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Autophagy attracts great attention, and numerous progresses have been obtained in the 
last two decades. Autophagy is implicated in mammalian neurodegenerative diseases, 
tumorigenesis, as well as development in insects. The regulatory mechanism of autophagy 
is well documented in yeast and mammals, whereas it is not fully illustrated in insects. 
Drosophila melanogaster and Bombyx mori are the two well-studied insects for autophagy, 
and several insect-mammalian evolutionarily conserved or insect-specific mechanisms in 
regulating autophagy are reported. In this review, we summarize the most recent studies 
of autophagy regulated at both transcriptional and post-translational levels by insect 
hormone in cooperation with other signals, such as nutrient, which will provide a reference 
and deep thinking for studies on autophagy in insects.
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INTRODUCTION

Macroautophagy, hereafter referred to as autophagy, is a self-eating process to recycle intracellular 
components and extensively exists in organisms under physiological and pathophysiological 
conditions (Klionsky et  al., 2021). Autophagy is associated with development, pathogenicity, 
tumorigenesis, and neurodegenerative diseases (Wang et  al., 2020a; Klionsky et  al., 2021). 
During tumorigenesis, autophagy is evoked to remove oncogenic protein substrates and toxic-
unfolded proteins, while autophagy flux usually facilitates the spreading of tumor cells after 
the formation (Wang et  al., 2020a). In the process of autophagy occurrence, the cytoplasmic 
constituents (usually contains misfolded proteins and damaged organelles) are isolated and 
packaged by double-membraned phagophores, which grow to form the sphere-like autophagosomes. 
After maturation, autophagosome fuses with lysosome to form autolysosome for bulk degradation 
of the cargoes by hydrolytic enzymes inside lysosomes (Klionsky et  al., 2021; Wang et  al., 
2021a). Formation of autophagosomes recruits a series of autophagy-related (Atg) proteins, 
participating in the steps of induction, cargo identification and packaging, as well as maturation 
and degradation of autophagosomes (Klionsky et al., 2021). Some Atg genes have been identified 
in Drosophila melanogaster and Bombyx mori, whereas not all of the homologs revealed in 
yeast and mammals are found in insects (Tian et  al., 2013; Guo et  al., 2019).

Autophagy is involved in certain physiological processes in insects including development, 
starvation, and response to pathogen’s infection. During the metamorphosis, autophagy is 
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fiercely induced in the larval tissues, such as midgut, fat 
body, and salivary gland in insects (Tian et al., 2013; Romanelli 
et  al., 2016; Nandy et  al., 2018; Tettamanti and Casartelli, 
2019). Inhibition of autophagy prevents the differentiation of 
silkworm stem cells and the formation of pupal epithelium 
during the larval-pupal metamorphosis in silkworm (Salasc 
et al., 2016). Moreover, appropriate enhancement of autophagy 
prolongs the life span of D. melanogaster (Yang et  al., 2015; 
Su et  al., 2019). The roles of autophagy in the replication 
of different microorganisms are usually pathogen-specific or 
host-specific. In Drosophila, bacteria Listeria monocytogenes, 
Mycobacterium marinum, Salmonella enterica, Escherichia coli, 
and Wolbachia all can be  cleared by autophagy (Kuo et  al., 
2018). Drosophila PGRP-LE (peptidoglycan recognition protein 
LE) induces LC3/Atg8-targeting autophagy to eliminate the 
infection of Listeria monocytogenes by recognizing the bacterial 
peptidoglycan in hemocytes (Kaneko et  al., 2006; Yano et  al., 
2008). Moreover, RNAi of DmAtg5, DmAtg7 or DmAtg12 
leads to an increase of pathogen and a decrease in survival 
rate in Drosophila after E. coli infection, showing the positive 
role of autophagy in anti-bacteria (Ren et  al., 2009). Notably, 
infection of vesicular stomatitis virus causes inhibition of 
Akt signaling, thereby activation of antiviral autophagy, to 
protect animals from viral lethality in Drosophila (Dong and 
Levine, 2013). Similarly, infection of Zika virus (ZIKV) induces 
the expression of STING (Stimulator of interferon genes), the 
component of NF-κB-dependent inflammatory signaling, to 
resist the replication of ZIKE by inducing autophagy in 
Drosophila neurons, while the precise mechanism of STING 
in inducing autophagy is not fully illustrated (Liu et al., 2018; 
Liu and Cherry, 2019). In contrast some viruses can escape 
from or utilize autophagy for viral proliferation. In Aedes 
aegypti, venom allergen-1 (AaVA-1), the female saliva-specific 
protein, intracellularly interacts with autophagy inhibitory 
protein LRPPRC (leucine-rich pentatricopeptide repeat-
containing protein and the negative binder of Beclin-1), and 
thus upregulating autophagy to promote the transmission of 
mosquito-borne viruses, such as dengue fever and ZIKV in 
host (Sun et  al., 2020). Of note, plant reovirus and rice gall 
dwarf virus induce the formation of autophagosomes for 
delivering virion, and thereby promotion of viral spread and 
transmission in Recilia dorsali (Chen et  al., 2017). In B. mori, 
the infection of nucleopolyhedrovirus (BmNPV) induces 
autophagy to facilitate the viral replication mainly by 
upregulation of BmAtg7 and BmAtg9 (Wang et  al., 2017).

