that include fatality. A large number of STEC serotypes has been identified to

date. E. coli serotype O104:H4 is an emerging pathogen responsible for a 2011 outbreak

in Europe that resulted in over 4000 infections and 50 deaths. STEC pathogenicity is

highly reliant on the production of one or more Shiga toxins that can inhibit protein

synthesis in host cells resulting in a cytotoxicity that may affect various organ systems.

Antimicrobials are usually avoided in the treatment of STEC infections since they

are believed to induce bacterial cell lysis and the release of stored toxins. Some

antimicrobials have also been reported to enhance toxin synthesis and production

from these organisms. Various groups have attempted alternative treatment approaches

including the administration of toxin-directed antibodies, toxin-adsorbing polymers,

probiotic agents and natural remedies. The utility of antibiotics in treating STEC infections

has also been reconsidered in recent years with certain modalities showing promise.

Keywords: Shiga toxin-producing Escherichia coli, hemorrhagic colitis, hemolytic uremic syndrome, antimicrobial

agents, Shiga toxin 1, Shiga toxin 2

Shiga toxin-producing Escherichia coli (STEC) are a group of bacterial organisms that are capable
of producing one or more types of Shiga toxin (Stx). STEC are associated with a disease spectrum
ranging from diarrhea and hemorrhagic colitis (HC) to the potentially fatal hemolytic uremic syn-
drome (HUS) and thrombotic thrombocytopenic purpura (TTP). STEC infections are typically
food-borne (Dupont, 2007) and the production of Shiga toxins (Stx1, Stx2 or a variant) is believed
to be central to the pathogenesis of these organisms. STEC strains are the result of an insertion
of one of a group of lysogenic lambdoid bacteriophages that harbor an Stx1/2-encoding gene into
the E. coli genome. The clinical syndromes, pathogenic characteristics, the pathobiology of these
organisms and the toxins they produce are reviewed in Melton-Celsa et al. (2012); Farrokh et al.
(2013); Kruger and Lucchesi (2015).

In recent years, novel serotypes have emerged culminating in a major outbreak in 2011 caused
by a novel pathotype, E. coli O104:H4. The review at hand focuses on potential treatment strate-
gies for STEC infections in light of a consensus contraindication of employing antimicrobials for
these bacterial pathogens. The rise of E. coli O104:H4 and approaches employed in its treatment
are highlighted.

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://dx.doi.org/10.3389/fcimb.2015.00024
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:er00@aub.edu.lb
http://dx.doi.org/10.3389/fcimb.2015.00024
http://www.frontiersin.org/journal/10.3389/fcimb.2015.00024/abstract
http://community.frontiersin.org/people/u/176189
http://community.frontiersin.org/people/u/193856
http://community.frontiersin.org/people/u/54159


Rahal et al. Treatment of emerging STEC infections

Emerging STEC Serotypes

A large number of STEC serotypes has been documented; these
have been isolated from various types of animals including cat-
tle, sheep, and goats (Farrokh et al., 2013). More than 380
STEC serotypes have been associated with human disease; some
of the most frequently reported serotypes include O111:H-,
O26:H11/H-, O103:H2, O113:H21, O91:H21/H-, O117:H7,
O118:H16, O121:H19, O145:H28, O128:H2/H-, and O146:H21.
The O157:H7 serotype has been the most commonly isolated one
in association with HC and HUS in both outbreaks and spo-
radic cases. It accounts for more than 30% of estimated STEC
illness and mortality cases in the United States (Karmali et al.,
2010; Scallan et al., 2011). However, there are some indications
that non-O157 STEC are gaining traction in the United States
and that they may be even more common than O157 strains
in severe illnesses caused by STEC in parts of Europe, Latin
America, Australia, and Africa (Blanco et al., 2005; Wang et al.,
2013).

The epidemiology and pathogenic characteristics of non-O157
serotypes are not well studied; however, the limited reported data
indicates some differences between the two types of infections.
Non-O157 strains appear to induce a longer period of diarrhea
which is less frequently of the hemorrhagic type (Johnson et al.,
2006). Nevertheless, studies demonstrate that these non-O157
serotypes can be as virulent as O157 serotypes depending on the
strain involved (Ethelberg et al., 2004).

