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Genome-wide epistasis analysis is a powerful tool to infer gene
interactions, which can guide drug and vaccine development
and lead to deeper understanding of microbial pathogenesis. We
have considered all complete severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) genomes deposited in the Global Ini-
tiative on Sharing All Influenza Data (GISAID) repository until four
different cutoff dates, and used direct coupling analysis together
with an assumption of quasi-linkage equilibrium to infer epistatic
contributions to fitness from polymorphic loci. We find eight inter-
actions, of which three are between pairs where one locus lies
in gene ORF3a, both loci holding nonsynonymous mutations. We
also find interactions between two loci in gene nsp13, both hold-
ing nonsynonymous mutations, and four interactions involving
one locus holding a synonymous mutation. Altogether, we infer
interactions between loci in viral genes ORF3a and nsp2, nsp12,
and nsp6, between ORF8 and nsp4, and between loci in genes
nsp2, nsp13, and nsp14. The paper opens the prospect to use
prominent epistatically linked pairs as a starting point to search
for combinatorial weaknesses of recombinant viral pathogens.

SARS-CoV-2 | epistasis | recombination | direct coupling analysis

The pandemic of the disease COVID-19 has so far led to
the confirmed deaths of more than 852,000 people (1) and

has hurt millions. As the health crisis has been met by non-
pharmacological interventions (2, 3) there has been significant
economic disruption in many countries. The search for vaccine or
treatment against the new coronavirus severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is therefore a worldwide
priority. The Global Initiative on Sharing All Influenza Data
(GISAID) repository (4) contains a rapidly increasing collection
of SARS-CoV-2 whole-genome sequences, and has already been
leveraged to identify mutational hotspots and potential drug tar-
gets (5). Coronaviruses, in general, exhibit a large amount of
recombination (6–9). The distribution of genotypes in a viral
population can therefore be expected to be in the state of
quasi-linkage equilibrium (QLE) (10–12), and directly related to
epistatic contributions to fitness (13, 14). We have determined
a list of the largest such contributions from 51,676 SARS-CoV-
2 genomes by a direct coupling analysis (DCA) (15, 16). This
family of techniques has earlier been used to infer the fitness
landscape of HIV-1 Gag (17, 18) to connect bacterial geno-
types and phenotypes through coevolutionary landscapes (19)
and to enhance models of amino acid sequence evolution (20).
We apply a recent enhancement of this technique to eliminate
predictions that can be attributed to phylogenetics (shared inher-
itance) (21). We find that eight predictions stand out between
pairs of polymorphic sites located in genes nsp2 and ORF3a, in
genes nsp4 and ORF8, and between genes nsp2, nsp6, nsp12,
nsp13, nsp14 and ORF3a. Most of these sites have been docu-
mented in the literature when it comes to single-locus variations
(22–27). The nsp4–ORF8 pair was additionally found to be
strongly correlated, in an early study (28). It does not show
prominent correlations today, but is ranked second in our global

analysis. The epistasis analysis of this paper brings a different
perspective than correlations, and highlights pair-wise associa-
tions that have remained stable as orders of more SARS-CoV-2
genomes have been sequenced.

Results
The predicted effective interactions between loci were obtained
from pseudo-likelihood maximization (PLM) scores, a standard
computational method to perform DCA. Manual inspection
shows that about half of the top 50 links and most of the top 200
involve noncoding sites in the 5′ or 3′ region on the “Wuhan-Hu-
1” (29) reference sequence, many of them have very short range,
and most of them with a large fraction of the gap or N (unknown
nucleotide) symbols (data available as Dataset S3 and in ref. 30
for other dataset). We present the links with both terminal loci
located in coding regions and the mutations excluding gaps or Ns.

In Table 1, we list the significant links for the 8 August
2020 dataset. The first column is the index of each pair-wise
interaction in the top 200. The second column indicates the
locus with lower genomic position in the pair and the name of
the SARS-CoV-2 protein it belongs to. The third column lists
the major/minor allele (most prevalent, second most prevalent
nucleotide) and the mutation type at that locus. The following
two columns provide similar information on the locus with higher
genomic position in the pair. The last column contains the PLM
scores indicating the strength of effects between pairs of loci. The
pair-wise epistases listed in Table 1 for 8 August 2020 dataset are
visualized by circos software in Fig. 1, where the red is for the
close effects (the distance between two loci is less than or equal

Significance

The COVID-19 pandemic is a worldwide public health emer-
gency caused by the β-coronavirus SARS-CoV-2. A very
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Table 1. Significant links with rank within the top 200 between
pair-wise loci for the 8 August 2020 dataset