Autophagy is simultaneously regulated at transcriptional 
and post-translational levels. TFEB (Transcription factor EB), 
FOXO (Forkhead box O), and primary-responsive  transcription 
factors of 20-hydroxyecdysone (20E) signaling, as well as 
non-coding RNAs all affect the expression of Atg genes in 
insects (Demontis and Perrimon, 2010; Tian et  al., 2013; 
Dai et  al., 2020). In addition, the post-translational 
modifications including phosphorylation and acetylation of 
autophagy associated proteins mediate the occurrence. 20E 
and juvenile hormone (JH) synergistically regulate molting 
and metamorphosis of insects (Tian et  al., 2013; Tettamanti 
and Casartelli, 2019). 20E induces while JH inhibits autophagy 

by antagonizing 20E signals (Liu et  al., 2015; Tettamanti 
and Casartelli, 2019). Of note, the transcriptional and post-
translational regulators of autophagy are usually linked, e.g., 
20E signaling induces the expression of Atg genes and inhibits 
acetylation of Atg proteins simultaneously; moreover, 20E 
also interacts with nutrient signaling to initialize 
autophagosome formation (Tian et al., 2013; Wu et al., 2021a). 
Here, we summarize the most recent progresses of autophagy 
mainly in D. melanogaster and B. mori to provide a deep 
thinking for further autophagy-related studies in insects.

TRANSCRIPTIONAL AND 
POST-TRANSCRIPTIONAL REGULATION 
OF AUTOPHAGY IN INSECT

Nutrient Signaling, Insulin-Akt/PI3K-MTOR
The PI3K/Akt/MTOR signaling is critical for autophagy 
initiation by integrating signals from the extra- and intracellular 
environments (Wang et  al., 2019). MTORC1 is well studied 
for inhibiting autophagy induction in insects (Tian et  al., 
2013; Liu et al., 2014; Dai et al., 2020). In Drosophila, MTORC1 
affects RNA processing of Atg transcripts and thereby the 
protein levels, in addition to directly modulating 
phosphorylation status of DmAtg1/DmAtg13 protein complex 
(Tang et  al., 2018). Under nutrient-rich conditions, MTORC1 
decreases the protein levels of cyclin-dependent kinase 8 
(CDK8) and darkener of apricot (DOA) kinase. When MTORC1 
activity is inhibited by starvation, the restored CDK8 and 
DOA kinase lead to phosphorylation of CPSF6, the component 
of the cleavage and polyadenylation (CPA) complex of pre-RNAs, 
and thus nuclear translocation of the complex. Subsequently, 
the nuclear-localized CPA complex results in alternative 
polyadenylation of DmAtg1 and DmAtg8a, and alternative 
splicing of DmAtg1 transcript, as well as promotion of autophagy 
(Tang et  al., 2018).

