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Abstract: Although melanoma is one of the most immunogenic tumors, it has an ability to
evade anti-tumor immune responses by exploiting tolerance mechanisms, including negative
immune checkpoint molecules. The most extensively studied checkpoints represent cytotoxic
T lymphocyte-associated protein-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Immune
checkpoint inhibitors (ICI), which were broadly applied for melanoma treatment in the past decade,
can unleash anti-tumor immune responses and result in melanoma regression. Patients responding
to the ICI treatment showed long-lasting remission or disease control status. However, a large group
of patients failed to respond to this therapy, indicating the development of resistance mechanisms.
Among them are intrinsic tumor properties, the dysfunction of effector cells, and the generation
of immunosuppressive tumor microenvironment (TME). This review discusses achievements of
ICI treatment in melanoma, reasons for its failure, and promising approaches for overcoming the
resistance. These methods include combinations of different ICI with each other, strategies for
neutralizing the immunosuppressive TME and combining ICI with other anti-cancer therapies such as
radiation, oncolytic viral, or targeted therapy. New therapeutic approaches targeting other immune
checkpoint molecules are also discussed.

Keywords: melanoma; immunotherapy; immune checkpoint inhibitors; immunosuppression;
tumor microenvironment

1. Introduction

The concept of cancer immunosurveillance is based on the fact that tumor cells can be recognized
and eliminated by immune system [1,2]. Immunogenicity of malignant melanoma is based on a high
ultraviolet-driven mutational burden [3]. This leads to the overexpression of tumor specific antigens
enabling the formation of the antigen specific immune response [4,5]. However, development of
aggressive metastatic melanoma shows that tumors are edited by the immune system, and selected
resistant variants could escape the immune control [6,7]. Therefore, several immune-based therapeutic
approaches such as vaccination [8], adoptive transfers [9] and immune checkpoint-blockade [10]
were applied, aiming at reinvigorating anti-tumor immune response and improving survival of
advanced-stage melanoma patients [11].

The most studied negative immune checkpoint molecules and broadly accepted targets for
immunotherapy are cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and programmed cell death
protein 1 (PD-1). CTLA-4 is upregulated on the T cell surface early during activation in lymph nodes,
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binds to CD80/CD86 reducing co-stimulation through CD28 and functions as a negative downstream
loop for T cell receptor (TCR) signaling [12]. PD-1 interaction with its ligands PD-L1 and PD-L2
inhibits effector T cell functions in peripheral tissues [13]. Playing a pivotal role in the maintenance
of self-tolerance under physiological conditions, these checkpoint molecules could be exploited by
tumors to evade the immune responses. Hence, inhibiting such interactions could reactivate anti-tumor
immune reactions [14]. Moreover, the combination of anti-CTLA-4 and anti-PD-1 antibodies was
shown to work synergistically by expanding activated effector CD8 T cells [15,16]. Another approach
was shown to implicate the combination of PD-L1-CD80 heterodimerization and the suppression
of the CTLA-4/CD80 axis [17]. Currently used antibodies to target CTLA-4 are ipilimumab and
tremelimumab, to target PD-1 are nivolumab, pembrolizumab, cemiplimab and to target PD-L1 are
atezolizumab and avelumab [14,18,19].

This review will focus on current achievements in the therapy with immune checkpoint inhibitors
(ICI) in melanoma and will discuss the strategies to improve of treatment efficacy by combining ICI
with other therapies.

2. Therapeutic Effects of Immune Checkpoint Inhibitors

Latest clinical guidelines on melanoma management consider immune checkpoint blockade
(anti-PD-1 alone or in combination with anti-CTLA4) as a first-line treatment option for unresectable
stage III and IV melanoma patients [20,21]. In cases of resectable melanoma, anti-PD1 agents are
prescribed as well in an adjuvant setting [22]. This treatment is currently investigating in a neoadjuvant
setting [23].

Since the responses of tumors to immunotherapy and chemotherapy are different, immune-related
response criteria and immune-response evaluation criteria in solid tumors were developed [24,25].
Such criteria improve the evaluation of additional response patterns during immunotherapy such
as pseudoprogression. Currently achieved response to ICI treatment of melanoma patients reached
52% for pembrolizumab and 58% for combination of nivolumab and ipilimumab [26–28]. The 5-year
survival rate was reported to be 41% and 52% in these two trials, respectively. These therapeutic
achievements were associated with a high toxicity up to 59% of grade 3 and 4 adverse events in
patients treated with the combination of nivolumab and ipilimumab [27]. Another trial studied a
ipilimumab combination with pembrolizumab, which does not yet belong to the approved settings.
The objective response was achieved by 61% of patients, 1-year overall survival (OS) was 89%,
and 1-year progression-free survival was 69%. Grade 3 and 4 adverse events occurred in 27% of
patients [29]. These data represent a favorable effect of such combinations with increased response
values and less high-grade adverse effects.

