
EXPERIMENTAL AND THERAPEUTIC MEDICINE  20:  170,  2020

Abstract. The current study aimed to investigate whether 
sarpogrelate and rosuvastatin possess anti‑arterial injury, and 
attempted to elucidate the mechanism of action underlying 
this activity. Sarpogrelate, a 5‑hydroxytryptamine type 2A 
antagonist, is extensively used to prevent arterial thrombosis; 
however, its effects on atherosclerosis remain unknown. In 
the present study, sarpogrelate combined with rosuvastatin or 
rosuvastatin alone were administered to male ApoE‑/‑ mice fed 
a high‑fat diet (HFD) for 8 weeks. Metabolic parameters in 
the blood samples were analyzed using an automatic analyzer. 
Aortic tissues were stained with hematoxylin and eosin for 
morphological analysis. The expression levels of oxidized‑low 
density lipoprotein (LDL) specific scavenging receptors, 
lectin‑like oxidized low‑density lipoprotein receptor‑1 
(LOX‑1) and cluster of differentiation 68 were detected via 
immunostaining. mRNA expression levels of interleukin 
(IL)‑1β, IL‑6 and tumor necrosis factor‑α were determined 
via reverse transcription‑quantitative PCR analysis, while 
protein expression levels of LOX‑1 and phosphor(p)‑ERK 
were determined via western blot analysis. The results demon‑
strated that sarpogrelate combined with rosuvastatin treatment 
significantly decreased total cholesterol and LDL cholesterol 
levels in the serum, and alleviated intimal hyperplasia and 
lipid deposition, accompanied by decreased inflammatory 
cell infiltration and lower expression levels of inflamma‑
tory cytokines, compared with rosuvastatin monotherapy or 
HFD treatment. Furthermore, sarpogrelate combined with 

rosuvastatin treatment significantly decreased the expression 
levels of LOX‑1 and p‑ERK. Taken together, these results 
suggest that the positive effects of sarpogrelate combined 
with rosuvastatin treatment on aortic injury may be associated 
with the regulation of the LOX‑1/p‑ERK signaling pathway. 
Sarpogrelate and rosuvastatin synergistically decreased aortic 
damage in ApoE‑/‑ HFD mice, and thus provide a basis for 
the treatment of aortic injury caused by hyperlipidemia with 
sarpogrelate.

Introduction

Hyperlipidemia is a high risk factor for cardiovascular disease 
(CVD), either by eroding large elastic arteries or causing 
damage to endotheliocytes (1,2). In ApoE‑/‑ mice, hyperlip‑
idemia induces lipid deposition and foam cell formation, 
which ultimately leads to atherosclerosis (3,4). Decreasing 
the blood lipid levels, particularly low‑density lipoprotein 
cholesterol (LDL‑C) levels, lowers the risk of CVD (5). Statins 
are a class of cholesterol‑lowering agents that significantly 
decrease the severity of CVDs (6). For example, rosuvastatin 
is prescribed to lower cholesterol levels and thereby decrease 
the risk of CVD (7). Although statins are extensively used to 
prevent hyperlipidemia and CVD, concerns have been raised 
regarding their association with an increased risk of new‑onset 
diabetes and other adverse effects, such as liver toxicity (8) and 
myopathy (9), leading to termination of treatment (10). In addi‑
tion, previous studies have reported that a subset of patients 
who receive statins, even those with well‑controlled LDL‑C 
levels, still experience CVD events due to changes in the levels 
of other lipids/lipoproteins (11‑13). Thus, novel strategies are 
currently being developed to improve the therapeutic effects 
and minimize the side effects.

Sarpogrelate is a selective 5‑hydroxytryptamine type 2A 
serotonin receptor antagonist that possesses an extensive range 
of antiplatelet effects and can prevent arterial thrombosis (14). 
Acyl‑coenzyme A cholesterol acyltransferase‑1 is inhibited by 
sarpogrelate, which decreases the accumulation of lipid drop‑
lets in macrophages and blocks atherosclerosis (15). However, 
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the underlying molecular mechanism of sarpogrelate remains 
unclear, as only two previous studies on rabbits have been 
published (16,17). In rabbits, sarpogrelate delays the progres‑
sion of atherosclerosis by upregulating endothelial nitric oxide 
synthase expression (17). Several clinical studies have demon‑
strated that sarpogrelate improves atherosclerosis (18‑21). 
These studies focused on patients with peripheral artery 
disease (18‑20) or cerebrovascular disease (21); however, the 
role of sarpogrelate on major arteries remains poorly under‑
stood. Thus, the present study aimed to investigate whether 
sarpogrelate synergistically protects against aortic damage in 
ApoE‑/‑ HF mice, when combined with rosuvastatin treatment.