Locus 1 Locus 2

Mutation Mutation PLM
Rank∗ Protein† type‡ Protein type score

1 1059-nsp2 C| T-non. 25563-ORF3a G| T-non. 1.7191
2 28882-N G| A-syn. 28883-N G| C-non. 1.4996
3 28881-N G| A-non. 28882-N G| A-syn. 1.4816
4 28881-N G| A-non. 28883-N G| C-non. 1.4783
5 8782-nsp4 C| T-syn. 28144-ORF8 T| C-non. 1.4471
9 14805-nsp12 C| T-syn. 26144-ORF3a G| T-non. 1.1392
12 3037-nsp3 T| C-syn. 14408-nsp12 T| C-non. 1.0291
13 18877-nsp14 C| T-syn. 25563-ORF3a G| T-non. 1.0131
14 3037-nsp3 T| C-syn. 23403-S G| A-non. 1.0114
17 14408-nsp12 T| C-non. 23403-S G| A-non. 0.9917
21 1059-nsp2 C| T-non. 18877-nsp14 C| T-syn. 0.9197
26 17858-nsp13 A| G-non. 18060-nsp14 C| T-syn. 0.8624
27 17747-nsp13 C| T-non. 17858-nsp13 A| G-non. 0.8553
36 17747-nsp13 C| T-non. 18060-nsp14 C| T-syn. 0.7780
47 11083-nsp6 G| T-non. 26144-ORF3a G| T-non. 0.7340
63 20268-nsp15 A| G-syn. 25563-ORF3a G| T-non. 0.6474
134 11083-nsp6 G| T-non. 14805-nsp12 C| T-syn. 0.5040
147 11083-nsp6 G| T-non. 28144-ORF8 T| C-non. 0.4928
168 8782-nsp4 C| T-syn. 11083-nsp6 G| T-non. 0.4770

∗Indices of significant links in the top 200 with both terminals located inside
a coding region, inferred by PLM. The analogous table for the 2 May 2020
dataset is shown in SI Appendix, Table S6.
†Information on locus 1 includes index in the reference sequence, and the
protein it belongs to. The convention used is that locus 1 (“starting locus”)
is the locus of lowest genomic position in the pair.
‡Information on mutations of locus 1 includes the first and second
prevalent nucleotide at this locus, and mutation type: synonymous(syn.)/
nonsynonymous(non.).

to three loci), while blue is for distant effects. Analogous results
for the 2 May 2020 dataset is listed in SI Appendix, Table S6, and
for the 1 April 2020 and 8 April 2020 datasets in ref. 30.

To check whether the interactions can be explained by phy-
logeny (inherited variations), we used two randomization strate-
gies, “profile” and “phylogeny” of the multiple sequence align-
ments (MSAs). Profile preserves the distribution over alleles
at every locus but does so independently at each locus. Profile
hence destroys all systematic covariations between loci. Phy-
logeny additionally preserves the genetic distance between each
pair of sequences. Viral genealogies inferred from this informa-
tion are therefore unchanged under this randomization. PLM
scores run on these two types of randomized data (scram-
bled MSAs) are a background from which the significance of
the interactions from the original data can be assessed. Each
randomization strategy is repeated 50 times with different real-
izations of the scrambling; see SI Appendix, Figs. S1–S3 and ref.
30. As shown in Fig. 2, the distribution of PLM scores using phy-
logeny and profile are qualitatively different from PLM scores
of the original MSA, with progressively fewer interactions at
high score values. With profile randomization, no interactions
predicted by PLM appear with scores standing out from the back-
ground. Phylogeny randomization, on the other hand, preserves
some interactions found by PLM in a fraction of the realizations
of the random background. Table 2 lists interactions predicted by
PLM that appear in some phylogeny randomizations with scores
large compared to the background. In the following analysis, we
have not retained them; see SI Appendix, Figs. S1–S3 for cir-
cos visualizations. Table 3 lists the eight interactions found by
PLM which either do not appear in any phylogeny randomiza-
tion with scores that stand out from the background, or, in the
case of (1059–25563), shows up three times in the top 200 out

of 50 samples. We retain these eight predicted epistatic interac-
tions in the sampled populations of SARS-CoV-2 genomes. The
top ones listed in Table 3 are marked by red bars in Fig. 2A.

Epistatic interactions obtained from DCA reflect pair-wise sta-
tistical associations, but not correlations. As reviewed in ref. 31,
and described in SI Appendix, Methods of DCA, DCA is based
on a global probabilistic model, and therefore ranks interdepen-
dency differently than correlations. Fig. 3 compared to Fig. 2
shows that the distribution of correlation scores is qualitatively
different from the distributions of DCA scores in the GISAID
dataset. Fig. 4 further shows that the ranks of the epistatic inter-
actions predicted in Table 3 have remained stable, while the
corresponding correlations have merged into the background.