However, many patients remained resistant to ICI therapy since tumor cells could develop
resistance to anti-tumor immune reactions or induce a profound immunosuppression in the tumor
microenvironment [30].

3. Tumor Cells Evade Immune Responses

A characteristic gene profile was described for melanoma cells resistant to ICI. It includes the
repression of genes, which control antigen presentation and interferon (IFN)-γ signaling as well as the
induction of genes regulating epithelial-mesenchymal transition, remodeling of extracellular matrix,
cell adhesion and angiogenesis [31–34]. Interestingly, down-regulation of major histocompatibility
complex (MHC) class I protein expression was found to be associated with the resistance to anti-CTLA-4,
but not to anti-PD-1 therapy [35]. In the same work, MHC class II expression in >1% melanoma cells
was shown to predict response to anti-PD-1, but not to anti-CTLA-4 therapy. This suggests that tumor
cells disrupt antigen presentation limiting the efficient anti-tumor response. In fact, anti-PD-1 blockade
before antigen priming of T cells leads to accumulation of the dysfunctional PD-1+CD38hiCD8+ cells
abolishing the effects of the therapy [36]. Moreover, tumor cells can prevent the formation of anti-tumor
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T cell memory in the draining lymph node by secreting PD-L1-bearing extracellular vesicles (EV),
contributing to the resistance to anti-PD-1 antibodies [37].

4. Immunosuppressive Tumor Microenvironment as an Important Factor of ICI Treatment Failure

A deeper investigation of the immunosuppressive networks within the TME could help to
understand the limitations of ICI treatment and to develop strategies for increasing treatment efficiency.
Immunosuppression in the TME is mediated by various cells and soluble factors described below.

4.1. Myeloid-Derived Suppressor Cells (MDSC)

MDSC represent a heterogeneous population of immunosuppressive myeloid cells, generating
under chronic inflammation conditions and cancer and accumulating in the TME [38]. In humans,
three MDSC subsets have been described: CD11b+CD14+HLA-DRlow/−CD15−Lin− monocytic
(M-MDSC), CD14−CD11b+CD15+HLA-DRlow/−Lin− polymorphonuclear (PMN) MDSC, and HLA-DR
low/−CD33dimCD66b−Lin− early-stage MDSC (e-MDSC) [39]. MDSC could inhibit anti-tumor functions
of T and natural killer (NK) cells via different mechanisms. They can express PD-L1 and FasL
and cause T cell anergy and apoptosis [40]. The induction of hypoxia-inducible factor-1α (HIF-1α)
through transforming growth factor-β (TGF-β) and hypoxic conditions leads to the upregulation
of the ectoenzymes CD39 and CD73, producing immunosuppressive adenosine in the extracellular
space [40,41]. Reactive oxygen species (ROS) and nitric oxide (NO) produced by MDSC induce T
cell apoptosis and the down-regulation of TCR ζ-chain expression [41,42]. Furthermore, MDSC can
stimulate regulatory T cell (Treg) activity [43].

Previous studies demonstrated that high frequency of MDSC in the peripheral blood of advanced
melanoma patients correlated with disease progression, decreased overall and progression free survival
as well as decreased efficacy of immunotherapy, making them a promising therapeutic target [44–47].
There are different ways to suppress the immunosuppressive activity of MDSC [48]. Normalization
of myelopoiesis and depletion of immunosuppressive MDSC could be achieved by using all-trans
retinoic acid (ATRA) [49,50], tyrosine-kinase inhibitors [51,52] or some chemotherapeutic agents such
as gemcitabine or paclitaxel [53,54].

Another approach of targeting MDSC represents an inhibition of their immunosuppressive
activity. Based on the preclinical data showing that phosphodiesterase (PDE)-5 inhibitor sildenafil
could suppress MDSC activity, enhance T cell functionality and prolong survival of melanoma-bearing
mice [55,56], another PDE-5 inhibitor tadalafil was applied in advanced, therapy-resistant melanoma
patients. Therapy was well-tolerated, and 25% of treated patients showed stable disease (SD) with
the progression free survival (PFS) of 4.6 months [57]. Moreover, patients with SD showed increased
infiltration of activated CD8+ T cells in the metastasis as compared to non-responding patients.