Materials and methods

Mice and diets. The present study was approved by the Ethics 
Committee of The Second Affiliated Hospital of Dalian 
Medical University (approval no. L20160153; Dalian, China), 
and all animal experiments were performed in accordance with 
the Guide for the Care and Use of Laboratory Animals (17). 
A total of 22 male ApoE‑/‑ mice (8 weeks old) were provided 
by Beijing Vital River Laboratory Animal Technology Co., 
Ltd. The body weights of mice ranged from 22 to 26 g. All 
animals were housed at 24˚C and 60% relative humidity 
with a 12 h light and dark cycle with free access to water 
and food. Mice were randomly divided into four treatment 
groups. The control group was fed a normal diet (NF; n=5; 
20.3% protein, 66% carbohydrate, 5% fat; D10001; Research 
Diets, Inc.), whilst the other three groups were fed a high‑fat 
diet (HFD), containing 1.5% cholesterol and 15% fat (HF 
group; n=5; Shanghai SLAC Laboratory Animal Co., Ltd.). 
Furthermore, two of these groups were additionally treated 
with rosuvastatin calcium (40 mg/kg/day) and sarpogrelate 
(50 mg/kg/day; both purchased from Mitsubishi Tanabe 
Pharma Corporation; HF+RS group; n=6), or rosuvastatin 
calcium alone (40 mg/kg/day; HF+R group; n=6), respectively. 
Following 8 weeks (22) of treatment, the mice were euthanized 
to analyze and characterize aortic injury.

Biochemical measurements. Following 8 weeks of treatment, 
all mice were sacrificed by a 1% sodium pentobarbital over‑
dose. After fasting for 12 h, the heart was exposed and blood 
samples were taken by left ventricular puncture. The serum 
was subsequently separated, all samples were centrifuged 
at 1,200 x g for 5 min at 4˚C, and the expression levels of total 
cholesterol (TC), triglyceride (TG) and LDL‑C were deter‑
mined using an automatic analyzer (Hitachi, Ltd.).

Histological analysis. After the mice were euthanized, the 
complete aorta (from the aortic root to the abdominal aorta) 
was fixed with 4% formaldehyde at room temperature for 24 h 
and embedded in paraffin. The paraffin‑embedded aortas were 
cut into 4 µm thick sections and dewaxed. Subsequently, the 
sections were stained with hematoxylin for 6 min and eosin 
for another 1 min. Resinene were fixed on glass slides and 
observed using a light microscope (Olympus Corporation; 
magnification, x40).

Immunohistochemistry (IHC) was performed using 
the Histofine Simple Stain kit (cat. no. 414142F; Nichirei) 
according to the manufacturer's protocol. Briefly, the sections 

were deparaffinized in xylene (3 times, 5 min each) and rehy‑
drated (100, 90, 85, and 75% alcohol, 5 min each) following 
removal of the excess tissue outside the aorta at room tempera‑
ture. Sections were incubated with 3% hydrogen peroxide at 
room temperature for 15 min to inhibit endogenous peroxidase 
activity. The tissue sections were incubated at 1% blocking 
solution (cat. no. P0220; Beyotime Institute of Biotechnology) 
at room temperature for 10 min. Subsequently, sections were 
incubated with primary antibodies against cluster of differ‑
entiation 68 (CD68; 1:500; cat. no. ab213363) and lectin‑like 
oxidized low‑density lipoprotein receptor‑1 (LOX‑1; 1:250; 
cat. no. ab60178; both purchased from Abcam) at room 
temperature for 1 h. Following the primary incubation, 
sections were incubated with goat anti‑rabbit IgG secondary 
antibody (1:2,000; cat. no. ab205718; Abcam) at 37˚C for 
30 min. The slides were observed under a light microscope 
(Olympus Corporation; magnification, x40).