The first-ranked interaction between 1059 and 25563 is
between a (C/T), resulting in the T85I nonsynonymous mutation
in gene nsp2, and a (G/T), resulting in the Q57H nonsynony-
mous mutation in gene ORF3a. The nsp2, expressed as part of
the ORF1a polyprotein, binds to host proteins prohibitin 1 and
prohibitin 2 (PHB1 and PHB2) in SARS-CoV (32). The vari-
ations in site 1,059 have been predicted to modify nsp2 RNA
secondary structure (33) and have previously been reported to
cooccur together with the Q57H variant in ORF3a in a dataset
of SARS-CoV-2 genomes from the United States (34). ORF3a,
also known as ExoN1 hypothetical protein sars3a, forms a cation
channel of which the structure in SARS-CoV-2 is known by cryo-
electron microscopy (cryo-EM) (35). In SARS-CoV, ORF3a
been shown to up-regulate expression of fibrinogen subunits
FGA, FGB, and FGG in host lung epithelial cells (36), to form
an ion channel which modulates virus release (37), and to acti-
vate the NLRP3 inflammasome (38), and has been found to
induce apoptosis (39). The Q57H variant was reported early in
the COVID-19 pandemic (40) and occurs in the first transmem-
brane alpha helix, TM1 (35), where it changes the amino acid
glutamine (Q) with a noncharged polar side chain to histidine
(H), which has a positively charged polar side chain. This amino
acid is at the interface of interaction between the two dimeric
subunits of ORF3a that forms the constrictions of the ion chan-
nel, but the Q57H alteration does not seem to change the ion
channel properties compared to wild-type 3a (35). Nevertheless,
its incidence is increasing in SARS-CoV-2 genomes in the United
States (34), and the effect of Q57H may therefore affect the vir-
ulence in other beneficial ways than changing the conductance
properties of the ion pore.

The association between 8782 and 28144 (rank 5), reported
early in SARS-CoV-2 studies (28), is between a (C/T) synony-
mous mutation in the gene nsp4, and a (T/C) nonsynonymous
mutation resulting in the L84S alteration in the gene ORF8. The
first of these genes participates in the assembly of virally induced
cytoplasmic double-membrane vesicles necessary for viral repli-
cation. The site 8782 is located in a region annotated as CpG rich
and is the site of a CpG for the major allele (C); it has the minor
(T) allele in other related viruses (28). Orf8 has been implicated
in regulating the immune response (41, 42). The L84S variant
is, together with the C8782T nsp4 mutation, characterizing the
GISAID clade S (43).

The interaction between 14805 and 26144 (rank 9) leads to
nonsynonymous alterations in nsp12 (T455I; note that the ref-
erence is Y) and ORF3a (G251V), respectively. The G251V
has been reported by many studies and is defining the GISAID
V clade (43) together with the L37F nsp6 variant (position
11083, rank 47). The widely reported G251V variant is, unfor-
tunately, outside of the proposed cryo-EM structure (35), and it
is unknown how this glycine to valine substitution affects protein
function. The nsp12 is the RNA-dependent RNA polymerase,
and the T455I substitution is found where the reference Wuhan-
Hu-1 has a tyrosine residue in one of the alpha helices of the
polymerase “finger” domain (44). Threonine can, similarly to
tyrosine, be phosphorylated but also glycosylated, it is polar and
uncharged, and it can form hydrogen bonds that may stabilize
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Fig. 1. Top 200 significant pairwise epistases from the 8 August 2020 dataset between loci in coding regions. Colored lines indicate top 50, and gray lines
indicate top 51 to 200. Red lines show short-distance links (distance less than or equal to 3 bp); blue lines show links of longer distance. The colorful links are
the same pairs as listed in Table 1. Analogous circos plots for the 2 May 2020, 1 April 2020, and 8 April 2020 datasets are available in the GitHub repository (30).

the alpha helix. Isoleucine, on the other hand, is nonpolar and
uncharged, and both the residues are smaller than the aromatic
tyrosine.

The second interaction partner of G251V is the nsp6 L37F
variant. The nsp6 has been shown to induce autophagosomes
in the host cells in favor for viral replication and propagation
SARS-CoV (32). There is currently no experimentally validated
model of nsp6 structure, but an early model suggests that the
L37P variant is situated in an unordered loop between two alpha
helices (45).