MTOR activity is affected by multiple factors in insects. 
Curcumin, a natural insecticide, reduces PI3K levels in a 
time-dependent manner and significantly compromises the 
protein levels of phosphorylated Akt and MTOR, which 
eventually leads to an increase in autophagy (Veeran et  al., 
2019). Glycogen synthase kinase 3 beta (GSK-3β) 
phosphorylates endonuclease G (ENDOG), a mitochondrial 
nuclease, to enhance its interaction with 14-3-3γ, thereby 
inhibiting MTOR signaling and promoting autophagy (Wang 
et  al., 2021b). Downregulation of TGFB-INHB/activin-like 
protein daw activates TORC2 signaling to induce cardiac 
autophagy and reduces age-related heart dysfunction in 
Drosophila (Chang et  al., 2020). Studies show that loss of 
ubiquitin causes endoplasmic reticulum stress, inhibition of 
MTORC1 activity, and promotion of autophagy, which 
consequently leads to neuronal death. Meanwhile,  
knockout of Ubqn (ubiquilin) reduces lysosomal acidification 
and autophagic flux, showing the requirement of ubiquitin 
in maintaining the proper levels of V0a/V100 subunit of 
Vacuolar H(+)-adenosine triphosphatases (V-ATPases;  
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Şentürk et  al., 2019). In general, as the center of nutrient 
signaling, MTOR cooperates with multiple signals to regulate 
the induction of autophagy.

20E Signaling in Regulating Autophagy
20E, the steroid hormone biosynthesized from food-derived 
cholesterol, predominantly orchestrates the physiological 
processes of molting, metamorphosis, and reproduction in 
association with nutrient and juvenile hormone signals in insects 
(Liu et  al., 2015; Song and Zhou, 2020). During larval-pupal 
metamorphosis, 20E not only triggers the morphological changes 
of larvae to shed the old cuticle, but also induces the destruction 
of most larval tissues to recycle constituents for the formation 
of adult organs through activation of autophagy, apoptosis, 
and tissue dissociation (Xie et  al., 2016; Jia et  al., 2017). 20E 
transduces its signal by binding with the heterodimer receptor 
EcR-USP to form the ligand-receptor complex, 20E-EcR-USP, 
subsequently triggers the expression of the downstream 
transcription factors, such as Br-C, E74, HR3, and βftz-F1, 
which induce the cascades of Atg genes including BmAtg1, 
BmAtg3, BmAtg4, BmAtg5, BmAtg6, BmAtg7, BmAtg8, BmAtg9, 
BmAtg12, BmAtg16, and BmAtg18, and thereby autophagy (Tian 
et  al., 2013). RNAi of BmAtg1 blocks autophagy in the fat 
body during larval-pupal metamorphosis, when 20E titer is 
high in the hemolymph. Moreover, an EcR response element 
(EcRE) is identified in the promotor regions of BmAtg1, showing 
the direct transcriptional induction of Atg genes by 20E signaling 

(Tian et  al., 2013). Notably, the zinc-finger transcription factor 
E75 and the helix-turn-helix (HTH) transcription factor E93 
are both necessary for autophagy occurrence and larval-pupal 
metamorphosis in B. mori (Li et  al., 2015, 2016a; Liu et  al., 
2015). In addition, E93 upregulates the expression of almost 
all Atg genes in both Bombyx and Drosophila to promote 
autophagy, while JH represses the transcription of Bombyx 
BmE93, suggesting a negative role of JH in autophagy induction 
through interaction with 20E signals (Liu et  al., 2014, 2015). 
Of note, 20E signal also induces the transcription of BmV-ATPase 
from V0 and V1 subunits to acidify lysosomes and enhances 
autophagic flux in B. mori (Dai et  al., 2020). Moreover, 20E 
can induce a starvation-like conditions and reduces the activity 
of Insulin-Akt/PI3K-MTORC1 pathway to initiate autophagy 
in insects (Tian et  al., 2013; Liu et al., 2015).

The major regulators of autophagy at transcriptional level 
in B. mori and D. melanogaster are showed in Figure  1.