Since the main immunosuppressive effect of MDSC is observed in the TME, the inhibitors of
their recruitment to the tumor were tested. Small molecule inhibitor of C-X-C motif chemokine
receptor (CXCR) 1 and CXCR2 SX-682 was demonstrated to suppress PMN-MDSC migration and
activity, and enhance the efficiency of ICI therapy in mouse oral carcinoma and Lewis lung carcinoma
model [58]. In human, SX-682 has been recently applied to advanced melanoma patients alone or
in combination with pembrolizumab (Table 1). This table contains ongoing clinical trials, including
the combination of ICI with targeting of various immunosuppressive cells (MDSC, CAF, TAM, Treg)
and tumor cells as well as with targeting of processes and molecules such as hypoxia, microbiome,
neoantigens, and epigenetic mutations. In addition, we included trials combining classical ICI with
targeted therapies and new immune checkpoint molecules as well.
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Table 1. Ongoing combinatorial clinical trials.

Targets Trial Number Intervention Disease Trial Phase

MDSC

NCT03200847 ATRA (Vesanoid) +
pembrolizumab Advanced melanoma I, II

NCT02403778 ATRA + ipilimumab Advanced melanoma II

NCT03161431 SX-682 alone or in combination
with pembrolizumab Melanoma (III, IV) I

NCT02259231 RTA 408 (Omaveloxolone) +
nivolumab or ipilimumab

Unrespectable or metastatic
melanoma Ib, II

CAF NCT03875079 RO6874281 + pembrolizumab Metastatic melanoma Ib

TAM NCT01363206 GM-CSF (Leukine,
Sargramostim) + ipilimumab

Unresectable metastatic
melanoma II

Treg

NCT02203604 Aldesleukin (IL-2) + ipilimumab Metastatic melanoma (IIIA–IV) II

NCT02983045
NKTR-214 (PEGylated IL-2) +

nivolumab with or without
ipilimumab

Advanced malignancies,
including melanoma I, II

NCT03548467 NKTR-214 after prior anti-PD-1
therapy

Advanced malignancies,
including melanoma I, II

NCT03635983 NKTR-214 + nivolumab or
nivolumab alone

Untreated, inoperable or
metastatic melanoma III

NCT03138889 NKTR-214 + pembrolizumab Advanced malignancies,
including melanoma I, II

NCT03435640
Intratumoral NKTR-262 +

systemic NKTR-214 with or
without nivolumab

Melanoma and other cancer
types I, II

NCT03635983 NKTR-214 + nivolumab or
nivolumab alone

Untreated, inoperable or
metastatic melanoma III

Microbiome

NCT03341143 Fecal microbiota transplant
(FMT) + pembrolizumab

Advanced melanoma patients,
non-responders II

NCT03817125
Vancomycin or placebo

pretreatment + nivolumab +
SER-401 or placebo

Unresectable or metastatic
melanoma Ib

NCT03772899

FMT for a healthy donor a week
before approved melanoma

treatment
(pembrolizumab/nivolumab)

Advanced melanoma I

NCT03643289
Comparison of gut microbiome

before and during anti-PD-1
therapy (till week 9)

Advanced melanoma stage IV Observational

Hypoxia
NCT03311308 Metformin + pembrolizumab or

pembrolizumab alone
Advanced, unresectable
melanoma stage III or IV I

NCT03171064 Exercise + nivolumab or
pembrolizumab Metastatic melanoma II

Tumor cells

NCT02799901
Hypofractionated radiation
therapy (RT) (27 Gy over 3

fractions) + nivolumab
Advanced melanoma II

NCT03693014

Hypofractionated RT +
Ipilimumab, Nivolumab or
Pembrolizumab, continued
according to the standard

schedule

Metastatic cancer, including
melanoma II

NCT02406183 Ipilimumab + RT Metastatic melanoma I

NCT04042506 Nivolumab + RT Metastatic melanoma II

NCT04017897 Anti-PD1 (pembrolizumab or
nivolumab) + RT

Unresectable, naive metastatic
melanoma

(IIIB to IVM1c)
II

NCT01449279 Ipilimumab + RT Metastatic melanoma II
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Table 1. Cont.

