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Abstract
 Storage and transmission of high-compression 3D radiological images that create high-quality reconstruction upon decom-
pression are critical necessities for effective and efficient teleradiology. To cater to this need, we propose a near lossless 3D 
image volume compression method based on optimal multilinear singular value decomposition called “3D-VOI-OMLSVD.” 
The proposed strategy first eliminates any blank 2D image slices from the 3D image volume and uses the selective bounding  
volume (SBV) to identify and extract the volume of Interest (VOI). Following this, the VOI is decomposed with an optimal 
multilinear singular value decomposition (OMLSVD) to obtain the corresponding core tensor, factor matrices, and singular 
values that are compressed with adaptive binary range coder (ABRC), integrated as an entropy encoder. The compressed 
file can be transferred or transmitted and then decompressed in order to reconstruct the original image. The resultant decom-
pressed VOI is acquired by reversing the above process and then fusing it with the background, using the bound volume 
coordinates associated with the compressed 3D image. The proposed method performance was tested on a variety of 3D 
radiological images with different imaging modalities and dimensions using quantitative evaluation metrics such as the com-
pression rate (CR), bit rate (BR), peak signal to noise ratio (PSNR), and structural similarity index (SSIM). Furthermore, we  
also investigate the impact of VOI extraction on the model performance, before comparing it with two popular compression methods,  
namely JPEG and JPEG2000. Our proposed method, 3D-VOI-OMLSVD, displayed a high CR value, with a maximum of 
37.31, and a low BR, with the lowest reported to be 0.21. The SSIM score was consistently high, with an average perfor-
mance of 0.9868, while using < 1 second for decoding the image. We observe that with VOI extraction, the compression 
rate increases manifold, and bit rate drops significantly, and thus reduces the encoding and decoding time to a great extent. 
Compared to JPEG and JPEG2000, our method consistently performs better in terms of higher CR and lower BR. The results 
indicate that the proposed compression methodology performs consistently to create high-quality image compressions, and 
overall gives a better outcome when compared against two state-of-the-art and widely used methods, JPEG and JPEG2000.

Keywords  Three-dimensional (3D) medical image · Near lossless compression · Volume of interest (VOI) · Selective 
bounding volume (SBV) method · Multilinear singular value decomposition (MLSVD) · Adaptive binary range coder 
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Introduction

Three dimensional (3D) medical imaging domain has seen 
great advancement in the past few decades, attributed by 
the progressively improving medical imaging instrumen-
tation and techniques. There has been a steady increase 
in the sheer volume of 3D imaging data which is used in 
clinical radiology for diagnoses or retrospective study and 
analyses. Hence, organizing, storing, retrieving, and trans-
ferring large amounts of imaging data have become a key 
challenge for healthcare organizations, especially those 
offering telehealth services. With the growing popularity 
of telemedicine, further catapulted by the COVID-19 pan-
demic, the subfield of teleradiology is increasingly becom-
ing popular due to its unique feature of making medical 
services available, regardless of location and time. How-
ever, it comes with its unique set of challenges – expensive 
technology and service costs, privacy concerns, lack of effi-
cient integration with the electronic health records (EHRs), 
availability of patient history for continued care outside the 
network, reimbursement issues, etc. Of all these issues, the 
one concerned with technology is a critical one. With the 
discrepancy of limitations of service and equipment avail-
able at various healthcare centers across geographical areas 
of the nation, the issue of sending high-quality medical 
image is a crucial one, and that’s where efficient medical 
image compression and decompression plays a very impor-
tant role in telemedicine.

In the past few decades, there has been an incredible 
progress in volumetric imaging techniques, especially 
with dedicated 3D imaging modalities such as computed 
tomography (CT), magnetic resonance imaging (MRI), 
positron emitted tomography (PET), and single pho-
ton emission computed tomography (SPECT). MRI and 
CT typically acquire the sequence of 2D cross-sectional 
images of the organ and constitute the 3D image volume 
[1] or perform volumetric MRI, whereas PET and SPECT 
obtain the organ functionality as the third dimension. A 
wide range of technological innovation has allowed for 
multimodal imaging of the human anatomy, which also 
creates a considerable volume of medical image data each 
year, in all healthcare organizations across the globe [2]. 
At times, imaging data can be so dense that it easily trans-
lates into enormous volumes of data that requires mas-
sive storage space along with the need for high-volume 
transmission, for the purposes of archiving, accessing, and 
transferring data to ensure accurate and robust diagnostics. 
These are also the key traits that start defining the captured 
healthcare data into “big data,” which is classically charac-
terized by the 5 V’s – volume, velocity, variety, value, and 
veracity. Though there are many floating definitions and 
features of big data, they are ever evolving as technology 

advances each year. In the context of imaging data, the 
“data becomes ‘big’ when image fields are large, pixels 
are small, frame rates are high, or there are many images 
acquired per examination” [3]. With the surge of big data 
volume, with every passing year and the ever-increasing 
demand for telemedicine, it has become imperative to 
employ computer-aided diagnosis (CAD) systems to assist 
radiologists in clinical decision-making [4,5].

Though the emergence of teleradiology has brought about 
an improvement in the ability to transfer imaging data, there 
is still a need to improve the supporting data systems to 
effectively and efficiently handle the voluminous image  
data collected in the healthcare systems [6]. As a solution 
towards these complexities, efficient image compression is 
the ideal strategy to deal with these challenges. In order to 
transfer and process these data-dense images in large quanti-
ties, there is an urgent need to develop an efficient compres-
sion technique. There are some notable 3D data compression 
methods, such as 3D discrete cosine transform (3-D DCT)-
based methods [7,8] and 3-D discrete wavelet transforms 
(3-D DWT) [9–11], to name two.

Though impressive compression performance on 3D 
medical images is desirable, the quality of the decompressed 
3D image is also an equally important feature. For this rea-
son, lossless or bit-preserving techniques are the methods 
of choice for compressing-decompressing medical images 
for the purpose of transmission [12–14]. Since compression 
performance and quality are inversely related, lossless com-
pression approaches preserve the high-quality images with a 
low level of compression performance [15, 16]. Due to this 
unique inverse relation, either the image quality or compres-
sion performance must be compromised. Hence, an optimal 
image compression method which equally improves both 
factors is preferred [17, 18]. Recent compression models 
employ deep learning-based techniques [19] which are com-
putationally expensive; see recent review [16]. In this work, 
we develop an effective and a robust 3D medical image com-
pression technique that incorporates object-based and near 
lossless properties.

Our approach uses the concept of a tensor decomposition. 
A tensor is a multidimensional array, with first-order tensor 
representing a vector and second-order tensor representing  
a matrix. Generally, an “n”th-order tensor has n basis vec-
tors, and if n ≥ 3, they are referred to as higher-order tensors  
[20]. Tensor approximation (TA) techniques are widely used 
to deal with large-scale problems and can be used especially 
for problems of exponentially growing dimension of data [21]. 
Tensor-based methods are utilized in various fields, especially 
in signal and image processing domains, which have adopted 
tensor-based approaches to a large extent [22–24]. Several 
tensor decomposition types, such as CANDECOMP/PARA-
FAC (CP) [25–27] and Tucker decomposition [28], have been  
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proposed depending on use case. In the signal processing 
domain, they were initially appended with independent com-
ponent analysis (ICA) [29] and canonical polyadic decompo-
sition (CPD) [30], both of which are purely tensor-based tools. 