Forkhead Box O, FOXO
Forkhead box O is an important transcription factor that plays 
a key role in the processes of cell metabolism, apoptosis, cell 
cycle, and stress response (Akasaki et  al., 2014). FOXO1 and 
FOXO3a are reported to regulate the expression of Atg genes 
and activate autophagy in mouse (Li et al., 2016b). In Drosophila, 
FOXO and its targeting gene 4E-BP upregulate autophagy to 
degrade damaged proteins, thereby delaying muscle functional 
decay and prolonging life span of Drosophila (Demontis and 
Perrimon, 2010).

FIGURE 1 | Transcriptional regulation of autophagy by 20E and starvation in B. mori and D. melanogaster. 20E and starvation both result in the cytoplasmic-nucleo 
translocation of TFEB by inhibiting MTORC1 activity and promote the assembly of V-ATPase subunits. Consequently, nuclear-localized TFEB promotes the 
transcription of V-ATPases, and thus upregulation of lysosomal acidification and autophagic flux. 20E forms a ligand-receptor complex with the heterodimer EcR/
USP and then is transferred into the nucleus to initiate the expression of the downstream transcription factors, such as Br-C, E74, E75, E93, and βftz-F1, which 
subsequently leads to upregulation of Atg genes and autophagy. Red triangles indicate 20E; blue rhombuses indicate starvation.
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In Helicoverpa armigera, insulin upregulates the expression of 
phosphoinositide-dependent kinase-1 (PDK1) to promote 
phosphorylation of Akt. Subsequently, the phosphorylated Akt 
further phosphorylates FOXO and arrests FOXO in the cytoplasm, 
resulting in a high titer of 20E. In turn, the high 20E titer inhibits 
PDK1 mRNA levels, and thus inhibition of Akt and FOXO 
phosphorylation, which leads to the nuclear localization of FOXO 
and thus induction of autophagy (Pan et  al., 2018). Moreover, the 
production of 20E upregulates the expression of PTEN to remove 
Akt-mediated phosphorylation of FOXO, and leads to nuclear 
translocation of FOXO (Cai et  al., 2016). In B. mori, 20E induces 
the transcription of BmFOXO and cytoplasmic-nucleo translocation 
of the protein (Hossain et al., 2013). Infection of BmNPV decreases 
the expression of BmFOXO in B. mori. Of note, RNAi of BmFOXO 
increases the viral replication, in comparison, overexpression of 
BmFOXO significantly increased the expression of autophagy-related 
genes BmAtg6, BmAtg7, and BmAtg8, and thereby inhibition of 
BmNPV duplication (Kang et  al., 2021). In general, the nuclear 
localization and activity of FOXO are coordinately regulated by 
nutrient and 20E signaling in insects.

Transcription Factor, TFEB
Transcription factor EB, a basic helix loop helix (b-HLH) leucine 
zipper transcription factors (MiT/TFE) from microphthalmia-
associated family, is found to mediate autophagic flux and 
lysosome biogenesis, particularly in the expression of genes 
related to lysosomal acidification (Settembre et  al., 2011; Song 
et  al., 2013). In Drosophila, MITF is necessary for starvation-
induced autophagy. MITF is transferred into the nucleus to 
induce the expression of genes encoding V-ATPases, when 
MTORC1 activity is inhibited. Knockout of MITF causes lysosomal 
dysfunction and inhibits autolysosome maturation. In comparison, 
overexpression of MITF increases lysosomes, autophagosomes, 
and autolysosomes (Bouché et  al., 2016). In B. mori, 20E and 
starvation induce lysosomal acidification by upregulating the 
transcription and assembly of V-ATPase subunits through 
activating TFEB by inhibiting MTOR activity (Dai et  al., 2020).