Targets Trial Number Intervention Disease Trial Phase

Tumor cells

NCT01689974 Ipilimumab + RT or ipilimumab
alone Metastatic melanoma II

NCT01769222 Ipilimumab + RT or ipilimumab
alone

Recurrent malignancies,
including melanoma I, II

NCT02659540
Nivolumab + ipilimumab in

combination with conventional
or hypofractionated RT

Unresectable melanoma stage IV I

NCT02263508 Pembrolizumab + T-VEC or
placebo Stage IIIB-IVM1c melanoma III

NCT04068181
Pembrolizumab + T-VEC after

progression on anti-PD-1
therapy

Stage IIIB-IVM1d melanoma II

NCT01740297 Ipilimumab + T-VEC or
ipilimumab alone

Stage IIIB–IV metastatic
melanoma I, II

NCT02965716 Pembrolizumab + T-VEC Stage IIIB–IV metastatic
melanoma II

NCT03842943 Neoadjuvant pembrolizumab +
T-VEC Resectable stage 3 melanoma II

Tumor
mutations

NCT02902042 Encorafenib + binimetinib +
pembrolizumab

Metastatic BRAF V600 mutant
melanoma I, II

NCT02910700 Nivolumab + trametinib with or
without dabrafenib

BRAF-mutated or wild type
metastatic stage III-IV

melanoma
II

NCT02908672 Cobimetinib + vemurafenib
with atezolizumab or placebo

Metastatic BRAF V600 mutant
melanoma III

NCT02303951 Vemurafenib + cobimetinib +
atezolizumab

BRAF V600 mutant stage IIIC-IV
melanoma II

NCT01767454
Dabrafenib + ipilimumab or

dabrafenib + trametinib +
ipilimumab

Metastatic or unresectable BRAF
V600 mutant melanoma I

Epigenetic
modifications

NCT03765229 Entinostat + pembrolizumab Stage III–IV metastatic
melanoma II

NCT02437136 Entinostat + pembrolizumab Advanced malignancies,
including melanoma Ib, II

Neoantigens

NCT03929029 NeoVax + Montanide® with
nivolumab + ipilimumab

Advanced melanoma Ib

NCT02385669 Peptide Vaccine + Ipilimumab
Stage IIA–IV melanoma

(advanced, adjuvant,
neoadjuvant)

I, II

NCT03047928 PD-L1/IDO peptide vaccine +
nivolumab Metastatic melanoma I, II

NCT03633110 GEN-009 Adjuvant Vaccine +
pembrolizumab or nivolumab

Solid tumors, including
melanoma I, II

NCT04072900

Personalized neoantgen peptide
vaccine + anti-PD-1 +

rhGM-CSF + Imiquimod 5%
Topical Cream

Metastatic melanoma I

NCT04091750
Nivolumab + ipilimumab +

cabozantinib followed by
nivolumab + cabozantinib

Advanced melanoma II

Other
immune

checkpoint
molecules

NCT02676869 IMP321 + pembrolizumab Stage III–IV advanced
melanoma I

NCT02519322
Nivolumab + relatimab or +
ipilimumab or alone before

surgery

Stage IIIb–IV advanced
melanoma II
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Table 1. Cont.

Targets Trial Number Intervention Disease Trial Phase

Other
immune

checkpoint
molecules

NCT03743766

Relatimab + nivolumab or each
drug alone followed by

relatimab + nivolumab in all
subjects

Unresectable or metastatic
melanoma II

NCT03470922 Relatimab + nivolumab or
nivolumab alone

Unresectable or metastatic
melanoma II, III

NCT03652077 INCAGN02390 antibody against
TIM-3 alone

Advanced malignancies,
including melanoma I

NCT04139902

Neoadjuvant therapy with PD-1
inhibitor dostarlimab (TSR-042)

or dostarlimab (TSR-042) +
TSR-022 (TIM-3 inhibitor)

Stage IIIB–IV
advanced melanoma II

NCT03708328 RO7121661, bispecific anti-PD-1
and anti-TIM-3 antibody

Advanced malignancies,
including melanoma I

NCT02817633

TSR-022 (anti-TIM-3) alone or +
TSR-042 (anti-PD-1) or triple

combination of TSR-022
(anti-TIM-3), TSR-042

(anti-PD-1) and TSR-033
(anti-LAG3)

Advanced malignancies,
including melanoma I

NCT03628677 AB154 (anti-TIGIT) alone or +
AB122 (anti-PD-1)

Advanced malignancies,
including melanoma I

NCT03119428 OMP-313M32 (anti-TIGIT) alone
or + nivolumab

Advanced malignancies,
including melanoma I

4.2. Neutrophils

Exposed by high amounts of TGF-β, granulocyte-colony stimulating factor (G-CSF) and IFN-β,
tumor associated neutrophils (TAN) lose their anti-tumor functions and start to support tumor
progression [59]. TAN have been described to enhance tumor angiogenesis and promote metastasis [60].
High neutrophil to lymphocyte ratio (≥4) at the baseline is considered as a powerful prognostic
factor associated with reduced PFS and OS in melanoma patients treated with immune checkpoint
inhibitors [61,62].