The decomposition of the tensor may be done with various 
techniques, but the generalization of singular value decompo-
sition (SVD) for the higher-order tensors is more appropriate. 
The generalized version of Tucker decomposition is known 
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as multilinear singular value decomposition (MLSVD) [31], 
and it operates on factor analysis of multidimensional data 
or model. MLSVD has wide applications due to its efficient 
high-dimensional computing. The maximum energy packing 
characteristic of MLSVD leads to promising approximation 
strategies for image processing applications. Hence, optimized  
MLSVD is referred to as optimal multilinear singular value 
decomposition (OMLSVD); the version we will be using in 
our approach.

In this paper, we propose a compression approach for 3D 
medical images based on the OMLSVD technique, called the 
“3D-VOI-OMLSVD.” The initial phase of this technique is 
a volume of interest (VOI)-based coding where the active 
volume regions of the original 3D images are identified 
using a selective bounding volume (SBV) algorithm. The 
VOI is then subjected to decomposition with OMLSVD, and 
the compressed data are encoded using the adaptive binary 
range coder (ABRC) to efficiently encode the compressed 
information in a near lossless manner. To reconstruct the 
VOI, the compressed data are then decoded with the ABRC 
decoder and subjected to inverse OMLSVD. With the aid 
of SBV coordinate details, the decompressed VOI is then 
fused with the background to recreate the actual 3D image.

The rest of the paper is structured as follows: Sect. 2 
describes the different elements involved in the proposed 
technique – VOI extraction using SBV algorithm, tensor 
decomposition using OMLSVD approach, use of ABRC, a 
binary arithmetic coder technique, for encoding and decod-
ing compressed images, and the dataset used. Section 3 
presents the flow of the proposed compression method 
“3D-VOI-OMLSVD.” Sect. 4 begins with briefly summa-
rizing evaluation metrics used in this study followed by the 
results from the proposed method, with and without VOI, 
and later comparing the proposed technique with other popu-
lar compression techniques. This section concludes with a 
brief discussion of future works. Section 5 concludes the 

paper with a summary of contribution, performance, and 
limitations.

Materials and Methods

VOI Extraction

Medical images are composed of many elements, and each 
element has its unique set of characteristics, which can be 
used for identification. For the purpose of medical image 
compression, the clinically significant element is known 
as the region of interest (ROI) in 2D images and as vol-
ume of interest (VOI) for 3D images. They are collectively 
called as object of interest. This object of interest could 
be brain tumor, traumatic brain injury, blood clot, kidney 
stone, or any other abnormality in the human body. This 
region of interest is referred to as the foreground image 
and is usually captured against the contrast background. 
In general, most of these 2D and 3D medical images con-
tain a lot of background pixels that carry zero-intensity 
values. Thus, these background values do not contribute 
to diagnostics and analyzing process. Separating the fore-
ground pixels from the background pixels can increase 
the compression performance. The excluded background 
can be reconstructed during the decompression process to 
preserve the actual texture and visual quality of the origi-
nal image. Such object-based coding can improve certain 
compression algorithms and lead to high fidelity on clini-
cally significant regions.

In this paper, an automated morphological operation-
based object detection is proposed, and the VOI is subject 
to compression. First, the VOI is identified and extracted 
using the selective bounding volume (SBV) method; it 
is the 3D extension of the bounding box method. The 
algorithm of SBV is laid out in detail (algorithm 1). The 

Fig. 1   The extraction of volume 
of interest (VOI) and separation 
from background in a 3D medi-
cal image, using the selective 
bound volume (SBV) method
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bounding box operation is applied throughout the volume 
of 2D images. Corresponding coordinate values of each 
slice are recorded, and the global values of coordinates 
are identified for the region of interest in every image 
slice. Our proposed algorithm ignores any occurring blank 
image slices that are usually the foremost and endmost 
slices, because these have no clinically relevant details and 
are also known as null image slices. Next, the bounding 
volume is constructed using the acquired global coordi-
nates by applying bounding box morphological operation 
on the volume, sans the blank images.

In Fig. 1, the region bounded within the red cube is 
known as the VOI for the image volume, and the region out-
side the red cube is the background. This technique excludes 
any blank 2D slices and includes all slices with the smallest 
object of interest. This approach allows us to capture the 
VOIs accurately even in the case of complex 3D images.

Optimized Multilinear Singular Value 
Decomposition (OMLSVD)

Singular value decomposition (SVD) is one of the tools from 
numerical analysis that can be used in various image pro-
cessing tasks including image compression [32, 33]. The 
concept of SVD is based in linear algebra and has a wide 
applicability. It is a matrix decomposition/factorization 
method which uses the eigenvalues to decompose the matrix. 
It can be mathematically expressed as follows:

here, X is the original matrix we want to factorize. U and V  
are orthogonal matrices, and the columns of the orthogonal 
matrix U are known as left singular vectors (LSVs), and 
the columns of the orthogonal matrix V  are known as right 
singular vectors (RSVs). The diagonal matrix Σ contains the 
eigenvalues in a decreasing order.

SVD is applicable only for 2D data, and the extension 
of SVD to the higher dimensional data is quite different. 
Thus, a different approach called the multilinear singular 
value decomposition (MLSVD) is used for higher dimen-
sional data. MLSVD functions on the basis of tensor mul-
tiplication rather than the simple matrix multiplication. 
Note that the MLSVD was previously known by other 
names, such as higher-order SVD (HOSVD), N-mode 
SVD, and Tucker decomposition. The Tucker decomposi-
tion was introduced by LR Tucker in 1963 [34]. The basic 
idea of decomposing a tensor using Tucker decomposition 
has gone through several modifications and improvements, 
such as three-mode factor analysis [35], three-mode PCA 
[36], N-mode PCA [37], higher-order SVD (HOSVD), and 
N-mode SVD [38]. However, the generalized version is 
known as the multilinear singular value decomposition 
(MLSVD) and can be described briefly as follows.

MLSVD decomposes a tensor T ∈ RI1×I2...IN into the fol-
lowing components:

–	 The core tensor S ∈ RI1×I2...IN which is the truncated ver-
sion of the original tensor with respect to given multilin-

(1)X = UΣVT

Fig. 2   Tensor decomposition using optimized multilinear singular value decomposition (OMLSVD). T is the original tensor, S is the core tensor, 
and U{1}, U{2}, and U{3} are the factor matrices
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ear rank ( R1,R2...,RN ). Now, the tensor has the dimen-
sions of  SR1×R2×...×RN whereRi ≪ Ii∀i.

–	 The factor matricesU{1},U{2}....,U{N} , where each 
factor matrix is unitary and has the dimension In × Rn 
forn = 1.....N.

Thus, we get:

These factor matrices are orthogonal, and the level of 
interaction between various components can be seen with 
the entries of core tensor. ×n is the mode-n product which 
indicates the tensor is multiplied in each mode or order. 
For the illustrative purposes, the 3rd-order tensor with its 
corresponding decomposition is explained in Fig. 2. Here, 
a 3rd-order tensor (T) or a volume is decomposed with 
OMLSVD to get the core tensor S ∈ RI1×I2×I3 with the rank 
(R1R2R3) , and the three factor matrices, U{1} ∈ RI1×R1 , 
U{2} ∈ RI2×R2 , and U{3} ∈ RI3×R3 . The core tensor, S, is 
multiplied with these factor matrices, U{1},U{2}, andU{3} 
using mode-n product to reconstruct the original tensor, T.