The interaction between 17747 and 17858 (rank 27) is between
two nonsynonymous mutations (C/T, resulting in P504L) and
(A/G, resulting in T541C) within the gene nsp13 that codes for
a helicase enzyme that unwinds duplex RNA (32). It is the only
epistatic interaction in Table 3 within one protein. These same
two loci reappear in the list with ranks 26 and 36 as interact-
ing with a C/T synonymous mutation (L7L) in gene nsp14 at
position 18060. The P504L and T541C are both located in the
Rec2A part of the protein that is not in direct interaction with
the other members of the RNA-dependent RNA polymerase
holoenzyme, in which two molecules of nsp13 form a stable com-
plex with nsp12 replicase, nsp7, and nsp8. The nsp14 protein is
a bifunctional protein that has an N7-methyltransferase domain
and a domain exonuclease activity, responsible for replication
proofreading (46). The nsp14/nsp10 proofreading machinery is

thought to interact with the replication–transcription complex,
but the exact details of this interaction are not known.

The final interaction (rank 21) is a link between a locus car-
rying a nonsynonymous mutation (C/T, T541C) in nsp2 position
1059 and a locus carrying a synonymous mutation (C/T, L280L)
in nsp14, position 18877. As the knowledge on nsp2 protein
structure is poor, there is no evidence for the effect of this muta-
tion. Also, how the synonymous C/T alterations in nsp14, as
well as in the synonymous mutations of the other interactions,
affect the virus is unknown, but can be proposed to change RNA
secondary structure, RNA modification, or codon usage.

Discussion
In this work, we have considered all whole-genome sequences
of SARS-CoV-2 deposited in GISAID up to different cutoff
dates. As this coronavirus has extensive recombination, we have
assumed that the distribution of genotypes is well described by
Kimura’s QLE, and used DCA to infer epistatic contributions
to fitness from the sequences. After filtering out all but the
strongest effects and variations in noncoding regions with many
gaps in the MSA, the remaining predictions are few in number,
i.e., 19 predictions in Table 1.

Covariations between allele distributions at different loci can
be due to epistasis and also to inherited effects (phylogeny).
We have tested for the second type by randomizing MSA of

Zeng et al. PNAS | December 8, 2020 | vol. 117 | no. 49 | 31521



Fig. 2. Histograms of PLM scores for (A) original 8 August 2020 dataset, (B) a phylogenetic randomized sample, and (C) a profile randomized sample. The
blue bars are for all scores, while the red ones are for the top 50 largest scores. Red arrows in A indicate links listed in Table 3. The largest PLM score is
pointed to by red arrows for random samples in B and C. None of them is located inside a coding region, and none of them appear in Tables 1 and 3.

sequences such that pair-wise distances between sequences are
left invariant. We find that the top link 1059–25563 appears three
times in 50 phylogeny randomizing samples, although with much
lower rank. The other predicted epistatic contributions disap-
pear under phylogenetic randomization, except for pairs in the
triple (3037, 14408, 23403) which appear in from 20 to 35% of
50 randomizations. After eliminating these links as well as links
between adjacent loci (28881, 28882, 28883, which appear in
from 14 to 16% in 50 samples), we are left with eight predic-
tions listed in Table 3. We consider it likely that these retained
interactions are due to epistasis, and not to inherited covariation.
An analogous investigation on a smaller dataset obtained with
an earlier cutoff date (2 May 2020) and reported in SI Appendix,
Tables S6 and S7 and Fig. S6 yielded six retained predictions,
involving, however, the same eight viral genes. The question
on epistasis vs. effects of inheritance (phylogeny) clearly merits
further investigation and testing as more data become available.

Biological fitness is a many-sided concept and can also include
aspects of game and cooperation (47–49). A fitness landscape
describes the propensity of an individual to propagate its geno-
type in the absence of strategic interactions with other geno-
types, and has traditionally been used to model the evolution of

pathogens colonizing a host; for earlier use relating to HIV and
using DCA techniques, see ref. 50. The additive and epistatic
contributions to fitness of the virus which we find describe the
virus in its human host and therefore likely reflect host–pathogen
interactions to a large extent. A conceptual simplification made
is that all hosts have been assumed equivalent. In future method-
ological studies, it would be of interest to consider possible
effects of evolution in a collection of landscapes, representing
different hosts, and to correlate such dynamics to host geno-
types. As this requires other data than are available on GISAID,
and which are less abundant at this time, we leave this for future
work. On the other hand, it is unlikely that the inferred couplings
involve the host as a temporal variable, due to the much faster
time scale of the evolution of the virus.