4.3. Cancer-Associated Fibroblasts (CAF)

CAF are a major component of the tumor stroma [63]. They produce different cytokines such as
TGF-β, fibroblast growth factor 2 (FGF-2) and vascular endothelial growth factor (VEGF), which lead
to the tumor progression [64]. Moreover, an accumulation of CAF was described to correlate with low
efficiency of anti-PD-1 therapy [65]. CAF secret fibroblast activation protein (FAP), which suppresses
T cells function and recruitment [66,67]. In addition, FAP was reported to be a negative prognostic
marker in the absence of immunotherapy but a positive indicative biomarker in ICI treated melanoma
patients with a positive impact on PFS and OS [65]. In the murine melanoma model it was shown that
stromal fibroblast matrix metalloproteinase-9 mediated surface PD-L1 cleavage, thus leading to the
anti-PD-1 therapy resistance [68]. There is an ongoing trial (NCT03875079) to investigate the activity of
the FAP-targeting agent RO6874281 in combination with pembrolizumab.

4.4. Tumor-Associated Macrophages (TAM)

TAM are known to produce interleukin (IL)-1β, cyclooxygenase-2, angiotensin, IFN-γ promoting
tumorigenesis [69]. These cells can recruit regulatory T cells (Treg) and inhibit effector T cells by
secreting IL-10 and expressing PD-L1 [70]. CD68+ TAM in tumor cell nests were described to be
associated with a negative prognosis and recurrence in cutaneous melanoma [70]. Furthermore,
the ratio of CD8+ T cells to CD68+ macrophages was shown to predict a disease specific survival in
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melanoma [71]. CD163+ macrophages were reported to accumulate in the TME of melanoma patients
resistant to ICI therapy and to play a role in the maintenance of the immunosuppression. The depletion
of CD163+ macrophages led to the invasion of activated T cells and inflammatory monocytes into the
tumor, resulting in tumor regression [72,73].

4.5. Regulatory T Cells

Treg represent another important part of TME. It has been shown that the amount of forkhead box
protein P3 positive (FOXP3+) Treg is upregulated in the peripheral blood of melanoma patients [74].
Furthermore, the frequency of circulating FOXP3+ Treg is associated with a poor prognosis in
melanoma [75]. Tumor infiltrating Treg have been described to be a predominant cluster of the cells
with high CTLA-4 expression [76]. It was found that the therapy with common anti-CTLA-4 antibodies
(ipilimumab) did not deplete Treg in the tumor [77], however, Fc-engineered anti-CTLA-4 antibodies
can specifically deplete FOXP3+ Treg and promote CD8+ T cell expansion, suggesting their higher
clinical efficiency than the widely used non-Fc-engineered ipilimumab [76]. In another study, it was
reported that the presence of Fcγ receptor-expressing macrophages within the TME is critical for the
depletion of tumor-infiltrating Treg [78].

The application of NKTR-214, an engineered cytokine with biased IL-2 receptor binding, was
demonstrated to selectively stimulate CD8+ T cells and to deplete Treg in patients with advanced or
metastatic solid tumors [79].

5. Role of Microbiome in the ICI Therapy of Melanoma

It has recently been clearly demonstrated that the microbiome could influence the ICI therapy
in melanoma patients [80]. Although oral microbiome showed no effect on the response to cancer
immunotherapy, an enrichment of Clostridiales, Ruminococcaceae, and Faecalibacterium in the gut was
associated with response, while an enrichment of Bacteroidales was observed in non-responders
and associated with increased risk of relapse [80]. The same study demonstrated that a favorable
gut microbiome composition at the baseline was associated with increased CD8+ T cell infiltration
and anti-tumor immune responses. Furthermore, the fecal transplantation from melanoma patients
responding to ICI to germ-free mice led to a better response to anti-PD-1 therapy as compared to mice,
receiving gut transplants from non-responding patients [80]. Another study demonstrated that the
presence of Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium was associated with a
better prognosis in melanoma patients [81]. Moreover, the anti-cancer immunity was described to be
affected by the alteration in the metabolism of specific bacterial species but not by their presence [82].
There are several ongoing clinical trials dealing with the gut microbiota transplantation in melanoma
patients (Table 1).