Adaptive Binary Range Coder (ABRC)

Typically, frequency domain compression methods need 
entropy encoding for lossless transmission of the com-
pressed data. The primary idea of data compression is to 
encode the most frequently occurring symbols with shorter 
length of codewords and the less frequently occurring 
symbols to longer length codewords. Hence, arithmetic 
coding is an efficient entropy coding technique and is used 
in many transformation-based compression methods [39]. 
The arithmetic coding process is a symbol-wise recursive 
algorithm. It encodes and decodes one symbol each itera-
tion. It constructs fractional value codewords which range 
from 0 to 1. It successively partitions the range to a new 
interval between the 0 and 1. Hence, the interval is being 
partitioned on each iteration and comes to a small range 
of intervals to proceed with. The interval can be specified 
with the leftmost or rightmost code point and the interval 
width. The interval width is recorded in order to partition 
the next interval, and the new code point is computed. 
With these encoded code strings, we can easily decode the 
original data in a lossless fashion by reversing the parti-
tions to merge. Our proposed compression method uses 
the binary arithmetic coder (BAC) to encode the result-
ant coefficient of the tensor decomposition. BAC is the 
computational cost effective version of classical arithme-
tic coders [40]. It is limited to two-element alphabet, of 
0 or 1, and it works as a switch-based mechanism. This 
switch can be defined as a single value. There are several 

(2)T = S×1U{1}×2U{2}......×n
U{N}

binary arithmetic coders with some modifications, such 
as M-coder of H.264/H.265 standards [41], MQ-coder 
from JPEG2000 [42], adaptive BAC based on virtual slid-
ing window [43], adaptive binary range coder (ABRC) 
[44], and adaptive BAC based on logarithmic domain 
[45]. Among these coders, ABRC is used in our proposed 
method because of its efficient encoding capability for 
multidimensional data. Additionally, it does not require 
any extra memory for the lookup table. In our method, 
the coefficients of the core tensor and the magnitudes of 
the factor matrices are encoded with ABRC to transfer 
losslessly, which increases the compression performance.

Radiology Imaging Data

The 3D images used for this approach were acquired 
from the Internet Brain Segmentation Repository (IBSR) 
[46], an open-source repository by Neuroimaging Tools 
& Resources Collaboratory (NITRC) in NIfTI (Neuro-
imaging Informatics Technology Initiative) and DICOM 
(Digital Imaging and Communications in Medicine) for-
mats. We used twelve 3D image volumes, each of 8-bit 
depth, of various imaging modalities, to test the per-
formance of 3D-VOI-OMLSVD compression method. 
Image 1 is a brain MRI (128 × 128 × 27), image 2 is 
a brain CT (256 × 256 × 99), image 3 is a brain MRI 
(256 × 256 × 99), images 4 to 11 are skull-stripped brain 
MRIs (256 × 256 × 63), and image 12 is a chest PET 
(256 × 256 × 258, obtained from The Cancer Imaging 
Archive (TCIA)). We identify the core sizes based on the 
minimum distortion.

Proposed 3D‑VOI‑OMLSVD Method for Near 
Lossless Compression

The proposed 3D-VOI-OMLSVD compression method is 
designed to improve compression performance while main-
taining the integrity of image quality. For illustrative purposes, 
we assume that every 2D medical image fits in the rectangular 
space for the cross-sectional slice, and the stack of 2D images 
within the cubic shape has a zero-intensity background around 
the active regions of interest. The background pixel values 
are important for storing and transmitting the data, because 
8 bits are required for each pixel in case of an image with 
8-bit depth. Hence, background is eliminated while extracting 
the VOI which is the foreground. After eliminating any blank 
slices, VOI is extracted from the original 3D medical image 
stack using the SBV VOI detection and extraction technique. 
The noted global coordinate values of the region of interest for 
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each 2D image slice are used to create the bounding volume. 
Henceforth, all encoding and decoding processes are applied 
only to the extracted VOI. After decoding, the whole image is 
obtained by fusing the VOI to the background using the bound-
ing volume details sent from the encoder.

The extracted VOI is decomposed using MLSVD. VOI is 
treated as a 3rd-order tensor and gives three factor matrices 
and the corresponding eigenvalues. Following this, the core 
tensor is constructed from these eigenvalues with regard to 
the optimally selected core size. The coefficients of core 
tensor have a value range of about negative ten thousand to 
positive ten thousand. Hence, the static assignment of bits 
for each coefficient is more expensive; i.e., allotting each 
coefficient with 32 or 64 bits is unnecessary as coefficient 
values are very small. Thus, we choose to use arithmetic 
encoding to encode these core tensor coefficients and the 
factor matrices in order to further reduce the bit rate. The 
factor matrices U{1}, U{2}, and U{3} are converted as vec-
tors and directly sent to the ABRC. The arithmetic encoded 
binary sequence binds to the bounding volume coordinates 
to create a compressed file, which can then be transferred.

In order to reconstruct the original 3D image, the decom-
pression process uses the inverse order of operations that 
were used for compression. First, arithmetic decoding is per-
formed with the binary sequence to decode the core tensor 
and the coefficients of the three factor matrices. Then, the 
VOI is reconstructed by performing tensor product between 
the core tensor and the factor matrix coefficients. This is 
a mode-n product. This reconstructs the original VOI, and 
finally this VOI is fused with the null intensity space of 
original image volume size to obtain the uncompressed 3D 

image. The flow of 3D-VOI-OMLSVD compression method 
is visually depicted in Fig. 3. The illustrations of 3D images 
are created using 3D Slicer [47, 48].

For example, let us assume a 3D image volume with 
256 × 256 × 63 dimensions and 8-bit depth. This means 
there are 63 cross-sectional 2D image slices that can be col-
lectively seen as a 3D image. As the first step, the VOI is 
extracted using the SBV method. The dimension size is now 
reduced to 110 × 113 × 56, as anything outside this VOI is 
the background null space. The VOI is decomposed with 
MLSVD to result in a core tensor, eigenvalues, and unitary 
factor matrices. These values along with the VOI coordinate 
details and the actual image size are encoded with the arith-
metic coding to create the compressed file.

In order to maintain the quality of the reconstructed 3D 
image, minimum quality distortion is identified by fine-
tuning the MLSVD core size. After applying the 3D-VOI-
OMLSVD compression method on 3D medical images, we 
assess the performance using the following quantitative 
metrics – compression ratio (CR), bit rate (BR), peak signal 
to noise ratio (PSNR, dB), and structural similarity index 
(SSIM).

Results and Discussion

Evaluation Metrics

To evaluate the compression performance, we utilize the 
compression ratio (CR), bit rate (BR)/bits per voxel (BPV), 

Fig. 3   Flow of the proposed 3D VOI-based optimal multilinear value decomposition (3D-VOI-OMLSVD) compression method
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peak signal to noise ratio (PSNR, dB), and structural simi-
larity index (SSIM). Note that these metrics were computed 
based on the original image bounding box VOI and the 

compressed image representation of the corresponding VOI, 
and not the entire image volume.