Epistatic interactions are pair-wise statistical associations, but
are not simply correlations. The interaction between sites 8782
and 28144, which is the second largest in Table 3, was identified
as a very strong correlation in a very early study (28). As shown in
Table 4, this correlation has generally decreased over time (using
data with successively later cutoff dates). In the alternative global
model learning method of DCA which we use in the present
work, the score of statistical interdependency of this pair has
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Table 2. Top 200 that appeared (with an appearance ratio
≥ 10%) in samples with phylogeny randomization strategy based
on the 8 August 2020 dataset

Locus 1 Locus 2

Appearance Mutation Mutation
ratio∗, % Protein type Protein type

14 28881-N G| A-non. 28882-N G| A-syn.
16 28881-N G| A-non. 28883-N G| C-non.
20 28882-N G| A-syn. 28883-N G| C-non.
22 3037-nsp3 T| C-syn. 14408-nsp12 T| C-non.
20 3037-nsp3 T| C-syn. 23403-S† G| A-non.
34 14408-nsp12 T| C-non. 23403-S† G| A-non.

Fifty phylogeny samples are considered in total.
∗The indices of samples with phylogeny randomization which preserve the
links listed in Table 1 are shown here. The circos plots for the significant
epistatic links of all 50 randomized samples are available in SI Appendix.
†In amino acid notation, this mutation is D614G in Spike.

remained large, and the pair is consistently ranked first or second
over four different cutoff dates; see Fig. 4. While our data hence
support the observation of statistical interdependency in this pair
first made in ref. 28, they do not support the interpretation made
in the same work that the effect is due to phylogeny. The later
criticism in ref. 51 therefore does not apply to our work, since
an epistatic interaction, recovered through DCA and a QLE
assumption in a population thoroughly mixed by recombination,
is different in nature from a phylogenetic effect.

DCA techniques have been applied to find candidate targets
for vaccine development. In a series of studies, it was found
that combinations of mutations implied by sequence variabil-
ity in the HIV-1 Gag protein correlate well with in vitro fitness
measurements, and with clinical observations on escape strains
(HIV strains that tend to dominate in one patient over time)
and the immune system of elite controllers (HIV-positive indi-
viduals progressing slowly toward AIDS) (18, 50, 52). While this
may be a promising future avenue in COVID-19 research, in
the present study, we have not found any epistatic interactions
involving Spike, only pairs that also show up under phylogeny
randomization or that are quite weak; see SI Appendix, Table S4.
The Spike protein has been the main target of coronavirus vac-
cine development to date (53), including against SARS-CoV-2
(54–56).

An epistatic interaction means that loss of fitness by a muta-
tion at one locus is enhanced (positive epistasis) or compensated
(sign epistasis) by a mutation at another locus. Suppose there are
drugs that act on targets around both loci, modulating the fitness
of the respective variants. Epistasis then points to the possibility
that using both drugs simultaneously may have a more than addi-
tive effect. To search whether our analysis offers such a guide
to combinatorial drug treatment, we scanned the recent com-
prehensive compilation of drugs known or predicted to target
SARS-CoV-2 (57). Five out of the eight predictions in Table 3
involve either one synonymous mutation or are between two
mutations in the same gene. For all of the three remaining pairs
of nonsynonymous mutations, (1059, 25563), (11083, 26144), and
(14805, 26144), the second locus lies in ORF3a, for which no
potential drugs are listed in ref. 57. The first locus in the same
three pairs lies, respectively, in genes nsp2, nsp6, and nsp12. One
or more already approved and practical drugs targeting nsp2 and
nsp6 are listed in ref. 57. Ponatinib, listed for nsp12, is not appro-
priate against a pandemic disease like COVID-19 on account of
its large cost. Potential drugs for the proteins listed in Table 3
are summarized in SI Apppendix, Table S5, following ref. 57.

Nevertheless, the number of combinations of potential drug
targets, in COVID-19 and many other diseases, is very large.
DCA applied to many sampled sequences predicts which

genes/loci have mutual dependencies in fitness, and can be used
to rank combinations for further, more detailed investigation.
We note that one can also start a search for drug treatment from
conserved positions, assuming these to be unconditionally nec-
essary for the virus. If so, all potential pairs would, however, be
ranked equal based on sample information, and there would be
no analogous shortcut to the combinatorial explosion of possibil-
ities. Even if the scan discussed above did not lead to any direct
suggestions based on the lists of potential drugs in ref. 57, we
hope the general approach could have value given the continu-
ing increase and availability of genome sequences of both viral
and bacterial pathogens. We finally note that three out of eight
of our list of predictions involve loci in viral gene ORF3a, the
action of which is related to severe manifestations of COVID-19
disease (37–39).