6. Predicting the Response to the ICI Therapy

Since the response rates to ICI treatment are still restricted [26–29,83], the identification of
response-biomarkers before or shortly after the therapy initiation is one of the biggest challenges in
the immuno-oncology. Current approaches to predict response to ICI in melanoma are based on the
radiology, tumor biopsy and liquid biopsy [84,85].

Radiological imaging (body computer tomography (CT) scan, head magnetic resonance imaging
(MRI)) is used to assess the response to ICI treatment in melanoma patients and is routinely performed
three months after the start of treatment. Prediction of response in the earlier time points is possible by
using 18F-FDG PET/CT, where response criteria were developed using the scans made at 21 to 28 days
after the start of treatment [86]. This approach was also shown to be beneficial in long-term response
prediction and guidance of ICI withdrawal [87–89].

As a part of PD-1/PD-L1 axis, amount of PD-L1 expression on tumor cells was thought to be a
distinct predictive marker for therapy response. Although PD-L1 overexpressing tumors showed an
association with the higher response to ICI, durable responses could be also observed in PD-L1 negative
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tumors [90,91]. Therefore, complementary approaches are needed to improve the prognostic value of
tumor PD-L1, including a dynamic monitoring of PD-L1 expression or PD-L1 RNA sequencing [92,93].

Further interest attracts the measurement of PD-L1 (soluble and expressed in extracellular vesicles,
EV) in liquid biopsies. Soluble PD-L1 is a splice variant without a transmembrane domain capable
to directly inhibit T cell proliferation and IFN-γ production [94]. Elevated basal levels of soluble
PD-L1 in the plasma of melanoma patients was associated with progressive disease [95]. Furthermore,
the measurement of PD-L1 in EV could help to predict the response to ICI, demonstrating an advantage
of the detection in EV over tumor biopsies [96]. Melanoma patients responding to pembrolizumab could
be distinguished from non-responders by increased levels of EV PD-L1 at 3 to 6 weeks after the start of
therapy [97]. In another study, it was shown that exosomal PD-L1 mRNA levels decreased during
nivolumab or pembrolizumab treatment of melanoma patients with complete or partial response,
while in patients with progressive disease EV PD-L1 expression was increased [98].

Besides PD-L1, soluble CD163 and macrophage-related chemokines (e.g., C-X-C motif chemokine
ligand (CXCL) 5, 10) were reported to predict efficacy of ICI [85]. Decreased serum levels of IL-8 at 2 to
4 weeks after the start of ICI treatment were associated with the response in patients even with the
initial pseudoprogression [99]. Induction of CXCR3 ligands in murine melanoma model was described
to increase the response to the therapy with anti-PD1 antibodies, and elevated CXCR3 levels were
observed in plasma of responding melanoma patients [100].

Another predictive marker could be the amount of tumor-infiltrating T cells. It has been shown
that T cells dominated among other immune cells, accumulated in human melanoma metastatic
tissue [101]. Strong pre-existing T cell infiltration, IFN-γ–related gene expression signatures in the
tumor and high serum level of IFN-γ were reported to be associated with a good clinical prognosis
and to predict the response to anti-PD-1 therapy in melanoma patients [101–105]. It was reported that
98% of PD-L1+ tumors were associated with high TIL numbers and the PD-L1+ melanoma cells were
localized adjacent to TILs [106].

7. Increasing Effectiveness of ICI Therapy

In order to enhance the beneficial therapeutic effect of ICI, this treatment was combined with
other anti-tumor therapies. Since radiation therapy (RT) is used in melanoma patients and can induce
antigen release from tumors, its combination with immunotherapy was applied, leading to the T
cell activation and improvement of OS without increasing the number of adverse events [107,108].
In a retrospective study with 208 melanoma patients with brain metastasis treated with anti-PD-1
antibodies and RT, the survival rates at 6 and 12 months after the start of treatment were 77% and 70%,
respectively [109]. There are numerous ongoing trials investigating the combination of immuno- and
radiation therapy in metastatic melanoma patients (Table 1).

Another promising approach to increase the efficiency of ICI is to combine it with metformin,
a drug for type II diabetes. Metformin was shown to induce not only cell cycle arrest in melanoma cells,
leading to their autophagy and apoptosis, but also to affect the TME [110]. It is known that metformin
activates AMP-activated protein kinase a (AMPKa) in mitochondria, which lead to the downregulation
of HIF-1α expression, resulting in reduced intratumoral hypoxia. Metformin was also reported to
promote T cell activity in the combination with ICI, leading to B16 melanoma rejection in mice [111].
In a clinical trial, it was shown that the combination of ICI and metformin increased objective response
rate (ORR), disease control rate (DCR), PFS and OS in comparison with the group treated with ICI
alone [112]. However, due to a small patient cohort, these changes were not statistically significant.