Table 1   Quantitative performance of the near lossless 3D-VOI-
OMLSVD compression method on 12 3D images of various modali-
ties. The evaluation metrics used are compression ratio (CR), bit rate 

(BR), peak signal to noise ratio (PSNR, dB), structural similarity 
index (SSIM), and computational time (in seconds)

3D image
no

Image 
dimension
(X × Y × Z)

VOI 
dimension
(X × Y × Z)

MLSVD 
core size
(cX:cY:cZ)

CR BR PSNR
(dB)

SSIM Computational time (in 
seconds)

Encode Decode

1 128 × 128 × 27 111 × 90 × 27 34 43 22 10.83 0.74 42.42 0.9901 112.7305 0.0069
2 256 × 256 × 99 171 × 168 × 99 63 77 98 12.54 0.64 45.47 0.9835 1877.0000 0.0670
3 256 × 256 × 99 168 × 182 × 99 66 78 98 11.91 0.67 45.15 0.9537 872.1814 0.1980
4 256 × 256 × 63 110 × 113 × 56 38 40 53 31.82 0.25 43.59 0.9903 329.7335 0.0127
5 256 × 256 × 63 109 × 121 × 55 49 57 53 25.30 0.316 44.55 0.9913 479.1141 0.0177
6 256 × 256 × 63 112 × 114 × 52 45 58 51 28.00 0.28 44.45 0.9877 619.7163 0.0166
7 256 × 256 × 63 112 × 125 × 55 52 58 52 23.89 0.33 43.99 0.9905 579.8933 0.0154
8 256 × 256 × 63 127 × 124 × 56 57 68 55 17.80 0.45 45.37 0.9930 491.1569 0.0217
9 256 × 256 × 63 122 × 115 × 48 58 68 48 19.99 0.40 45.34 0.9923 417.2995 0.0185
10 256 × 256 × 63 149 × 145 × 58 68 62 46 19.44 0.41 41.78 0.9803 509.7882 0.0266
11 256 × 256 × 63 137 × 129 × 57 64 72 56 14.78 0.54 43.67 0.9892 608.3787 0.0201
12 256 × 256 × 258 96 × 136 × 98 43 80 136 37.31 0.21 64.41 0.9999 1108.227 0.1116

Table 2   Quantitative 
performance of the near 
lossless 3D-VOI-OMLSVD 
compression method on both 
image stacks, with and without 
extracted VOI. The evaluation 
metrics used are compression 
ratio (CR), bit rate (BR), peak 
signal to noise ratio (PSNR, 
dB), structural similarity index 
(SSIM), and computational time 
(in seconds)

3D volume: 
VOI dimension
(X × Y × Z)

Mode Core size
(cX:cY:cZ)

CR BR PSNR
(dB)

SSIM Computational time
(in seconds)

Encode Decode

1: 111 × 90 × 27 VOI 34 43 22 10.83 0.74 42.42 0.9901 112.7305 0.0069
w/o VOI 64 71 27 3.14 2.54 42.04 0.9789 493.0809 0.0137

2: 211 × 246 × 99 VOI 63 77 98 12.54 0.64 45.47 0.9835 1877.000 0.067
w/o VOI 120 109 78 5.97 1.34 43.87 0.9713 4688.342 0.1522

3: 168 × 182 × 98 VOI 66 78 98 11.91 0.67 45.15 0.9537 872.1814 0.1980
w/o VOI 122 143 97 3.63 2.20 45.24 0.9629 8729.454 0.2506

4: 110 × 113 × 56 VOI 38 40 53 31.82 0.25 43.59 0.9903 329.7335 0.0127
w/o VOI 70 63 55 14.74 0.54 46.09 0.9953 1219.815 0.0714

5: 109 × 121 × 55 VOI 49 57 53 25.30 0.316 44.55 0.9913 479.1141 0.0177
w/o VOI 65 56 54 17.88 0.45 45.43 0.9934 1035.700 0.0512

6: 112 × 114 × 52 VOI 45 58 51 28.00 0.28 44.45 0.9877 619.7163 0.0166
w/o VOI 112 113 52 5.74 1.39 Inf 1.0000 143.4716 0.0837

7: 112 × 125 × 55 VOI 52 58 52 23.89 0.33 43.99 0.9905 579.8933 0.0154
w/o VOI 91 104 54 7.31 1.09 49.29 0.9971 2424.095 0.0672

8: 127 × 124 × 56 VOI 57 68 55 17.80 0.45 45.37 0.9930 491.1569 0.0217
w/o VOI 71 81 56 11.33 0.71 46.93 0.9956 1588.128 0.0662

9: 122 × 115 × 48 VOI 58 68 48 19.99 0.40 45.34 0.9923 417.2995 0.0185
w/o VOI 91 104 54 7.32 1.09 49.29 0.9971 2327.544 0.0625

10: 149 × 145 × 58 VOI 68 62 46 19.44 0.41 41.78 0.9803 509.7882 0.0266
w/o VOI 143 143 58 3.32 2.40 62.92 0.9999 215.8465 0.159

11: 137 × 129 × 57 VOI 64 72 56 14.78 0.54 43.67 0.9892 608.3787 0.0201
w/o VOI 66 72 56 13.54 0.59 43.76 0.9892 1424.646 0.0474

12: 96 × 136 × 98 VOI 43 80 136 37.31 0.21 64.41 0.9999 1108.227 0.1116
w/o VOI 132 127 84 13.20 0.61 64.30 0.9999 2998.577 0.2303
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Compression Ratio (CR)

Compression ratio (CR) is the ratio between the original 
image size and the compressed image size; i.e., the ratio 
between number of bits needed to represent the original 
image and the number of bits needed to represent the com-
pressed image. The CR is computed using the following 
formula:

where,no – number of bits required to represent the original 
image.

nc – number of bits required to represent the compressed 
image.

(3)CR =
no

nc

CR values range from 1 to ∞ , whereby 1 is the lowest 
value and ∞ is the highest value. After image compression, 
higher CR values are desired.

Bit Rate (BR)/Bits per Voxel (BPV)

The average number of bits required per sample of an 
image is known as the bit rate (BR). It can be computed 
as the ratio of number of bits needed for representing the 
compressed image to the total number of unit samples of 
an image. It can be mathematically represented as follows:

(4)BR =
nc

ns

Fig. 4   Original 2D images and 
the corresponding decom-
pressed 2D images after 
processing through our near 
lossless 3D-VOI-OMLSVD 
compression method

3D Image Volume Original Slice Decompressed Slice

3D Image 1

Brain MRI

128 x 128

3D Image 2

Brain CT

256 x 256

3D Image 3

Brain MRI

256 x 256

3D Image 4

Brain MRI

Skull-stripped

256 x 256
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where:
nc – number of bits to represent the compressed image.
ns – total number of unit samples for an image.
Based on the types of images, the sample unit may vary. 

For 2D images, the basic unit is a pixel and hence the metric 
is called bits per pixel (BPP). BPP denotes the number of 
bits required per pixel of a two-dimensional image where the 
ns denotes the total number of pixels, whereas, in the case 
of 3D images, the basic unit is known as a voxel, and hence 
the metric is known as bits per voxel (BPV). BPV represents 
the number of bits required per voxel in a 3D image where 
the ns denotes the total number of voxels. Both BPP and 
BPV can be collectively or alternatively called as the bit rate 
(BR). Compression causes the 8-bit image depth to reduce 
significantly. Lower BR values are preferred, as it directly 
correlates to higher compression values.

Peak Signal to Noise Ratio (PSNR)

Peak signal to noise ratio (PSNR, dB) is one of the most 
widely used evaluation metrics which assess the fidelity of 
image compression. It is a reference-based evaluation metric 
that compares the two images in terms of intensity variations 
in the image. Fundamentally, PSNR (dB) is a ratio between 
the high peak or maximum intensity value in an image and 
the intensity changes between the image. The two images 
for comparison must have the same dimensions. The loga-
rithmic decibel scale is used to express the PSNR values. 
The mathematical expression for computing PSNR is below:

(or)

(5)PSNR = 10log10(max
2

i
∕MSE)

3D Image Volume Original Slice Decompressed Slice

3D Image 5

Brain MRI

Skull-stripped

256 x 256

3D Image 6

Brain MRI

Skull-stripped

256 x 256

3D Image 7

Brain MRI

Skull-stripped

256 x 256

3D Image 8

Brain MRI

Skull-stripped

256 x 256

Fig. 4   (continued)



Journal of Digital Imaging	

1 3

where:maxi – maximum intensity/high peak.
MSE – mean square error.
In order to calculate the PSNR value, it is essential to 

calculate the mean square error ( MSE) value. MSE is the 
intensity difference between the two images, and it uses the 
Euclidean distance measure. The mathematical expression 
to compute MSE is:

where:m and n are dimensions of image.
I – original image.
J – decompressed image.
PSNR value can range between 0 to ∞ in decibels (dB). 