Perhaps highlighting the relevance of monitoring these non-
O157 serotypes was the emergence of the rather notorious E. coli
O104:H4. This novel pathogen was the cause of a 2011 out-
break that affected 16 European countries with the majority of
cases reported in Germany. Few cases were reported in Canada
and the United States as well; nevertheless, these were travel-
ers who had been to Europe prior to becoming ill. Reports of
this novel pathogen started in May of 2011 and had peaked and
then dwindled by July of the same year due to control mea-
sures that were implemented. TheWHO indicates that 4075 cases
and 50 deaths were caused by this STEC outbreak. Therefore, a
1.23% mortality rate was observed. On the other hand, the mor-
tality rate of HUS due to E. coli O104:H4 in this outbreak was
3.74% (WHO, 2011). E. coli O104:H4 appears to be an enteroag-
gregative E. coli (EAEC) that has acquired the ability to produce
Stx2, typically produced by enterohemorrhagic E. coli (EHEC)
rather than EAEC group members. This may have occurred
via horizontal gene transfer resulting in a new E. coli virotype
dubbed the Enteroaggregative Hemorrhagic E. coli or EAHEC
(Bloch et al., 2012). The O104:H4 serotype harbors two copies of
the Stx2-encoding prophage. Therefore, this emergent bacterium
seems to have a rather novel epidemiologic and pathogenic pro-
file (Brzuszkiewicz et al., 2011; Mellmann et al., 2011). While
ruminants are the reservoir of most STEC serotypes, no animal
reservoir has been identified for E. coli O104:H4 and humans are
believed to be the major reservoir for this organism (Wieler et al.,
2011; Auvray et al., 2012; Karch et al., 2012). Whereas, the clini-
cal profile of E. coli O104:H4 was relatively similar to that caused
by other STEC infections some pertinent differences existed. For
instance, about a quarter of subjects affected developed HUS

during the 2011 outbreak, which is 2–5 fold higher than the rate
usually observed for an STEC infection (WHO, 2011).

Treatment of an STEC Infection

The lack of an effective treatment strategy for an STEC infection
has made these agents a prominent public health threat and a
burden to the medical community at large. The currently rec-
ommended management of an STEC infection mainly relies on
supportive therapy and hydration (Thorpe, 2004). The use of
antimicrobial agents in treating these infections has been asso-
ciated with an increased risk of HUS and is therefore contraindi-
cated (Qadri and Kayali, 1998; Guerrant et al., 2001; Safdar et al.,
2002).

Novel and Alternative STEC Treatment
Strategies

The debatable use of antimicrobial agents for the treatment of an
STEC infection has led to the rise of various alternative treatment
approaches (Table 1). These have ranged from the use of natural
products to the development of novel regimens that re-examine
employing antimicrobials.

Shiga Toxin Receptor Analog
Various agents that mimic Stx receptors and bind them thus
reducing their availability to cellular receptors have been devel-
oped. Carbosilane dendrimers harboring Gb3 at their termini
neutralize Shiga toxins in vitro and were demonstrated to protect
challenged mice when administered intravenously (Nishikawa
et al., 2002, 2005). Similarly, multivalent carbohydrate com-
pounds, such as STARFISH and Daisy also neutralize Shiga tox-
ins in vitro and in animals (Kitov et al., 2000; Mulvey et al.,
2003). Gb3 polymers with highly clustered trisaccharides bind
Shiga toxins with high affinity and protect challenged mice when
administered orally (Watanabe et al., 2004). Recombinant bacte-
rial strains that express toxin receptor mimics have also demon-
strated a potential efficacy in vitro and upon testing in animals
(Paton et al., 2000, 2001; Hostetter et al., 2014). SYNSORB Pk,
a synthetic Stx receptor analog consisting of a Pk trisaccharide
bound to Chromosorb R© P, a multipurpose sorbent medium, was
shown to have an abrogative effect on Shiga toxins in vitro. This
agent, however, was not effective in clinical trials (Trachtman
et al., 2003).

Intracellular Interference with Shiga Toxins
Cell permeable agents that can bind Stx2 and potentially inter-
fere with its intracellular trafficking have been reported. These
include Ac-PPP-tet (Watanabe-Takahashi et al., 2010) and TVP
(Stearns-Kurosawa et al., 2011); both agents have been tested in
animal models and have displayed Stx2 neutralization abilities.
Manganese has also been reported to interfere with intracellular
trafficking of the B subunits of Stx and to protect against Stx1 in
mice (Mukhopadhyay and Linstedt, 2012). However, it did not
protect against Stx1-S or Stx2a and hence it may be of limited
use (Gaston et al., 2013). The small molecule inhibitors Retro-1
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TABLE 1 | Experimental approaches to the treatment of Shiga toxin-producing Escherichia coli infections.