Materials and Methods
Data. We analyzed the consensus sequences deposited in the GISAID
database (4) with high quality and full lengths (number of bps ≈ 30, 000).
Four datasets are used for our investigation according to the collection date
in GISAID database. The dates are 1 April 2020, 8 April 2020, 2 May 2020,
and 8 August 2020. The list of GISAID sequences used is given in Dataset S1,
and is also available on the Github repository (30). The numbers of selected
genomes are 2,268, 3,490, 10,587, and 51,676 for the respective collection
dates.

MSA. MSAs were constructed with the online alignment server Multiple
sequence alignment using Fast Fourier Transform (MAFFT) (58, 59) for the
two smaller datasets with cutoff dates 1 April 2020 and 8 April 2020. To
align the two larger datasets with more than 10,000 sequences, a pre-
aligned reference MSA is recommended to accelerate the alignment and
reduce the burden on computational resources. Here, we took the collec-
tion with cutoff date 8 April 2020 as the prealigned reference MSA for the
two largest datasets with cutoff dates 2 May 2020 and 8 August 2020. The
MSAs used are given as Dataset S2, and are also available on the Github
repository (30).

The MSA is a big matrix S = {σn
i |i = 1, . . . , L, n = 1, . . . , N}, composed

of N genomic sequences which are aligned over L positions (16, 21). Each
entry σn

i of matrix S is either one of the four nucleotides (A, C, G, T), or
“not known nucleotide” (N), or the alignment gap “-” introduced to treat
nucleotide deletions or insertions, or some minorities.

MSA Filtering. Before filtering, we transform the MSA in two different
ways as follows: 1) The gaps “-” are transformed to “N” while the minors
“KFY. . .” are mapped to “N.” Thus five states remain, where “NACG”’ are
represented by “12345”; 2) the minors “KFY. . .” are mapped to “N.” Then
there are six states, with “-NACGT” represented by “012345.”

Table 3. Potentially significant epistatic links in Table 1, and
corresponding amino acid mutations

Locus 1 Locus 2

Amino acid Amino acid
Rank∗ Protein mutation Protein mutation

1† 1059-nsp2 T85I(T‡) 25563-ORF3a Q57H(Q)
5 8782-nsp4 S76S(S) 28144-ORF8 L84S(L)
9 14805-nsp12 T455I(Y) 26144-ORF3a G251V(G)
21 1059-nsp2 T85I(T) 18877-nsp14 L280L(L)
26 17858-nsp13 T541C(Y) 18060-nsp14 L7L(L)
27 17747-nsp13 P504L(P) 17858-nsp13 T541C(Y)
36 17747-nsp13 P504L(P) 18060-nsp14 L7L(L)
47 11083-nsp6 L37F(L) 26144-ORF3a G251V(G)

∗Main prediction: eight epistatic links. The links preserved by phylogeny
randomization in Table 2 are not listed here.
†This link appears in 3 out of 50 (6%) phylogeny randomizations; once
(experiment 23) with rank 34, and twice (experiments 29 and 47) with ranks
in 51 to 200; see SI Appendix, Figs. S2 and S3.
‡Amino acid in the reference sequence Wuhan-Hu-1 at the position
specified by the number between major and minor alleles.
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Fig. 3. Frobenius norm of pair-wise correlations between loci for the origi-
nal 8 August 2020 dataset. The score pointed by the red arrow corresponds
to the link of 1059 and 25563.

The following criteria are used for prefiltering of the MSA from the 8
August 2020 dataset. If, for one locus, the same nucleotide is found in more
than 96.5% of this column, or if the sum of the percentages of A, C, G, and
T at this position is less than 20%, then this locus will be deleted. For each
sequence, if the percentage of a certain nucleotide is more than 80%, or if
the sum of the percentages of A, C, G, and T in this sequence is less than
20%, then this sequence will be deleted. With this filtering criteria, many
loci but no sequences are deleted. There are left 51,676 sequences and 689
loci.

B-effective Number. To mitigate the effects of dependent samplings, it is
standard practice to attach to each collected genome sequence σ(b) a
weight wb (15, 16, 60), which normalizes its impact on the inference pro-
cedure. An efficient way to measure the similarity between two sequences
σ(a) and σ(b) is to compute the fraction of identical nucleotides and com-
pare it with a preassigned threshold value x in the range 0≤ x≤ 1. The
weight of a sequence σ(b) can be set as wb = 1/mb, with mb as the number
of sequences in the MSA that are similar to σ(b),

mb = |{a∈{1, . . . , B}}: overlap(σ(a), σ(b))≥ x|; [1]

here, overlap is the fraction of loci where the two sequences are identical.
The B-effective number of the transformed sequences is defined as

Beff =

B∑
b=1

wb. [2]

We compare the Beff value with different x for the filtered MSA with q = 5
and q = 6. As shown in Fig. 5, the dataset with six states shows larger Beff

number for all tested x. We thus perform our analysis on the dataset with
q = 6 states, where “-NACGT” is represented by “012345.”