High PSNR value indicates the compared images are highly 
alike, and the restored image quality is good. If MSE = 0, 
the PSNR tends to ∞ , which means there is no degradation 
between the two images.

(6)PSNR = 10log10(maxi∕
√

MSE)

(7)MSE = 1∕mn
∑m−1

i=0

∑n−1

j=0

[

I(i, j) − J(i, j)
]2

Structural Similarity Index (SSIM)

Structural similarity index (SSIM) [49] is a human visual 
system (HVS)-based quality metric which measures the per-
ceptual difference between two images. To compute SSIM, 
the luminance, contrast, and structural term of an image 
are multiplied. It is a completely reference-based metric 
that requires two images which have the same dimensions, 
namely a reference image and a processed image. This 2D 
image comparison can be extended to a 3D image too. The 
SSIM is calculated as below:

where:

(8)SSIM(x, y) =
[

l(x, y)
]�
.
[

c(x, y)
]�
.
[

s(x, y)
]�

(9)l(x, y) =
2�x�y + c1

�x
2 + �y

2 + c1

3D Image Volume Original Slice Decompressed Slice

3D Image 9

Brain MRI

Skull-stripped

256 x 256

3D Image 10

Brain MRI

Skull-stripped

256 x 256

3D Image 11

Brain MRI

Skull-stripped

256 x 256

3D Image 12

Chest PET

256 x 256

Fig. 4   (continued)
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Fig. 5   Representative image (image number 3) was used to observe 
the visual discrepancy between the original and 3D-VOI-OMLSVD 
decompressed image. The gray scale (range 0–255) pixel frequency 
histogram (left) and the corresponding 3D mesh plot (right) are 

shown in comparison between the original image (top), 3D-VOI-
OMLSVD decompressed image (middle), and the difference between 
the two images (bottom). The mesh plot for difference has been 
amplified 10 times for better visual comparison
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�x and �y are the local means, �x and �y  are the standard 
deviations, and �xy is cross-covariance for images x and y . 
Mean SSIM values range between 0 and 1, and higher values 
indicate better fidelity between the compared images.

Near Lossless 3D‑VOI‑OMLSVD Compression 
Method Performance

We used 12 3D image volumes from the IBSR dataset 
[45] and TCIA datasets to quantitatively check performance 
of the technique. Table 1 reports the quantitative evaluation 
for the above mentioned images, where as Table 2 reports 
evaluation metrics for the same set of images, with and with-
out extracted VOI.

In Table 1, we observe that the original 3D image is 
reduced to smaller number of dimensions upon VOI extrac-
tion. We were able to obtain the maximum compression ratio 
(CR) of 37.31:1. The quantitative metrices display promis-
ing results, and the high values of SSIM indicate that our 
approach insures near lossless compression. Conclusively, 
our approach yields very high accuracy with near lossless 
compression.

Figure 4 provides a visual comparison between a ran-
domly selected 2D original image slice and the correspond-
ing 2D decompressed image slice, from the twelve 3D image 
volumes. All the decompressed images display near loss-
less reconstruction. Image number 3 has the lowest SSIM 
value of 0.9537 (Table 1) compared to all other images and 
hence was used as an example image to observe the differ-
ences between the original and the decompressed image. 
In Fig. 5, we show image histograms and corresponding 
3D mesh plots of the original, our near lossless 3D-VOI-
OMLSVD compression method result, and the difference 
between them. As can be seen, our method obtains good 
fidelity to the original uncompressed image.

In order to test the effectiveness of the initial step of VOI 
extraction, we ran our compression method on both, VOI 
extracted vs non-VOI extracted image stacks. We consist-
ently notice that the optimum core size is lower in VOI 
extracted approach. The CR values are high, and BR values 
are significantly low when VOI is extracted. However, we 
observe similar PSNR and SSIM performance between both 
approaches.

(10)c(x, y) =
2�x�y + c2

�x
2 + �y

2 + c2

(11)s(x, y) =
2�xy + c3

�x�y + c3

Preprocessing images using SBV VOI extraction is defi-
nitely effective as it reduces the encoding and decoding time 
for the image, while offering high compression ratio and 
very similar image reconstruction accuracy.

Comparing with Other Compression 
Techniques: JPEG, JPEG2000, 3D SPIHT, 
Huffman Coding, Run Length Coding, 
Lempel–Ziv‑Welch (LZW), and Arithmetic 
Coding

We compared our proposed compression method with two 
state-of-the-art international standard (IS) status image com-
pression methods – JPEG [50] and JPEG2000 [51]. JPEG 
is a standard lossy compression technique that uses RGB 
channels, whereas JPEG2000 can be used for lossy or loss-
less compression and can manage up to 256 channels, for 
images with lower bit rates, such as radiological images; 
JPEG2000 performs better than JPEG [52]. Although there 
exists a lossless JPEG LS version which is based on differ-
ential pulse-code modulation (DPCM), lossless JPEG2000 
is more widely used [53]. In what follows, we detail experi-
mental benchmarking of our 3D-VOI-OMLSVD model 
against JPEG, JPEG2000, 3D SPIHT, and four popular loss-
less coding techniques.

We observe an overall higher CR value (Fig. 6) and a 
lower BR value (Fig. 7) for 3D-VOI-OMLSVD compression 
method. On average our method requires only 0.43 bit rate 
or BPV, whereas the JPEG and JPEG2000 need an average 
of 0.68 and 0.54 BPV, respectively.

We further compared our compression method to the 3D 
set partitioning in hierarchical trees (3D SPIHT) compres-
sion method, using two evaluation metrics, BR/BPV and 
PSNR (dB). The near lossless 3D-VOI-OMLSVD technique 
showed overall improved results, across all images, as com-
pared to 3D SPIHT. Our method displayed lower BR/BPV 
(Fig. 8) and higher PSNR values (Fig. 9). On average, our 
approach required 0.43 BR/BPV, while 3D SPIHT required 
0.46 BR.

Since our technique shows promising performance, 
almost lossless compression, for all the images (Table 1), 
we compared it against a few popular ones – Huffman cod-
ing, run length coding (RLE), Lempel–Ziv–Welch (LZW), 
and the arithmetic coding (AC). Compared to all these tech-
niques, our proposed methodology consistently performed 
the best, with extremely low BR/BPV (Fig. 10).

The time required to retrieve and decode the compressed 
image is of greater importance than the time required to 
encode the image. Hence, we also compare the compu-
tational run time of our proposed model with four other 
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popular compression methods – Huffman coding, run length 
coding (RLE), Lempel–Ziv–Welch (LZW), and arithmetic 
coding (AC) (Table 3). For the entire dataset, we consist-
ently observe that our proposed method takes more time to 
encode; however, it is the fastest method for decoding, com-
pared to all other tested algorithms. The closest competitor 
to our 3D-VOI-OMLSVD is the RLE model, which takes 
the shortest amount of time for encoding and is fairly quick 
to decode. But our model has a very high compression ratio 
compared to any other technique.