Approach Method Reference(s)

Shiga toxin receptor analogs Carbosilane dendrimers with terminal Gb3 moieties Nishikawa et al., 2002, 2005

Multivalent carbohydrate compounds Kitov et al., 2000; Mulvey et al., 2003

Gb3 polymers with highly clustered trisaccharides Watanabe et al., 2004

Toxin receptor mimic-producing bacteria Paton et al., 2000, 2001; Hostetter et al., 2014

Pk trisaccharide bound to a sorbent medium Trachtman et al., 2003

Intracellular interference with Shiga toxins Ac-PPP-tet Watanabe-Takahashi et al., 2010

TVP Stearns-Kurosawa et al., 2011

Manganese Mukhopadhyay and Linstedt, 2012; Gaston et al.,

2013

Retro-1, Retro-2, Retro-2cycl Stechmann et al., 2010; Noel et al., 2013

Antibodies Anti-lipopolysaccharide antibodies Paton et al., 1998

Monocolonal anti-Stx A subunit antibodies Islam and Stimson, 1990

Bovine colostrum anti-Shiga toxin antibodies Huppertz et al., 1999; Kuribayashi et al., 2006,

2009; Seita et al., 2013

Humanized monoclonal anti-C5 (Eculizumab) Lapeyraque et al., 2011; Kielstein et al., 2012;

Menne et al., 2012; Delmas et al., 2014

Natural Products Lactic acid Pittman et al., 2012

Fruit juices Nogueira et al., 2003

Plant, fruit and root products, teas or extracts Tomita et al., 1997; Isogai et al., 1998; Okubo et al.,

1998; Takahashi et al., 1999; Heredia et al., 2005;

Takemasa et al., 2009; Lacombe et al., 2010; Lee

and Stein, 2011; Voravuthikunchai et al., 2012; Liu

et al., 2013; Pellarin et al., 2013

Green tea extract with an antimicrobial agent (Levofloxacin) Isogai et al., 2001

Novel/Alternate approaches using antimicrobial

agents

Meropenem, chloramphenicol and fosfomycin Corogeanu et al., 2012

Ciprofloxacin Corogeanu et al., 2012; Geerdes-Fenge et al., 2013

Azithromycin Nitschke et al., 2012; Nassar et al., 2013

Rifampicin and Gentamicin Kanbar et al., 2003; Matar and Rahal, 2003; Rahal

et al., 2011a,b; Nassar et al., 2013; Fadlallah et al.,

2015

Imipenem Nassar et al., 2013

and Retro-2 have also been identified via high throughput screen-
ing as agents that interfere with Stx trafficking (Stechmann et al.,
2010) and a derivative of Retro-2, referred to as Retro-2cycl, was
shown to protect cells in culture against Stx (Noel et al., 2013).

Antibodies
Preparations of antibodies that can bind Shiga toxins and neu-
tralize their effects have been reported. Anti-lipopolysaccharide
antibodies have shown protective abilities upon laboratory
assessment (Paton et al., 1998) and monocolonal anti-Stx A sub-
unit antibodies have demonstrated potential utility in both lab-
oratory and animal studies (Islam and Stimson, 1990). Bovine
colostrum antibodies against Shiga toxins have also been demon-
strated to protect challenged animals (Kuribayashi et al., 2006,
2009; Seita et al., 2013). A bovine colostrum preparation, rich
in immunoglobulins and harboring a high titer of anti-Stx1
and anti-Stx2 antibodies, has also been assessed; a colostrum-
treated group of 13 patients and 14 placebo-treated controls

were compared. The median frequency of stool excretion was
decreased in the colostrum-treated patients; however, the pres-
ence of the bacterial agent in subject stools was not notably
affected. Study subjects were not monitored for the effect of this
treatment on the development of HUS or other potential seque-
lae of infection (Huppertz et al., 1999). Eculizumab, a humanized
monoclonal antibody against complement component 5 (C5),
was shown in small clinical studies to have beneficial effects on
recovery from STEC-associated HUS including cases during the
2011 E. coli O104:H4 outbreak (Lapeyraque et al., 2011; Delmas
et al., 2014). However, some reports have indicated that inclusion
of eculizumab in the treatment of E. coli O104:H4-induced HUS
results in no additional benefits (Kielstein et al., 2012; Menne
et al., 2012).