Besides, some metabolites and molecular components are 
also involved in the regulation of TFEB activity. α-ketoglutarate 
(AKG), an important intermediate metabolite in the tricarboxylic 
acid (TCA) cycle, increases the expression of TFEB by activating 
AMPK and inhibiting MTOR signals, which subsequently leads 
to significant upregulation of DmAtg1, DmAtg5, DmAtg8a, and 
DmAtg8b in Drosophila (Su et  al., 2019). Notably, the general 
control non-repressed protein 5 (GCN5) inhibits autophagy 
and lysosome biogenesis by catalyzing the acetylation of TFEB 
to abolish its DNA-binding ability in Drosophila. Interference 
of GCN5-mediated acetylation of TFEB increases autophagy 
and reduces aggregation of Tau protein, as well as its neurotoxicity 
in Drosophila (Wang et  al., 2020b). In general, TFEB activity 
is modulated by several different signaling pathways and plays 
a critical role in autophagy.

Other Transcription Factors
NF-κB factor Relish, a molecular component of immune 
deficiency (Imd) pathway, is essential for autophagy occurrence 

and tissue degradation triggered by steroid hormone 20E in 
the salivary glands after pupation in Drosophila. 20E induces 
the expression of PGRP-LC and its downstream gene Relish, 
which subsequently triggers the transcription of DmAtg1 and 
activation of autophagy in Drosophila salivary glands (Nandy 
et  al., 2018). Similarly, TmRelish mediates the upregulation of 
TmAtg1 in response to the infection of Listeria monocytogenes 
in Tenebrio molitor (Keshavarz et  al., 2020).

In Drosophila, nuclear factor (erythrocyte-derived 2)-related 
factor 2 (NRF2/ CncC), a member from the Cap'n' Collar 
(Cnc) transcription factor family, directly binds to the antioxidant 
response element in the promoter of DmRef(2)P/p62, a selective 
autophagy receptor, to induce its transcription upon oxidative 
stress, and thus playing a positive role in regulating autophagy, 
whereas CncC upregulates Atg8a protein level and autophagy 
independent of TFEB/MitF in Drosophila fat body and larval 
gut (Jain et  al., 2015).

FOXA, the winged-helix transcription factors, plays key roles 
in organ-specific gene expression in the mammalian pancreas, 
liver, and dopaminergic neurons (Fox et  al., 2013). Fork head 
(Fkh), the sole Drosophila FOXA family member, is proved to 
upregulate the expression of Atg17, the component of Atg1 
kinase complex for autophagy initiation, in response to the 
decrease of insulin/insulin-like growth factor signaling (IIS) 
and significantly extends life span of Drosophila. Interestingly, 
overexpression of Atg17 in neurons alone is sufficient to extend 
Drosophila life span, suggesting that autophagy is a beneficial 
effect downstream of neuronal Fkh to increase the health of 
life (Bolukbasi et  al., 2021).

Of note, Drosophila transcription factor M1BP is functionally 
conserved with the homolog ZKSCAN3 of vertebrate (zinc-
finger family DNA-binding protein) in inhibiting autophagy. 
RNAi of M1BP in Drosophila restores the transcription of Atg 
genes including Atg1, Atg3, Atg7, and Atg8a, which is inhibited 
by ZKSCAN3 overexpression; in comparison, M1BP 
overexpression in HeLa cells prevents starvation-induced 
autophagy causing by nucleo-cytoplasmic translocation of 
ZKSCAN3, indicating  the evolutionarily conserved repression 
of M1BP and ZKSCAN3 on autophagy from insects to mammals 
(Barthez et  al., 2020).