Future Work

While in this work we compare our proposed technique 
of near lossless 3D-VOI-OMLSVD compression method 
with various popular techniques, including two consid-
ered as international standards, and very widely used, 
JPEG and JPEG2000, we would like to further compare 
it with techniques like 3D DCT and 3D DWT. Since the 
performance of this approach is promising, we would 
like to test it on larger datasets and on a variety of other 
radiological imaging modalities. Using normal and non-
normal complex radiological images will also allow us 
to observe how this 3D-VOI-OMLSVD technique per-
forms when dealing with varying tensor sizes. Though 
we report the computational time required for encoding 
and decoding the VOI extracted images, an extension 
of this work would include the cumulative time frame 
required for VOI extraction, encoding, decoding, and 
image reconstruction. Going ahead, we would like to 
focus on reducing the encoding time using advanced ten-
sor decomposition models.

In this work, we have utilized standard image metrics 
(PSRN and SSIM) to compare different compression algo-
rithms. To be useful in practice, one needs to use appropri-
ate perceptual evaluation metrics based on human observ-
ers [54, 55]. Keeping telehealth in mind, another idea 
we would like to explore is how constant compression- 
decompression of the same image affects its quality over time  
compared to the original image when exchanged between 

Fig. 6   Comparing compression ratio (CR) between near lossless 
3D-VOI-OMLSVD, JPEG, and JPEG2000 compression methods, 
across the 12 selected 3D images

Fig. 7   Comparing bit rate (BR)/bits per voxel (BPV) between near 
lossless 3D-VOI-OMLSVD, JPEG, and JPEG2000 compression 
methods, across the 12 selected 3D images

Fig. 8   Comparing bit rate (BR)/bits per voxel (BPV) between near 
lossless 3D-VOI-OMLSVD and 3D SPIHT compression methods, 
across the 12 selected 3D images
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Fig. 9   Comparing peak signal 
to noise ratio (PSNR) in deci-
bels (dB) between near lossless 
3D-VOI-OMLSVD and 3D 
SPIHT compression methods, 
across the 12 selected 3D 
images

Table 3   Computational time required for encoding and decoding (in seconds) across various popular compression methods in comparison to our 
proposed near lossless 3D-VOI-OMLSVD compression method

3D image
no

Huffman RLE LZW AC 3D-VOI-OMLSVD

Encode Decode Encode Decode Encode Decode Encode Decode Encode Decode

1 0.5086 13.3907 0.0223 0.0565 8.9349 3.2016 12.9907 14.6081 112.7305 0.0069
2 12.509 293.1871 0.4751 0.8181 126.0267 51.402 275.7715 322.7741 1877.0000 0.0670
3 12.6011 314.9483 1.0073 1.2107 171.9963 70.8574 300.2994 295.0187 872.1814 0.1980
4 3.8448 72.6044 0.0927 0.5183 36.7685 28.0806 46.7606 56.9223 329.7335 0.0127
5 5.0974 62.0951 0.1225 0.5231 28.2754 23.0445 39.6484 43.5729 479.1141 0.0177
6 3.1914 72.8083 0.0679 0.4597 34.3133 26.952 44.7823 49.3036 619.7163 0.0166
7 4.1033 66.4886 0.0728 0.6257 29.4615 28.0156 51.7476 56.0583 579.8933 0.0154
8 9.9898 84.5375 0.3061 0.6251 36.2165 30.8842 67.309 71.0558 491.1569 0.0217
9 3.5853 77.3413 0.0819 0.4945 38.7391 32.9083 47.0394 48.2117 417.2995 0.0185
10 4.7216 104.4932 0.3776 0.5677 40.7787 30.2232 65.9941 81.2128 509.7882 0.0266
11 3.4385 83.376 0.3117 0.741 44.5932 33.0172 66.6946 76.6381 608.3787 0.0201
12 14.1646 289.0036 0.4452 2.2529 148.9944 103.8488 202.1806 230.7985 1108.227 0.1116

Fig. 10   Bit rate (BR) compari-
son of near lossless 3D-VOI-
OMLSVD with popular 
compression methods – Huff-
man coding, run length coding 
(RLE), Lempel–Ziv–Welch 
(LZW), and arithmetic coding 
(AC)
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radiology PACS systems. In teleradiology applications, the 
degradation of image quality over time can be mitigated 
by transmitting only the compressed version, especially 
since our proposed model’s decompression operation is 
very fast.

Conclusion

In this work, we consider a 3D image compression 
model based on volume of interest (VOI) and optimal 
multilinear singular value decomposition (3D-VOI-
OMLSVD) .  The  p roposed  3D-VOI-OMLSVD 
compression method addresses the need for an effective 
and efficient 3D medical image compression, as the 
demand for teleradiology increases. The initial process 
of VOI extraction improved the performance of our 
proposed method. We used a tensor-based application of 
MLSVD to decompose the 3D images in order to obtain 
the volume of interests (VOIs). Adaptive binary range 
coder (ABRC) is used for compression, making the 
image ready for transmittance. In order to reconstruct 
the original images, this streamlined process is carried 
out in reverse. We report a low bit rate (BR) and high 
compression ratio (CR) in comparison to international 
and widely used standard techniques namely the JPEG 
and JPEG2000. Our proposed method performs better 
than 3D set partitioning in hierarchical trees (3D 
SPIHT) compression method for across different 3D 
images in the test set. In comparison to a few other 
state-of-the-art lossless compression methods such 
as Huffman coding, run length coding, LZW, and 
arithmetic coding, our method shows significantly 
low BR, a fairly high encoding time, and the lowest 
decoding time. The reconstructed images display a very 
high structural similarity (SSIM) values, indicating 
we obtain good fidelity to original input 3D data with 
less loss of information. Our approach with further 
improvements could find wide applications for all 
medical image modalities, especially for the purpose of 
teleradiology and storage [46] where high compression 
for transmittance and high reconstruction accuracy is 
required.

Declarations 

Ethics Approval  Not applicable.

Consent to Participate  Not applicable.

Consent for Publication  Not applicable.

Conflict of Interest  The authors declare no competing interests.

References

	 1.	 Peter A. Rinck, Magnetic resonance in medicine: a critical 
introduction. 2019.

	 2.	 M. Wang, G., Kalra, M., Murugan, V., Xi, Y., Gjesteby, L., 
Getzin, M., Yang, Q., Cong, W. and Vannier et al., “Vision 
20/20: Simultaneous CT‐MRI—Next chapter of multimodality 
imaging,” Med. Phys., vol. 42, no. 10, pp. 5879–5889, 2015.

	 3.	 M. J. Yaffe, “Emergence of ‘Big Data’ and its potential and 
current limitations in medical imaging,” Semin. Nucl. Med., 
vol. 49, no. 2, pp. 94–104, 2019, https://​doi.​org/​10.​1053/j.​
semnu​clmed.​2018.​11.​010.

	 4.	 A. A. Abdulla, “Efficient computer-aided diagnosis technique 
for leukaemia cancer detection,” IET Image Process., vol. 14, 
no. 17, pp. 4435–4440, 2020.

	 5.	 W. Jorritsma, F. Cnossen, and P. M. van Ooijen, “Improving the 
radiologist-CAD interaction: designing for appropriate trust,” 
Clin. Radiol., vol. 70, no. 2, pp. 115–122, 2015.

	 6.	 M. J. McAuliffe, F. M. Lalonde, D. McGarry, W. Gandler, K. 
Csaky, and B. L. Trus, “Medical image processing, analysis 
and visualization in clinical research,” in Proceedings 14th 
IEEE Symposium on Computer-Based Medical Systems. CBMS 
2001, 2001, no. February, pp. 381–386, https://​doi.​org/​10.​1109/​
CBMS.​2001.​941749.