Reverse transcription‑quantitative (RT‑q)PCR. Total RNA 
was extracted from the aorta using TRIzol® reagent (Nippon 
Gene, Co., Ltd.) and reverse transcribed into cDNA using the 
SuperScript VILO cDNA synthesis kit (cat. no. 11756050; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
protocol. qPCR was subsequently performed using SYBR 
Green (Light Cycler; Roche Molecular Diagnostics) and in 
accordance with the manufacturer's instructions. The primer 
sequences used for qPCR primers are listed in Table I. The 
following thermocycling conditions were used for qPCR: 95˚C 
for 30 sec, 38 cycles at 95˚C for 10 sec, 60˚C for 20 sec and 
72˚C for 15 sec. Relative mRNA levels were calculated using 
the 2‑ΔΔCq method (23) and normalized to the internal reference 
gene β‑actin.

Western blotting. The aorta was washed three times with PBS 
(cat. no. C0221A; Beyotime Institute of Biotechnology) and 
subsequentl y lysed using tissue lysis fluid (P0013G; Beyotime 
Institute of Biotechnology). The mixture was centrifuged 
at 12,000 x g for 7 min at 4˚C, the suspension after centrifu‑
gation was absorbed and total protein was quantified using a 
bicinchoninic acid assay. Equal amounts of protein (35 µg) 
were subjected to electrophoresis using 10% SDS‑PAGE gels, 
transferred onto polyvinylidene difluoride membranes (EMD 

Table I. Primer sequences used for quantitative PCR.

Gene Primer sequence 

TNF‑α  F:5'‑TCTCATGCACCACCATCAAGGACT‑3'
 R:5'‑ACCACTCTCCCTTTGCAGAACTCA‑3'
IL‑1β F:5'‑TGCCACCTTTGACAGTGAT‑3'
 R:5'‑TGTGCTGCTGCGAGATTTGA‑3'
IL‑6 F:5'‑TACCAGTTGCCTTCTTGGGACTGA‑3'
 R:5'‑TAAGCCTCCGACTTGTGAAGTGGT‑3'
β‑actin F:5'‑CGATGCCCTGAGGGTCTTT‑3'
 R:5'‑TGGATGCCACAGGATTCCAT‑3'

TNF‑α, tumor necrosis factor‑α; IL, interleukin; F, forward; R, 
reverse.
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Millipore) and blocked with 5% skimmed milk at 37˚C for 
1 h. The membranes were incubated with primary antibodies 
against LOX‑1 (rabbit anti‑LOX‑1; 1:250; cat. no. ab60178; 
Abcam), phospho (p)‑ERK (rabbit anti‑p‑ERK; 1:1,000; 
cat. no. 9101; Cell Signaling Technology, Inc.), total‑ERK 
(rabbit anti‑ERK; 1:1,000; cat. no. 4695; Cell Signaling 
Technology, Inc.), β‑tubulin (rabbit anti‑β‑tublin; 1:1,000; 
cat. no. 2148; Cell Signaling Technology, Inc.) and β‑actin 
(rabbit anti‑β‑actin; 1:1,000; cat. no. 4970S; Cell Signaling 
Technology, Inc.) overnight at 4˚C. Following the primary 
incubation, membranes were incubated with anti‑rabbit IgG 
secondary antibody (1:1,000; cat. no. 7074P2; Cell Signaling 
Technology, Inc.) at room temperature for 1 h. A and B 
chromogenic solutions (cat. no. P0013G; Beyotime Institute 
of Biotechnology) were mixed in 1:1 ratio, and 2 ml of the 
solution was added to the films. Protein signal intensity was 
determined using ImageJ 2.0 software (National Institutes of 
Health).

Statistical analysis. Each experiment was repeated three 
times. Statistical analysis was performed using SPSS 23.0 
software (IBM Corp.) and all data are presented as the 
mean ± standard error of the mean. One‑way analysis of 
variance followed by Tukey's post hoc test were used to 
compare differences between multiple groups. If the data 
did not show homogeneity of variance, a Tamhane's T2 test 
was performed. P<0.05 was considered to indicate a statisti‑
cally significant difference.

Results

Metabolic characterization. To determine the effects of the 
combined therapy on metabolism, the serum levels of lipids 
were assayed and presented in Table II, including TC, TG and 
LDL‑C. Following 8 weeks of dietary treatment, ApoE‑/‑ mice 
fed an HFD exhibited significantly increased lipid levels. 
Conversely, sarpogrelate combined with rosuvastatin treat‑
ment significantly decreased the levels of TC and LDL‑C 
(P<0.05), whereas the levels of TG only moderately decreased 
(P=0.51). Although the levels of TC and LDL‑C also decreased 
following treatment with rosuvastatin alone, the differences 
were not as notable compared with the HF+RS group (P<0.05). 
Furthermore, there were no significant differences in the body 
weights between the four groups. Taken together, these results 

suggest that sarpogrelate may accentuate the effects of rosuv‑
astatin by effectively lowering lipid levels, without affecting 
the body weight.