The reweighting procedure partially addresses a point raised (51), that
sequenced viral genomes are not a random sample of the global population.
That is, even if sequencing is biased by the country they occur in and by
contact tracing, sufficiently similar genomes will have lower weight, and so
each will contribute less to predictions.

Elements of QLE. The phenomenon of QLE was discovered by M. Kimura
(10) while investigating the steady-state distribution over two biallelic loci
evolving under mutation, recombination, and selection, with both additive
and epistatic contributions to fitness. In the absence of epistasis, such a
system evolves toward linkage equilibrium (LE) where the distribution of
alleles at the two loci are independent. The covariance of alleles at the
two loci then vanishes. In the presence of pair-wise epistasis and sufficiently
high rate of recombination, the steady-state distribution takes form of a
Gibbs–Boltzmann form

P(σ1, . . . ,σL) =
1

Z
exp{−H(σ1, . . . ,σL)}, [3]

with an “energy function”

H(σ1, . . . ,σL) =
∑

i

hi(σi) +
∑

ij

Jij(σi ,σj). [4]

In the above, Jij can be related to the epistatic contribution to fitness
between loci i and j with alleles σi and σj (11–13). The quantity hi is sim-
ilarly a function of allele σi which depends on both additive and epistatic
contributions to fitness involving locus i. It has been verified in in silico test-
ing that, when the terms in Eq. 4 can be recovered, this is a means to infer
epistatic fitness from samples of genotypes in a population (14). In the bac-
terial realm, this approach was used earlier to infer epistatic contributions to
fitness in the human pathogens Streptococcus pneumonia (61) and Neisseria
gonorrhoeae (62), both of which are characterized by a high rate of recom-
bination. The method was also tested on data on the bacterial pathogen
Vibrio parahemolyticus (63). In that study, the results from DCA were not
superior to an analysis based on Fisher exact test; see SI Appendix, Different
Quantifications of Correlations for a discussion. This is consistent with the
approach taken here, as V. parahemolyticus has a low rate of recombina-
tion. Further details on the QLE state of evolving populations are given in SI
Appendix, Quasi-Linkage Equilibrium (QLE) and Its Range of Validity.

Inference Method for Epistasis between Loci. The basic assumption of mod-
eling the filtered MSA is that it is composed of independent samples that
follow the Gibbs–Boltzmann distribution Eq. 3 with H as in Eq. 4. Higher-
order interactions are also possible to include, but we ignore them here
(64). This assumption is a simplification of the biological reality; however, it
provides an efficient way to extract information from massive data.

On the other hand, in the context of inference from protein sequences,
it has been argued that the one encoded in Eqs. 3 and 4 is the minimal
generative model, that is, capable not only of reproducing the empiri-
cal frequencies and correlations but also of generating new sequences
indistinguishable from natural sequences (16, 65, 66).

Many techniques have been developed to infer the direct couplings in Eq.
3, as reviewed in ref. 31 and references therein; see also SI Appendix, Meth-
ods of DCA. We employ the PLM method (13, 60, 67–70) to infer the epistatic
effects between loci from the aligned MSA. PLM estimates parameters from
conditional probabilities of one sequence conditioned on all of the others.
For a Potts model with multiple states q> 2, this conditional probability is

P(σi|σ\i) =
exp

(
hi(σi) +

∑
j 6=i Jij(σi ,σj)

)
∑

u exp
(

hi(u) +
∑

j 6=i Jij(u,σj)
), [5]

with u = {0, 1, 2, 3, 4, 5} as the possible state of σi . Eq. 5 depends on a much
smaller parameter set compared with that in Eq. 3. This leads to a much
faster inference procedure of parameters compared with the maximum like-
lihood method. With a given independent sample set, one can maximize the
corresponding log-likelihood function

Fig. 4. Ranks for significant epistatic effects with data collection date (1
April 2020, 8 April 2020, 2 May 2020, and 8 August 2020) by PLM (dashed
lines) and correlation analysis (solid lines). The ranks of the PLM scores are
almost constant, while the ranks of the correlations vary significantly and
mostly drop as more data accumulate (later cutoff dates).
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Fig. 5. Beff number of the 8 August 2020 prefiltered dataset with thresh-
old x. Red denotes q = 6 states (“-NACGT”), and black denotes q = 5 states
(“NACGT”). The number of states is determined by the transform criteria of
the prefiltered MSA.
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∑
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∑
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, [6]

where s labels the sequences (samples), from 1 to N. With the filtered MSA,
we then run the asymmetric version of PLM (60) in the implementation
PLM available in ref. 71 with regularization parameter λ= 0.1. The inferred
interactions between loci i and j are scored by the Frobenius norm.