	 7.	 E. Belyaev, “Low bit rate video coding based on three-dimensional 
discrete pseudo cosine transform,” in International Congress on 
Ultra Modern Telecommunications and Control Systems, 2010, vol. 
1, no. 2, pp. 61–67, https://​doi.​org/​10.​1109/​ICUMT.​2010.​56766​57.

	 8.	 M. Servais and G. De Jager, “Video compression using the three 
dimensional discrete cosine transform (3D-DCT),” in Proceed-
ings of the 1997 South African Symposium on Communications 
and Signal Processing. COMSIG’97, 1997, pp. 27–32, https://​
doi.​org/​10.​1109/​comsig.​1997.​629976.

	 9.	 B. J. Kim, Z. Xiong, and W. A. Pearlman, “Low bit-rate scalable 
video coding with 3-D set partitioning in hierarchical trees (3-D 
SPIHT),” IEEE Trans. Circuits Syst. Video Technol., vol. 10, no. 
8, pp. 1374–1387, 2000, https://​doi.​org/​10.​1109/​76.​889025.

	10.	 E. Belyaev, K. O. Egiazarian, M. Gabbouj, and K. Liu, “A low-
complexity joint source-channel videocoding for 3-D DWT 
codec,” J. Commun., vol. 8, no. 12, pp. 893–901, 2013, https://​
doi.​org/​10.​12720/​jcm.8.​12.​893-​901.

	11.	 E. Belyaev, K. Egiazarian, and M. Gabbouj, “A low-complexity 
bit-plane entropy coding and rate control for 3-D DWT based 
video coding,” IEEE Trans. Multimed., vol. 15, no. 8, pp. 1786–
1799, Dec. 2013, https://​doi.​org/​10.​1109/​TMM.​2013.​22693​15.

	12.	 P. Kalavathi and S. Boopathiraja, “A medical image compres-
sion technique using 2D-DWT with run length encoding,” Glob 
J Pure Appl Math, vol. 13, no. 5, pp. 87–96, 2017.

	13.	 S. Boopathiraja and P. Kalavathi, “A near lossless three-dimensional 
medical image compression technique using 3D-discrete wavelet 
transform,” Int. J. Biomed. Eng. Technol., vol. 35, no. 3, pp. 191–
206, 2021, https://​doi.​org/​10.​1504/​IJBET.​2021.​113731.

	14.	 S. Boopathiraja, P. Kalavathi, and C. Dhanalakshmi, “Signifi-
cance of image compression and its upshots - A survey,” Int. 
J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 5, no. 2, pp. 
1203–1208, Apr. 2019, https://​doi.​org/​10.​32628/​cseit​19523​21.

	15.	 B. Subramanian, K. Palanisamy, and V. B. S. Prasath, “On a 
hybrid lossless compression technique for three‐dimensional 
medical images,” J. Appl. Clin. Med. Phys., vol. 22, no. 8, pp. 
191–203, Aug. 2021, https://​doi.​org/​10.​1002/​acm2.​12960.

	16.	 S. Boopathiraja, V. Punitha, P. Kalavathi, and V. B. Prasath, 
“Computational 2D and 3D medical image data compression 
models,” Arch. Comput. Methods Eng., pp. 1–33, 2021.

	17.	 S. S. Parikh, D. Ruiz, H. Kalva, G. Fernández-Escribano, V. Adzic, 
and Parikh, S.S., Ruiz, D., Kalva, H., Fernández-Escribano, G. and 

https://doi.org/10.1053/j.semnuclmed.2018.11.010
https://doi.org/10.1053/j.semnuclmed.2018.11.010
https://doi.org/10.1109/CBMS.2001.941749
https://doi.org/10.1109/CBMS.2001.941749
https://doi.org/10.1109/ICUMT.2010.5676657
https://doi.org/10.1109/comsig.1997.629976
https://doi.org/10.1109/comsig.1997.629976
https://doi.org/10.1109/76.889025
https://doi.org/10.12720/jcm.8.12.893-901
https://doi.org/10.12720/jcm.8.12.893-901
https://doi.org/10.1109/TMM.2013.2269315
https://doi.org/10.1504/IJBET.2021.113731
https://doi.org/10.32628/cseit1952321
https://doi.org/10.1002/acm2.12960


Journal of Digital Imaging	

1 3

Adzic, V., “High bit-depth medical image compression with hevc,” 
IEEE J. Biomed. Heal. informatics, vol. 22, no. 2, pp. 552–560, 2017.

	18.	 S. Abdulla, Alan A and Sellahewa, Harin and Jassim, “Stego qual-
ity enhancement by message size reduction and fibonacci bit-plane 
mapping,” in International conference on research in security 
standardisation, 2014, pp. 151–166.

	19.	 S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wang, “Image 
and video compression with neural networks: A review,” IEEE 
Trans. Circuits Syst. Video Technol., vol. 30, no. 6, pp. 1683–1698, 
2020, https://​doi.​org/​10.​1109/​TCSVT.​2019.​29101​19.

	20.	 V. De Silva and L. H. Lim, “Tensor rank and the ill-posedness 
of the best low-rank approximation problem,” SIAM J. Matrix 
Anal. Appl., vol. 30, no. 3, pp. 1084–1127, 2008, https://​doi.​org/​
10.​1137/​06066​518X.

	21.	 L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey 
of low-rank tensor approximation techniques,” GAMM Mitteilun-
gen, vol. 36, no. 1, pp. 53–78, Aug. 2013, https://​doi.​org/​10.​1002/​
gamm.​20131​0004.

	22.	 P. M. Kroonenberg, Applied multiway data analysis. John Wiley 
& Sons, 2008.

	23.	 C. Nikias and A. Petropulu, “Higher order spectra analysis, a non-
linear signal processing framework,” Control Eng. Pr., vol. 2, no. 
2, pp. 367–368, 1994.

	24.	 A. Cichocki et al., “Tensor decompositions for signal processing 
applications: From two-way to multiway component analysis,” 
IEEE Signal Process. Mag., vol. 32, no. 2, pp. 145–163, 2015.

	25.	 J. D. Carroll and J.-J. Chang, “Analysis of individual differences in 
multidimensional scaling via an N-way generalization of ‘Eckart-
Young’ decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–
319, 1970, https://​doi.​org/​10.​1007/​BF023​10791.

	26.	 R. Harshman, “Foundations of the PARAFAC procedure: Models and 
conditions for an ‘explanatory’ multimodal factor analysis,” UCLA 
Work. Pap. Phonetics, vol. 16, no. 10, pp. 1–84, 1970, [Online]. Avail-
able: http://​www.​psych​ology.​uwo.​ca/​facul​ty/​harsh​man/​wpppf​ac0.​pdf.

	27.	 T. G. Kolda and B. W. Bader, “Tensor decompositions and appli-
cations,” SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

	28.	 V. Bhatt, S. Kumar, and S. Saini, “Tucker decomposition and 
applications,” Mater. Today Proc., vol. 46, pp. 10787–10792, 
2021.

	29.	 P. Comon, “Independent component analysis, a new concept?,” 
Signal Processing, vol. 36, no. 3, pp. 287–314, 1994.

	30.	 N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, “Parallel factor 
analysis in sensor array processing,” IEEE Trans. Signal Process., 
vol. 48, no. 8, pp. 2377–2388, 2000.

	31.	 L. De Lathauwer, B. De Moor, J. Vandewalle, L. de Lathauwer, 
B. De Moor, and J. Vandewalle, “A multilinear singular value 
decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp. 
1253–1278, 2000.