Sarpogrelate combined with rosuvastatin suppresses aortic 
histopathological damage in ApoE‑/‑ HFD mice. Aortic tissue 
damage was assessed via H&E staining. The results demon‑
strated that the increased intima thickness, lipid deposition 
and inflammatory cell infiltration induced by the HFD were 
reversed following combined treatment with sarpogrelate and 
rosuvastatin (Fig. 1). LOX‑1 was analyzed via IHC analysis. 
The results demonstrated that LOX‑1 staining significantly 
decreased in the HF+RS group compared with the HF+R group 
(P<0.05; Fig. 2B). The interaction between oxidized (ox)‑LDL 
and LOX‑1 results in ox‑LDL uptake by macrophages and 
foam cell transformation (24,25). Collectively, these results 
indicate that sarpogrelate and rosuvastatin can synergistically 
prevent aortic damage induced by hyperlipidemia and reverse 
atherosclerosis, which may be associated with the regulation 
of LOX‑1 expression.

Sarpogrelate combined with rosuvastat in inhibits 
macrophage inf iltration and signif icantly decreases 
pro‑inflammatory cytokine production. It is well known 
that the uptake of ox‑LDL by macrophages is dependent on 
several scavenger receptors (SRs) (26). SR class A (SR‑A), 
SR class BI (SR‑BI), LOX‑1, cluster of differentiation 36 
(CD36), and CD68 are relatively specific for ox‑LDL (27) 
and CD68 is predominantly expressed in macrophages (28). 
It was hypothesized that, amongst others, CD68 plays a 
crucial role in the formation of fatty‑streaks. Thus, the 
present study set out to determine whether the regulation 
of CD68 improved aortic injury in HFD ApoE‑/‑ mice. IHC 
analysis demonstrated that the expression of CD68+ cells 
was upregulated in the HF group, while the accumulation 
of CD68 decreased following combined treatment with 
sarpogrelate and rosuvastatin (P<0.01; Fig. 2A), and the 
expression of foam cells also significantly decreased (Fig. 1). 
Taken together, these results suggest that CD68 plays a key 
role in the formation of foam cells, and that combined treat‑
ment with sarpogrelate and rosuvastatin may reverse this 
effect. Furthermore, the expression levels of tumor necrosis 
factor‑α (TNF‑α), interleukin (IL)‑1β and IL‑6 increased 
in the HF group, the effects of which were significantly 

Table II. Metabolic data from the four groups following treatment for 8 weeks.

Groups Body weight (g) TC (mmol/l) TG (mmol/l) LDL‑C (mmol/l)

NF 23.78±0.66 8.03±1.57 5.93±0.78 3.95±0.18
HF 24.04±0.83 33.58±2.79 7.42±0.73 23.73±2.01
HF+R 22.08±0.50 22.43±1.36 7.75±1.16 14.13±1.64
HF+RS 22.83±1.16 14.45±0.77 5.45±1.30 6.83±1.07
P‑Value 0.351 0.000 0.000 0.357

Data are presented as the mean ± standard error of the mean (n=4 or 5 per group). TC, total cholesterol; TG, triglycerides; LDL‑C, low density 
lipoprotein cholesterol; NF, normal diet group; HF, high‑fat diet group; R, rosuvastatin treatment group; RS, sarpogrelate and rosuvastatin 
treatment group.
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reversed following combined treatment with sarpogrelate 
and rosuvastatin (P<0.05; Fig. 3). Collectively, these results 
indicate that sarpogrelate and rosuvastatin synergistically 
inhibit macrophage infiltration into the aorta, and inflamma‑
tory cytokine release.