Interestingly, the reduction of tumor hypoxia could be achieved by a physical exercise as well.
In B16F10 mouse melanoma model, voluntary wheel running resulted in the epinephrine-dependent,
IL-6-sensitive NK cell activation and increased migration of NK and T cells into the tumor [113].
In addition, a physical activity prior to tumor cells inoculation led to a strong reduction of primary
tumor growth and numbers of lung metastasis in those mice. Other study demonstrated that the
growth of B16F10 melanoma in mice on high-fat diet was accelerated as compared to mice receiving a
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balanced diet [114]. Importantly, this growth increase was significantly reduced by continuous physical
exercise that was associated with the lymphocyte proliferation [114]. In melanoma patients, exercises
undertaken before diagnosis were not significantly correlated with a reduction in cancer-related or
overall mortality [115]. However, in patients with unresectable stage III or IV melanoma undergoing
immunotherapy, the reduction of fatigue was shown to be the main positive impact of physical
activity [116]. The ongoing combinational trial is represented in the Table 1.

Targeted therapies (BRAF and MEK-inhibitors) are known to be effective in patients with
BRAF-V600 mutation and achieve rapid response with a high response rate [117]. The median
maintenance of response to this therapy is approximately one year because of the development of
acquired resistance [118], while ICI have been described to induce durable response. It was reported
that 33% of melanoma patients achieved complete response when treated with the combination of
dabrafenib and trametinib with spartalizumab (anti-PD-L1-antibody); the 1-year OS was 86%; however,
the number of grade ≥3 adverse events was 75% [119]. In another study, dabrafenib and trametinib
were combined with pembrolizumab (triple therapy) or placebo (double therapy) [120]. The median
duration of response in tripled therapy group was 18.7 months and 12.5 months in double therapy
group. PFS was 16.0 months in triple and 10.3 months in double therapy. In a smaller patient’s
cohort, an objective response was achieved in 73% of patients, and 40% maintained the response at a
median follow-up of 27.0 months [121]. 73% of patients from the same cohort developed grade 3 and 4
adverse events. Another trial, investigating the combination of atezolizumab (anti-PD-L1-anibody),
cobimetinib and vemurafenib showed similar results with an objective response rate of 71.8% and
median duration of response of 17.4 months; 39.4% of patients maintained response for 29.9 months of
follow-up [122]. These data suggest that this combination therapy can increase the maintenance of the
response, but the high grades of adverse events need to be taken into account. Ongoing trials to the
triple combination are shown in Table 1.

ICI could also be combined with the oncolytic virus talimogen laherparepvec (T-VEC) that was
approved for melanoma immunotherapy. T-VEC is a genetically modified virus, which replicates in
tumor cells causing cancer cell lysis [123]. It has been reported that the intratumoral T-VEC injection in
combination with pembrolizumab led to increased CD8+ T cells infiltration associated with the ORR
rate of 62% and the CR in 33% of patients [124].

Combination of all-trans retinoic acid (ATRA) with ipilimumab was reported to decrease frequency
of circulating MDSC as well as the expression of PD-L1, IL-10, and indoleamine 2,3-dioxygenase by
MDSC, whereas in the ipilimumab monotherapy group the MDSC frequency increased during the
treatment [125]. Furthermore, patients receiving combinational treatment tend to have an increased
activated CD107a+ IFN-γ+CD8+ T cell numbers compared to the patients treated with ipilimumab alone.

Combination of NKTR-214 and Nivolumab was shown to achieve response rates of 53%, which
correlated with high IFN-γ levels [126]. Furthermore, the accumulation of IFN-γ and CD8+ TIL in tumor
tissue had been seen in favorable as well as in unfavorable tumor microenvironment. The ongoing
trials investigating the combination of NKTR-214 with ICI in metastatic melanoma patients are listed
in Table 1.

It was demonstrated that epigenetic modulation induced by the histone deacetylase
inhibitor entinostat (MS-275) could enhance the antigen presentation in tumor cells and inhibit
immunosuppressive activity of MDSC and Treg [127,128]. After combining entinostat with the
anti-PD-1 antibodies, 19 % of non-responding to anti-PD-1 therapy melanoma patients, achieved
objective response [129]. These data represent a new approach to overcome resistance using epigenetics.
Other ongoing trials using this combination are listed in Table 1.