MicroRNA and lncRNA
MicroRNA (miRNA), a non-coding RNA composed of 19 
to 25 nucleotides, inhibits the translation of target mRNA 
by pairing with the complementary sequence in the 3′UTR 
of target gene and also impairs the stability of mRNA in 
some cases (Bizuayehu and Babiak, 2014; Abo-Al-Ela and 
Burgos-Aceves, 2021). Several non-coding RNAs are reported 
to mediate autophagy occurrence in insects. In Drosophila, 
miR-14 is necessary for developmentally regulated process 
of tissue-specific autophagy in salivary gland but is 
dispensable for starvation-induced autophagy in fat body. 
miR-14 positively regulates autophagy by targeting the 3′UTR 
of ip3k2, a gene involved in inositol 1,4,5-triphosphate (IP3) 
signaling and calcium release from endoplasmic reticulum 
(ER). Particularly, miR-14 downregulates the translation of 
ip3k2 and then increases the level of IP3. Subsequently, 
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increased IP3 leads to the release of calcium and activates 
calmodulin, and thereby promotion of autophagy (Nelson 
et  al., 2014). Screening through the miRNA library, miR-9 
family is found to act as inhibitors of the phenotype induced 
by human Tau overexpression in Drosophila. Notably, miR-9a 
targeting gene Drosophila CG11070 or its mammalian ortholog 
UBE4B (ubiquitination factor E4B) promotes autophagy-
mediated Tau degradation in Drosophila in cooperation with 
STUB1 (STIP1 homology and U-Box containing protein 
1), an E3/E4 ubiquitin ligase (Subramanian et  al., 2021). 
The Hippo/Warts pathway functions as the key tumor 
suppressor by limiting organ growth. In response to insulin 
signaling, Warts inactivates Yorkie to inhibit the expression 
of downstream effector miRNA bantam and positively 
regulates the production of ecdysone in prothoracic gland 
(PG) of Drosophila by induction of autophagy. In addition, 
PG-specific overexpression of miRNA bantam activates 
mTOR and reduces the protein level of EcR, leading to 
suppression of autophagy and decrease of ecdysone production 
by limiting the availability of the precursor cholesterol 
(Texada et  al., 2019).

Long non-coding RNA (lncRNA) is a series of RNA with 
a length of more than 200 nucleotides without the ability to 
encode proteins (Li et  al., 2021). The mechanism of lncRNA 
in regulating autophagy has been wildly studied in mammals 
while less in insects. A recent study shows that 20E significantly 
increases the expression of lncRNA LNC_000560 in B. mori 
larvae. Moreover, the expression profile of LNC_000560 is highly 
consistent with that of BmAtg4b, and RNAi of LNC_000560 
significantly reduces the expression of BmAtg4b. These results 
indicate that LNC_000560 is associated with 20E-induced 
autophagy in the silkworm fat body through positive regulation 
of BmAtg4b (Qiao et  al., 2021).

POST-TRANSLATIONAL REGULATION OF 
AUTOPHAGY IN INSECTS

Phosphorylation
Autophagic function of ULK1/Atg1-ATG13/Atg13 protein 
complex is regulated by their phosphorylation status (Klionsky 
et  al., 2021). In Drosophila and mammals, ULK1/Atg1 and 
Atg13/ATG13 form a stable complex regardless to the status 
of autophagy occurrence; whereas in yeast, Atg1 binds to Atg13 
only under the induction of autophagy (Chang and Neufeld, 
2010; Li et  al., 2020). Under nutrient-rich conditions, MTOR 
inhibits the formation of Atg1 complex by hyperphosphorylation 
of Atg13, and thereby blockage of its interaction with Atg1 
and autophagy in yeast (Puente et  al., 2016). In mammals, 
starvation reduces phosphorylation level of ATG13 to upregulate 
autophagy (Zachari and Ganley, 2017). Whereas in Drosophila, 
DmAtg13 is highly phosphorylated, while DmAtg1 is partly 
dephosphorylated during autophagy induction (Kim et al., 2013; 
Nagy et  al., 2014). Of note, two bands of BmAtg13 appear 
in the western blot detection, and the upper band is impaired 
after 20E treatment. It suggests that BmAtg13 may 
be  phosphorylated under nutrient-rich conditions while 

dephosphorylated during 20E- or starvation-induced autophagy 
in B. mori (Li et  al., 2020).