Sarpogrelate combined with rosuvastatin decreases LOX‑1 
protein expression in ApoE‑/‑ HFD mice. IHC analysis demon‑
strated that combined treatment with sarpogrelate and rosuvastatin 
significantly decreased hyperlipemia‑induced LOX‑1‑positive 
staining in the aorta. In order to verify these results, LOX‑1 

Figure 2. Immunohistochemistry analysis of aortic morphological abnormalities. Sections of aortic roots from the four groups were immunostained. Positive 
(A) CD68 and (B) LOX‑1 signals appear dark brown. Data are presented as the mean ± standard error of the mean. **P<0.01 vs. NF and HF; *P<0.05 vs. HF+R. 
magnification, x40 or x100. NF, normal diet; HF, high‑fat food; HF+R, HF treated with rosuvastatin; HF+RS, HF treated with sarpogrelate and rosuvastatin; 
CD68, cluster of differentiation 36; LOX‑1, lectin‑like oxidized low‑density lipoprotein receptor‑1.

Figure 1. Aortic roots in ApoE‑/‑ mice in different treatment groups. (A) Hematoxylin and eosin staining in (a) NF, (b) HF, (c) HF+RS (50 and 40 mg/kg/day, 
respectively), and (d) HF+R ApoE‑/‑ mice fed a HFD and treated with rosuvastatin alone (40 mg/kg/day). The thickness of intima is indicated with a black line. 
(B) Quantitative analysis of aortic intimal thickness. Data are presented as the mean ± standard error of mean. *P<0.05 vs. NF; **P<0.01 vs. HF; ***P<0.001 vs. 
HF+R. NF, normal diet; HF, high‑fat food; HF+R, HF treated with rosuvastatin; HF+RS, HF treated with sarpogrelate and rosuvastatin.
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protein expression was determined via western blot analysis. The 
results demonstrated that LOX‑1 protein expression significantly 
decreased in the HF+RS group compared with the HF+R group 
and the HF group, respectively (both P<0.001; Fig. 4).

Sarpogrelate combined with rosuvastatin decreases 
p‑ERK expression in the aorta of ApoE‑/‑ HFD mice. The 
ox‑LDL‑LOX‑ERK signaling pathway is involved in athero‑
sclerosis formation (29). To the best of our knowledge, the 
effects of sarpogrelate and statins on the hyperlipid‑induced 
p‑ERK pathway activation in aorta have not yet been investi‑
gated. Western blot analysis demonstrated that p‑ERK levels 
were significantly higher in the HF group compared with the 

NF group (P<0.01; Fig. 5). Rosuvastatin monotherapy slightly 
decreased p‑ERK levels compared with HF+RS group. 
Furthermore, combined treatment with sarpogrelate and rosu‑
vastatin significantly decreased p‑ERK levels compared with 
the HF and HF+R groups, respectively (both P<0.001; Fig. 5). 
Taken together, these results suggest that sarpogrelate and rosu‑
vastatin may have a direct inhibitory effect on ox‑LDL‑induced 
p‑ERK activation.

Figure 4. Combined treatment with sapogrelate and rosuvastatin significantly 
decreases LOX‑1 protein expression. (A) LOX‑1 protein expression levels 
were analyzed via western blot analysis. (B) Results are presented relative 
to β‑actin expression. Data are presented as the mean ± standard error of the 
mean. ***P<0.001 vs. NF and HF; ^^^P<0.001 vs. HF+R. NF, normal diet; HF, 
high‑fat food; HF+R, HF treated with rosuvastatin; HF+RS, HF treated with 
sarpogrelate and rosuvastatin; LOX‑1.

Figure 3. Combined treatment with sapogrelate and rosuvastatin decreases the expression levels of inflammatory cytokines. mRNA expression levels of 
(A) TNF‑α, (B) IL‑1β and (C) IL‑6 was quantified via reverse transcription‑quantitative PCR analysis. Data are presented as the mean ± standard error of the 
mean. *P<0.05 vs. NF; #P<0.05 vs. HF; ^P<0.05 vs. HF+R. NF, normal diet; HF, high‑fat food; HF+R, HF treated with rosuvastatin; HF+RS, HF treated with 
sarpogrelate and rosuvastatin; TNF‑α, tumor necrosis factor‑α; IL, interleukin.

Figure 5. Combined treatment with sarpogrelate and rosuvastatin suppresses 
hyperlipid‑induced p‑ERK activation. (A) p‑ERK and total ERK levels were 
analyzed by western blotting. (B) Results are presented as the relative level of 
p‑ERK to ERK, and each protein is normalized to β‑actin. Data are presented 
as the mean ± standard error of the mean. **P<0.01 vs. NF; ***P<0.001 vs. 
HF; ^^^P<0.001 vs. HF+R. p, phospho; NF, normal diet; HF, high‑fat food; 
HF+R, HF treated with rosuvastatin; HF+RS, HF treated with sarpogrelate 
and rosuvastatin.
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Discussion

The results of the present study demonstrated that combined 
treatment with sarpogrelate and rosuvastatin decreased 
hyperlipid‑induced aortic injury by inhibiting p‑ERK pathway 
activation and downregulating expression of the scavenger 
receptor protein, LOX‑1. Furthermore, combined treatment 
with sarpogrelate and rosuvastatin prevented CD68+ macro‑
phage recruitment and inflammatory cytokine release in 
ApoE‑/‑ HFD mice.