Natural Products
Various natural products have been considered as potential ther-
apeutic agents for STEC infections. These have included lactic
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acid (Pittman et al., 2012), fruit juices (Nogueira et al., 2003)
in addition to plant, fruit and root products, teas or extracts
(Tomita et al., 1997; Isogai et al., 1998; Okubo et al., 1998;
Takahashi et al., 1999; Heredia et al., 2005; Takemasa et al.,
2009; Lacombe et al., 2010; Lee and Stein, 2011; Voravuthikun-
chai et al., 2012; Liu et al., 2013; Pellarin et al., 2013). These
products have shown promise in vitro or in experimental ani-
mal models; however, they have not been evaluated in clini-
cal studies. Worth noting is a study that showed a synergistic
effect between green tea extract and an antibiotic, levofloxacin,
in the treatment of an STEC-infected mouse model (Isogai et al.,
2001) indicating that a potential risk imparted by an antibi-
otic treatment may be lessened by the inclusion of another
agent.

Antimicrobial Agents
The use of antimicrobial agents in treating STEC infections has
been controversial and the subject of an ongoing debate. While
some studies indicated that the use of particular agents may
increase the risk of HUS, others have reported a decrease of this
risk upon implementation of antimicrobials. While these obser-
vations may be particular to certain agents at some doses, the
potential risk of antimicrobial treatment inducing HUS has led
to a general contraindication of such agents (Qadri and Kayali,
1998; Guerrant et al., 2001; Safdar et al., 2002). Antimicrobials are
thought to augment the risk of HUS by enhancing the release of
Shiga toxins from bacterial cells via a number of ways. DNA dam-
age that can be caused by some antimicrobials may trigger the
bacterial SOS response in STEC cells. The SOS response, whose
function is to cope with genomic damage, results in the expres-
sion of a number of proteins that may activate the lytic cycle
of the bacteriophage encoding a Stx thus enhancing its produc-
tion. Other types of physiologic stresses caused by antimicrobial
agentsmay also trigger the lytic cycle and result in increased toxin
expression (Kimmitt et al., 2000; Los et al., 2009). On the other
hand, Stx1 is known to be stored within the periplasmic space of
STEC cells; therefore, cellular lysis induced by an antimicrobial
agent may result in an enhanced release of this particular type
of Stx (Strockbine et al., 1986; Yoh et al., 1997; Sato et al., 2003;
Shimizu et al., 2009).

Several antimicrobial agents have been shown to enhance the
release or the production of Shiga toxins from STEC cells in vitro;
these include the quinolones, trimethoprim, and furazolidone
(Kimmitt et al., 2000); however, observations indicate that these
effect may be strain and antimicrobial agent-specific (Grif et al.,
1998). For example some isolates of E. coli O104:H4 from the
2011 outbreak in Europe do not display an increase in toxin pro-
duction upon treatment with meropenem, ciprofloxacin, chlo-
ramphenicol, or fosfomycin, unlike E. coli O157:H7 (Corogeanu
et al., 2012). Our group assessed the effect of sub-MIC levels of
various antimicrobial agents on triggering the SOS response and
the production of Shiga toxins in E. coli O157:H7 and in E. coli
O104:H4. A sub-MIC concentration may, after all, be the con-
centration available locally at the site of infection. We noted that
the response is variable depending on the isolate used and the
concentration of antimicrobial implemented (Nassar et al., 2013;
Fadlallah et al., 2015).

Reconsideration of treating STEC infections with antimi-
crobial agents has nevertheless gained ground in recent years.
Ciprofloxacin was recently reported to decrease the risk of HUS
in subjects infected with E. coli O104:H4 during the 2011 out-
break (Geerdes-Fenge et al., 2013) and a reduced duration of
carriage of the organism in subjects treated with azithromycin
was detected during this outbreak as well (Nitschke et al., 2012).
Worth noting, however, is that only a small number of treated
subjects was included in both studies. Our group assessed the
use of rifampicin at a concentration that decreases toxin produc-
tion, but at which E. coliO157:H7 cells remain viable, followed by
treatment with gentamicin at a bactericidal concentration. This
strategy was effective in decreasing toxin release compared to
solely treating the cells with a bactericidal gentamicin concentra-
tion (Kanbar et al., 2003;Matar and Rahal, 2003). Applying a sim-
ilar strategy in an E. coliO157:H7 infectionmousemodel resulted
in an improved animal survival rate (Rahal et al., 2011a,b). Utiliz-
ing the same strategy to treat E. coliO104:H4 infected mice simi-
larly resulted in an improved survival rate compared to untreated
control mice that were infected with the organism; however,
the highest survival rate observed was with mice treated with
gentamicin alone, unlike our observations with E. coli O157:H7
(Fadlallah et al., 2015). This again highlights observations indi-
cating that different STEC serotypes and even isolates of the same
serotype respond differently to antimicrobial treatments.