In addition to Atg proteins, phosphorylation also influences 
the autophagic functions of other protein in insects. BmRpd3/
BmHDAC1, the homolog of human histone deacetylase 
HDAC1  in B. mori, localizes in the nucleus under nutrient-
rich conditions but is transferred to the cytoplasm to promote 
autophagy in response to 20E signaling. Overexpression of 
BmHDAC1 promotes the formation of BmAtg8–PE, degradation 
of BmSqstm1, and lysosomal acidification. Notably, cholesterol 
and its derivatives, such as 20E and 27-hydroxycholesterol, 
all induce dephosphorylation of BmHDAC1 by inhibiting the 
activity of MTORC1, leading to nucleo-cytoplasmic 
translocation of BmHDAC1 and promotion of autophagy. The 
regulatory mechanism of BmHDAC1 and its human homolog 
HsHDAC1 by cholesterol/20E signaling is highly conserved, 
and potentially, from insects to mammals (Wu et  al., 2021b). 
In Drosophila, Cdk5, a cyclin-dependent kinase, phosphorylates 
Acn/Acinus (a multifunctional nuclear protein with proposed 
roles in apoptosis) at serine 437 to regulate its stability. 
Replacements of Acn protein by the expression of 
nonphosphorylatable AcnS437A or phosphomimetic AcnS437D 
under the control of endogenous promoter of Acn significantly 
decrease or increase the protein level. In addition, AcnS437D 
overexpression increases the basal and starvation-independent 
autophagy (Nandi and Kramer, 2018). Infection of rice black-
streaked dwarf virus (RBDSV) or overexpression of RBSDV 
P10 (the main capsid protein of RBSDV) promotes 
phosphorylation of AMPK in Laodelphax striatellus or in 
Spodoptera frugiperda Sf9 cells, which consequently leads to 
further phosphorylation and cytoplasmic-nucleo translocation 
of GAPDH, accompanied with activation of autophagy and 
inhibition of viral replication (Wang et  al., 2021c).

Acetylation
In D. melanogaster, brain-specific knockdown of AcCoAS/
acetyl-coenzyme A synthetase enhances autophagy and prolongs 
life span, indicating that protein acetylation is involved in the 
regulation of autophagy (Eisenberg et  al., 2014; Wani et  al., 
2015). Drosophila YL-1 and sirt2 oppositely catalyze the 
deacetylation and acetylation of DmAtg8a under starvation 
and nutrient-rich conditions. After deacetylation, DmAtg8a 
binds to DmSequoia, a negative transcriptional regulator of 
autophagy, in a LC3-interacting region motif-dependent manner, 
and consequently compromises the inhibition of autophagy by 
DmSequoia (Jacomin et  al., 2020). Up to now, the regulatory 
mechanism of autophagy by acetylation is not fully elucidated 
in Drosophila.

In B. mori, 20E and its precursor cholesterol both induce 
dephosphorylation of BmHDAC1 and its nucleo-cytoplasmic 
translocation to promote autophagy, while the functional 
mechanism of BmHDAC1  in regulating autophagy is lack 
of investigation (Wu et  al., 2021b). It is reported that the 
lysine site K13 of BmAtg8 protein is acetylated after BmNPV 
infection, and acetylation-mimic mutation of K13 in BmAtg8 
significantly reduces autophagy (Xue et  al., 2019). In order 
to fully understand the regulation of autophagy by acetylation 
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in silkworm, an in-depth study of the molecular components 
BmAtg3, BmAtg4, BmAtg7, and BmAtg8 from BmAtg8–PE 
ubiquitin-like protein system has been performed. Results 
show that all the four aforementioned Atg proteins localize 
in the nucleus under nutrient-rich conditions, while they 
are exported from the nucleus to the cytoplasm during 
autophagy induction. In addition, histone acetyltransferase 
BmP300 and deacetylase BmHDAC1 oppositely regulate the 
nuclear and subcellular localization of BmAtg3 and BmAtg8. 
BmHDAC1 can deacetylate BmAtg3, BmAtg4, BmAtg7, and 
BmAtg8. Loss-of-function mutations of the acetylation sites 
lead to deacetylation and nucleo-cytoplasmic translocation 
of the four Atg proteins, and thereby promotion of autophagy. 
Collectively, acetylation/deacetylation of the molecular 
components from BmAtg8–PE ubiquitin-like protein system 
catalyzed by P300/HDAC1 mediates the occurrence of 
autophagy and is highly conserved from insects to mammals 
(Wu et  al., 2021a).

Autophagy regulated by post-translational modifications in 
B. mori and D. melanogaster is showed in Figure  2.