Relation to Correlation Analysis. In LE, the distributions of alleles over
different loci are independent. Given unlimited data and unlimited com-
putational resources, the terms Jij in Eq. 4 inferred from the data would
then be zero. The locus–locus covariances, defined as

cij(a, b) =
〈

1σi ,a1σj ,b

〉
−
〈
1σi ,a

〉 〈
1σj ,b

〉
, [7]

would also be zero. The Frobenius norm of cij(a, b) over indices (a, b) as
a score of strength of correlations would be zero as well. The qualita-
tive difference between correlation analysis and global model inference
based on Eqs. 3 and 4 is that two loci i and j may be correlated (“indi-
rectly coupled”) even if their interaction Jij is zero, provided they both
interact with a third locus k. Data in Table 4 and Fig. 4 show that the lead-
ing interactions retrieved by DCA cannot be stably recovered in correlation
analysis. A different score of statistical dependency between two categor-
ical random variables is mutual information (MI). Results in SI Appendix,
Fig. S5 and Table S1 show that the result does not substantially change if
using MI instead of Frobenuis norm of correlation matrices. Circos plots of
interactions based on correlation scores are available in ref. 30.

Epistasis Analysis with PLM Scores. PLM procedure yields a fully connected
paradigm between pair-wise loci. To extract important information from
massive SARS-CoV-2 genomic sequences, we focus on the significant scores
between loci, the top 200 pairs. With a reference sequence “Wuhan-Hu-1,”
we identify the positions of the corresponding nucleotides. The visualization
of these epistases is performed by “circos” software (72).

Randomized Background Distributions. A way to assess the validity of a
small number of leading retained predictions among a much larger set of

Table 4. Top 10 links found by correlation analysis in the coding
region for the dataset until 8 August 2020

Rank∗ Locus 1 protein Locus 2 protein Frobenius score

455 3037-nsp3 23403-S 0.3844
458 3037-nsp3 14408-nsp12 0.3842
460 14408-nsp12 23403-S 0.3837
581 28882-N 28883-N 0.3609
584 28881-N 28883-N 0.3603
585 28881-N 28882-N 0.3603
1071 1059-nsp2 25563-ORF3a 0.2821
2394 8782-nsp4 28144-ORF8 0.1803
3969 23403-S 28144-ORF8 0.1487
3980 3037-nsp3 28144-ORF8 0.1486

∗Rank for top 10 links as ranked by correlation analysis. Correlations
between loci of which at least one is outside coding regions are omitted.

mostly discarded predictions is to compare to randomized backgrounds. The
retained predictions are then, in any case, large (by some measure) and
would also be retained if selection were made according to some cutoff, or
an empirical p value. The problem is thus how to distinguish the case where
a small subset of retained values are large, because they are different, from
the case when, in a large number of samples, such values would appear at
random. This problem can be addressed by comparing the retained values
to the largest values from the same procedure applied to randomized data,
as was done for predicted RNA–RNA binding energies in a noncoding RNA
discovery pipeline (73). In the context of DCA (PLM) applied to genome-scale
MSAs, two earlier studies relying on randomized background distributions
are described in refs. 13 and 74.

PLM Scores with Randomization. To understand the nature of the top 200
PLM scores, we perform two distinct randomization strategies on the MSA,
such that its conservation patterns and (or) phylogenetic relations are pre-
served, while intrinsic coevolutionary couplings (epistatic interactions) are
removed (75). Running DCA on artificial sequences ensembles generated by
these strategies, and comparing them to the results obtained from orig-
inal MSA, allows disentangling of spurious couplings given by finite-size
effects or by phylogeny. The first strategy, which we refer to as “profile,”
randomizes the input MSA by random but independent permutation of all
its columns, conserving the single-column statistics for all sites. This destroys
all kind of correlations, and DCA couplings inferred from such samples are
only nonzero due to the noise caused by finite sample size. In the sec-
ond strategy, referred to as “phylogeny,” the original MSA is randomized
by a simulated annealing schedule where columns and rows are changed
simultaneously but so that intersequence distances are kept invariant. Phy-
logeny inferred from intersequence distance information would therefore
be unchanged. Conversely, if the predicted epistatic interactions are due
to phylogeny, they should also show up in terms recovered by PLM from
MSAs scrambled by “phylogeny.” More details on the randomization strate-
gies can be found in SI Appendix, Phylogenetic Randomization of DCA:
Principles.

Data Availability. All study data are included in the article and SI Appendix.
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