A new approach of targeting different TME components using nanoparticles has been recently
proposed [130]. In melanoma mouse models, nanoparticles were shown to potentiate the efficiency of
PD-1 blockade [131–133], to reduce the tumor volume and to prolong mouse survival [134].
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8. Other ICI in Malignant Melanoma

In addition to PD-L1 and CTLA-4, several other immune checkpoint molecules have been
investigated during the last decade. Among them are lymphocyte activation gene-3 (LAG-3), T-cell
immunoglobulin- and mucin domain- containing molecule 3 (TIM-3) and T cell immunoreceptor
with Ig and ITIM domains (TIGIT). All these molecules were reported to be highly expressed on
immune cells in the TME, especially on TILs and Treg, which makes them a promising target for cancer
immunotherapy [135].

LAG-3 is expressed on activated CD4+ and CD8+ T cells, Treg, B and NK cells as well as DC [136].
It interacts with MHCII molecules on APC or with Galectin-3 and liver sinusoidal endothelial cell
lectin (LSECtin) on cancer cells, leading to the inhibition of CD4+ and CD8+T cell proliferation and
decreased cytokine secretion [137]. Such inhibition of T cell function was found to be associated with
the promotion of tumor growth and tumor escape [138,139]. LAG-3 blocking could be achieved by
LAG-3-Ig fusion protein or LAG-3 targeting antibody (relatlimab). The treatment of melanoma patients
with relatlimab resulted in the ORR of 16% and DCR of 45% [140]. Interestingly, only 9% of patients
had grade 3 or 4 adverse events that was comparable to the therapy with nivolumab.

TIM-3 is expressed on CD4+ and CD8+ T cells, Treg, B cells, NK cells, DC, mast cells and
macrophages. Under physiological conditions, it serves as a negative regulator of Th1 response and Th1
related production of TNF and IFN-γ; therefore, its blockade could lead to autoimmune disease [141].
Interaction of TIM-3 with Galectin-9 expressed on tumor cells was reported to result in CD8 TIL
apoptosis in colon cancer [142]. In melanoma high expression of TIM-3 was associated with CD8 T cell
exhaustion [143].

TIGIT was reported to be involved in the inhibition of CD8+T cells and modulation of DC activity,
resulting in the upregulation of IL-10 and downregulation of IL-12 production [144,145]. Moreover,
TIGIT was demonstrated to play a crucial role in the maturation of naïve T cells to Foxp3+ Treg [146].
TIGIT+ Tregs showed higher immunosuppressive potential than their TIGIT- counterparts [147].
In malignant melanoma, the co-expression of PD-L1, LAG-3, TIM-3 and TIGIT was demonstrated to
induce CD8+ TILs with most exhausted phenotype [125,126]. Double blockage of PD-1 and TIGIT in
melanoma led to an increased proliferation and cytokine production of CD8+ TIL and was considered to
be a promising approach in immunotherapy [148]. The ongoing clinical trials evaluating the efficiency
of LAG-3, TIM-3 and TIGIT blockade are shown in Table 1.

9. Conclusions

Despite of melanoma immunogenicity, this tumor develops immune escape mechanisms that
stimulate a fast melanoma progression. Such mechanisms include impaired antigen presentation by
tumor cells, accumulation of dysfunctional effector T cells and generation of the immunosuppressive
TME represented by MDSC, TAN, CAF, TAM, and Treg. Therefore, numerous approaches were
developed to reinvigorate the anti-tumor immune response. Recently approved immunotherapies
with ICI (anti-PD-1, anti-PD-L1 and anti-CTLA-4 antibodies) have revolutionized the treatment of
melanoma. This treatment significantly increased the survival of melanoma patients and provided a
durable control of the disease [26–28]. However, the response rates to ICI are still restricted. Thus,
further efforts should be undertaken to maximize the efficacy of ICI treatment. This aim could be
achieved by improving the selection of patients who might benefit from the ICI therapy, by applying
early radiological findings and by measuring predictive markers from tumor and liquid biopsies.
Furthermore, the combination of different ICI (such as ipilimumab and nivolumab), their combination
with targeting of the immunosuppressive TME or with other anti-cancer therapies could significantly
improve the efficacy of tumor immunotherapy. Furthermore, targeting of other immune checkpoints
(such as LAG-3, TIM-3, TIGIT) and its combination with approved ICI are currently under investigation
(Table 1). Approved ICI, their targets, and targets for combined treatments are summarized in
the Figure 1.
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ATP adenosine triphosphate
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FGF-2 fibroblast growth factor 2
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