Probiotics, Phages and Vaccines

Although probiotics may not have a therapeutic benefit in the
management of an STEC infection, they may have a relevant
preventative utility. Probiotics are probably capable of disrupt-
ing host-infectious agent/toxin interactions by occupying cellular
receptors themselves, by producing decoy receptors that take up
the toxins or by modifying the local milieu, hence making these
interactions unfavorable (Corr et al., 2009). Multiple studies have
shown in vitro beneficial effects of probiotics and that inocula-
tion of animal models with a probiotic prior to an experimental
STEC infection has preventative capabilities (Asahara et al., 2004;
Reissbrodt et al., 2009; Eaton et al., 2011; Mogna et al., 2012;
Chen et al., 2013; Kakisu et al., 2013; Rund et al., 2013; Stan-
ford et al., 2014). The extent of probiotic protective capabilities
seen in experimental models is likely dependent on the probiotic
strain used and its ability to modify the surrounding medium.
For example, the production of acetate by the probiotic agent has
been demonstrated to be an important factor (Fukuda et al., 2011,
2012) and the production of butyric acid and lactic acid may be
of relevance as well (Ogawa et al., 2001; Takahashi et al., 2004).
One in vitro study showed that cultivation of STEC organisms in
the presence of various Bifidobacterium, Pediococcus, and Lacto-
bacillus strains results in a decreased production of Stx2. This was
attributed to a decrease in pH due to the acids produced by these
agents (Carey et al., 2008). Worth noting is the recombinant pro-
biotic agent that can produce toxin receptor mimics described in
section 3.a. (Paton et al., 2000, 2001; Hostetter et al., 2014). Also
of relevance are the various studies indicating that the admin-
istration of probiotic agents to cattle may reduce their carriage
of STEC organisms (systematically reviewed in Sargeant et al.,
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2007), hence effectively reducing the risk of transmitting these
toxigenic agents.

Another preventative measure proposed as a means of con-
trolling STEC is the application of lytic phages. Lytic phages
have been shown to reduce STEC numbers in vitro (Niu et al.,
2009; Rivas et al., 2010), in phage-treated food products (Abu-
ladze et al., 2008; Anany et al., 2011), on hard surfaces (Abu-
ladze et al., 2008), in mice and in some ruminants (Raya et al.,
2006; Sheng et al., 2006). Phage-containing products that can be
sprayed on animal hides or on meat products for the control of
STEC organisms are available on the market and are Food and
Drug Administration (FDA) approved (Sillankorva et al., 2012).
The efficacy of orally treating cattle with lytic phages, however,
was reported to be limited and requires the development of an
enhanced approach or delivery mode (Stanford et al., 2010). Bac-
teriophages used to eradicate STEC agents may also have a thera-
peutic utility should the safety and efficacy of such an application
be demonstrated in humans.

Various vaccine approaches have also been attempted includ-
ing the development of preparations that contain bacterial pep-
tides and virulence factors (Wen et al., 2006; Tiels et al., 2008;
Gu et al., 2009; McNeilly et al., 2010; Asper et al., 2011; Cai

et al., 2011; Gupta et al., 2011; Wan et al., 2011; Zhang et al.,
2012; Rossi et al., 2013; Sato et al., 2013; Cernicchiaro et al., 2014;
Garcia-Angulo et al., 2014; Lu et al., 2014; Mejias et al., 2014; Pad-
dock et al., 2014), attenuated bacterial cells (Rojas et al., 2010;
Gu et al., 2011; Fujii et al., 2012), bacterial envelope/membrane
derivatives (Cai et al., 2010; Choi et al., 2014) in addition to DNA
vaccines (Bentancor et al., 2009; Ren et al., 2013). These vac-
cine preparations have been assessed in animal models with some
showing promising results (reviewed in Garcia-Angulo et al.,
2013).

In conclusion, despite the passage of more than three decades
since STEC organisms were first associated with human clinical
illness (CDC, 1982), a generally-accepted successful therapeu-
tic method for these organisms remains undocumented. Various
approaches have nevertheless been attempted including ones that
reconsider the implementation of antimicrobial agents; benefi-
cial effects have been reported for some agents with outcomes
appearing dependent on the antimicrobials used, their dose and
the STEC isolate itself. Further studies examining antimicrobial
agents in the therapy of STEC infections should be conducted
in animals to select the safest and most efficacious regimen that
would then be assessed in clinical trials.
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