	32.	 H. C. Andrews and C. L. Patterson, “Singular value decompositions 
and digital image processing,” IEEE Trans. Acoust., vol. 24, no. 1, pp. 
26–53, 1976, https://​doi.​org/​10.​1109/​TASSP.​1976.​11627​66.

	33.	 J.-F. Yang and C.-L. Lu, “Combined techniques of singular value 
decomposition and vector quantization for image coding,” IEEE 
Trans. image Process., vol. 4, no. 8, pp. 1141–1146, 1995, https://​
doi.​org/​10.​1109/​83.​403419.

	34.	 L. R. Tucker, “Implications of factor analysis of three-way matri-
ces for measurement of change,” Probl. Meas. Chang., vol. 15, 
no. 122–137, p. 3, 1963.

	35.	 L. R. Tucker, “Some mathematical notes on three-mode factor 
analysis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

	36.	 P. M. Kroonenberg and J. De Leeuw, “Principal component analy-
sis of three-mode data by means of alternating least squares algo-
rithms,” Psychometrika, vol. 45, no. 1, pp. 69–97, 1980.

	37.	 A. Kapteyn, H. Neudecker, and T. Wansbeek, “An approach ton-
mode components analysis,” Psychometrika, vol. 51, no. 2, pp. 
269–275, Jun. 1986, https://​doi.​org/​10.​1007/​BF022​93984.

	38.	 O. Vasilescu, M. Alex, and D. Terzopoulos, “Multilinear analysis 
of image ensembles: Tensorfaces,” in European conference on 
computer vision, 2002, vol. 2350, pp. 447–460.

	39.	 I. Sebestyen, “JPEG: Still image data compression standard,” 
Comput. Stand. Interfaces, vol. 15, no. 4, pp. 365–366, Sep. 1993, 
https://​doi.​org/​10.​1016/​0920-​5489(93)​90038-S.

	40.	 G. Langdon, “An introduction to arithmetic coding,” IBM J. Res. Dev., 
vol. 28, no. 2, pp. 135–149, 1984, https://​doi.​org/​10.​1147/​rd.​282.​0135.

	41.	 R. Osorio and J. D. Bruguera, “High-throughput architecture for 
H. 264/AVC CABAC compression system,” IEEE Trans. Circuits 
Syst. Video Technol., vol. 16, no. 11, pp. 1376–1384, 2006.

	42.	 ITU-T and ISO/IEC JTC 1, “JPEG 2000 image coding system: 
core coding cystem, ITU-T recommendation T.800 and ISO/IEC 
15444–1,” 2000.

	43.	 E. Belyaev, A. Turlikov, K. Egiazarian, and M. Gabbouj, “An 
efficient adaptive binary arithmetic coder with low memory 
requirement,” IEEE J. Sel. Top. Signal Process., vol. 7, no. 6, pp. 
1053–1061, 2013.

	44.	 E. Belyaev, Kai Liu, M. Gabbouj, and YunSong Li, “An efficient 
adaptive binary range coder and its VLSI architecture,” IEEE 
Trans. Circuits Syst. Video Technol., vol. 25, no. 8, pp. 1435–1446, 
Aug. 2015, https://​doi.​org/​10.​1109/​TCSVT.​2014.​23722​91.

	45.	 Q. Yu, W. Yu, P. Yang, J. Zheng, X. Zheng, and Y. He, “An 
efficient adaptive binary arithmetic coder based on logarithmic 
domain,” IEEE Trans. image Process., vol. 24, no. 11, pp. 4225–
4239, 2015.

	46.	 “IBSR.” https://​www.​nitrc.​org/​proje​cts/​ibsr/ (Accessed 11 May 
2021).

	47.	 R. Kikinis, S. D. Pieper, and K. G. Vosburgh, “3D Slicer: a plat-
form for subject-specific image analysis, visualization, and clini-
cal support,” in Intraoperative imaging and image-guided therapy, 
Springer, 2014, pp. 277–289.

	48.	 “3D Slicer.” https://​www.​slicer.​org/ (Accessed 11 May 2021).
	49.	 Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image 

quality assessment: from error visibility to structural similarity,” 
IEEE Trans. image Process., vol. 13, no. 4, pp. 600–612, 2004.

	50.	 G. K. Wallace, “The JPEG still picture compression standard,” IEEE 
Trans. Consum. Electron., vol. 38, no. 1, pp. xviii–xxxiv, 1992.

	51.	 A. Skodras, C. Christopoulos, and T. Ebrahimi, “The jpeg 2000 
still image compression standard,” IEEE Signal Process. Mag., 
vol. 18, no. 5, pp. 36–58, 2001.

	52.	 S. Grgic, M. Mrak, and M. Grgic, “Comparison of JPEG image 
coders,” Univ. Zagreb. Fac. Electr. Eng. Comput. Unska, vol. 3, 
2001.

	53.	 G. Hudson, A. Leger, B. Niss, and I. Sebestyen, “JPEG at 25: Still 
Going Strong,” IEEE Multimed., vol. 24, no. 2, pp. 96–103, 2017, 
https://​doi.​org/​10.​1109/​MMUL.​2017.​38.

	54.	 M. L. Mele, D. Millar, and C. E. Rijnders, “Validating a quality 
perception model for image compression: The subjective evalu-
ation of the cogisen’s image compression plug-in,” Lect. Notes 
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. 
Notes Bioinformatics), vol. 9731, pp. 350–359, 2016, https://​doi.​
org/​10.​1007/​978-3-​319-​39510-4_​33.

	55.	 Y. Patel, S. Appalaraju, and R. Manmatha, “Human Perceptual 
Evaluations for Image Compression,” pp. 1–5, 2019, [Online]. 
Available: http://​arxiv.​org/​abs/​1908.​04187.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement  with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.

https://doi.org/10.1109/TCSVT.2019.2910119
https://doi.org/10.1137/06066518X
https://doi.org/10.1137/06066518X
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1002/gamm.201310004
https://doi.org/10.1007/BF02310791
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
https://doi.org/10.1109/TASSP.1976.1162766
https://doi.org/10.1109/83.403419
https://doi.org/10.1109/83.403419
https://doi.org/10.1007/BF02293984
https://doi.org/10.1016/0920-5489(93)90038-S
https://doi.org/10.1147/rd.282.0135
https://doi.org/10.1109/TCSVT.2014.2372291
https://www.nitrc.org/projects/ibsr/
https://www.slicer.org/
https://doi.org/10.1109/MMUL.2017.38
https://doi.org/10.1007/978-3-319-39510-4_33
https://doi.org/10.1007/978-3-319-39510-4_33
http://arxiv.org/abs/1908.04187

	Near Lossless Compression for 3D Radiological Images Using Optimal Multilinear Singular Value Decomposition (3D-VOI-OMLSVD)
	Abstract
	Introduction
	Materials and Methods
	VOI Extraction

	Optimized Multilinear Singular Value Decomposition (OMLSVD)
	Adaptive Binary Range Coder (ABRC)
	Radiology Imaging Data
	Proposed 3D-VOI-OMLSVD Method for Near Lossless Compression
	Results and Discussion
	Evaluation Metrics
	Compression Ratio (CR)
	Bit Rate (BR)Bits per Voxel (BPV)
	Peak Signal to Noise Ratio (PSNR)
	Structural Similarity Index (SSIM)


	Near Lossless 3D-VOI-OMLSVD Compression Method Performance
	Comparing with Other Compression Techniques: JPEG, JPEG2000, 3D SPIHT, Huffman Coding, Run Length Coding, Lempel–Ziv-Welch (LZW), and Arithmetic Coding
	Future Work
	Conclusion
	References