CONCLUSION

Transcription factors, such as FOXO, TFEB, and Relish, as 
well as those involved in 20E signal transduction, are 
reported to upregulate autophagy in insects. Some of them 
are functionally conserved to the mammalian homologs, 
while some of them act in insects specifically. 20E, the 
insect-specific regulator, predominantly upregulates autophagy 
by inducing the expression of almost all Atg genes directly; 

in addition, 20E signaling also interacts with other 
transcription factors, such as FOXO and Relish, to regulate 
autophagy at transcriptional level indirectly. 20E promotes 
the transcription of FOXO by binding to the promotor 
region and simultaneously induces the dephosphorylation 
of FOXO, which consequently leads to cytoplasmic-nucleo 
translocation and upregulation of autophagy (Hossain et al., 
2013; Cai et  al., 2016). As mentioned above, 20E activates 
the transcription and nuclear translocation of BmTFEB, 
which consequently triggers the cascades of BmV-ATPase 
expression as well as assembly of the subunits, and thus 
promotion of lysosomal acidification and autophagic flux 
(Dai et  al., 2020). In general, 20E affects the expression 
and PTM (post-translational modification) status of the 
transcription factors to promote their positive functions in 
autophagy occurrence, accompanying with its direct induction 
of Atg and V-ATPases gene expression in insects. To our 
knowledge, there are more transcription factors involved 
in regulating autophagy in plants, yeast, or mammals, whereas 
they have not been illustrated in insects and wait for 
further investigation.

Phosphorylation and acetylation are well-studied PTMs in 
regulating autophagy in insects. Mammalian HDAC1 is 
previously reported to induce Atg gene expression and 
autophagosome formation, thereby promoting autophagy 
(Moresi et  al., 2012). Cholesterol and its derivatives, such as 
20E, induce dephosphorylation of histone deacetylase Bombyx 
BmHDAC1 and the human homolog HsHDAC1 to facilitate 
autophagy by inhibition of MTOR activity (Wu et al., 2021b). 
In addition, the acetylation levels of Atg proteins from LC3/
BmAtg8–PE ubiquitin-like protein system are increased by 

FIGURE 2 | Autophagy regulated by phosphorylation and acetylation in Bombyx mori and Drosophila melanogaster. 20E affects the phosphorylation status of 
Atg1-Atg13 complex by inhibiting PI3K-MTOR activity to induce autophagy; 20E or starvation signal causes dephosphorylation of BmRpd3/ BmHDAC1, which 
subsequently leads to deacetylation and nucleo-cytoplasmic translocation of the molecular components from BmAtg8 -PE ubiquitin-like protein system, thereby 
promotion of autophagy, Ac: acetylation. Red triangles indicate 20E; blue rhombuses indicate starvation.
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histone acetyltransferase P300 while decreased by deacetylase 
HDAC1  in B. mori and human. Subsequently, deacetylation 
of the Atg proteins mediated by HDAC1 leads to their nucleo-
cytoplasmic translocation and autophagy occurrence (Popelka 
and Klionsky, 2015; Wu et  al., 2021a). These results show 
that the regulatory mechanism of acetylation in regulating 
autophagy is highly conserved in B. mori and mammals (Wu 
et  al., 2021b). Whereas knockout of yeast deacetylase RPD3, 
the homolog of mammalian and Bombyx HDAC1, leads to 
premature autophagy, in comparison, overexpression of yeast 
acetyltransferase Esa1 promotes autophagy by catalyzing the 
hyperacetylation of Atg3 (Yi et  al., 2012). It is likely that 
the function of HDAC1 homolog in regulating autophagy is 
conserved from insects to mammals, but not in yeast. Of 
note, in addition to phosphorylation and acetylation, several 
other PTMs, such as ubiquitination, SUMOylation, 
glycosylation, and lipidation (PEylation of LC3/Atg8), are 
revealed to regulate autophagy in yeast and mammals, whereas, 
these PTMs have not been studied for their autophagic 

functions in insects and are worthy of further investigation 
(Popelka and Klionsky, 2015; Wani et  al., 2015).
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