A previous study reported a significant reduction in 
coronary stent restenosis in patients with stable angina admin‑
istered sarpogrelate compared with the placebo group (30). 
Another study confirmed that sarpogrelate effectively 
decreases restenosis in patients with stable effort angina (31). 
Although these studies demonstrated the therapeutic effects 
of sarpogrelate in atherosclerotic heart disease, most studies 
focus on the thrombosis‑inhibiting effects, whereas the effects 
of sarpogrelate on blood lipids have not yet been investigated. 
Statins are well recognized as lipid‑lowering agents and are 
used to prevent atherosclerotic disease. Although statins have 
a certain therapeutic efficacy in patients with atherosclerosis, 
monotherapy is often insufficient to achieve the desired thera‑
peutic outcomes (32). In the present study, combined treatment 
with sarpogrelate and rosuvastatin enhanced the protective 
effects of rosuvastatin alone. Combined treatment effectively 
decreased serum lipid levels, particularly TC and LDL‑C, 
compared with rosuvastatin alone, and alleviated aortic 
injury in ApoE‑/‑ HFD mice. In addition, combined treatment 
synergistically decreased intima thickness, lipid deposition 
and inflammatory cell infiltration induced by a HFD. Several 
possible reasons may underly these effects; a recent study 
demonstrated that sarpogrelate inhibits the accumulation 
of lipid droplets in macrophages and improves arterioscle‑
rosis (15). Another study also indicated that 5‑HT increased 
the uptake of LDL via LDL receptors, and that of ox‑LDL via 
scavenger receptors in murine macrophages (33). Conversely, 
inhibition of 5‑HT may decrease the uptake of LDL‑C to 
prevent the formation of foam cells (33). To assess the potential 
involvement of such a mechanism, the morphological changes 
associated with aortic injury in hyperlipidemic ApoE‑/‑ mice 
were assessed via immunohistochemical staining. LOX‑1 
and CD68 are relatively specific for ox‑LDL (27), and the 
latter is expressed primarily in macrophages (28). LOX‑1 and 
CD68‑stained areas in cross‑sectional aortic roots significantly 
decreased following combined treatment compared with either 
rosuvastatin alone or HFD. Thus, it is hypothesized that the 
significant synergistic lipid‑lowering effects of sarpogrelate 
and rosuvastain may be associated with the regulation of 
ox‑LDL scavenging receptors.

In aortic diseases, hyperlipidemia is a key factor in the 
development of atherosclerosis as it increases the quantity 
of circulating inflammatory cells and induces inflammatory 
pathways (34,35). Reportedly, sarpogrelate also modulates 
inflammatory‑macrophage accumulation and inflammatory 
responses (36). In a recent experimental study, treatment with 
sarpogrelate decreased inflammatory macrophage markers 
and inflammatory mediators in mice with type 2 diabetes 
and diabetic nephropathy (36). In the present study, combined 
treatment with sarpogrelate and rosuvastatin resulted in a 

significant decrease in the mRNA expression levels of inflam‑
matory cytokines levels compared with rosuvastatin alone.

LOX‑1 is a detrimental factor in hyperlipid‑induced aortic 
injury (37). Physiological basal cellular expression of LOX‑1 
is low; however, LOX‑1 expression is rapidly increased in 
response to proinflammatory cytokines (38,39). In turn, 
LOX‑1 stimulates the release of inflammatory cytokines 
and activates inflammatory responses, aggravating disease 
pathogenesis (40,41). Thus, it was hypothesized that the key 
to blocking this positive feedback loop is to prevent LOX‑1 
expression. Administration of LOX‑1 blockers or LOX‑1 
knockout can inhibit the binding of inflammatory factors to 
LOX‑1 and prevent the progress of atherosclerosis (42). To 
verify the results of IHC, LOX‑1 expression was measured 
via western blotting, which confirmed that sarpogrelate 
combined with rosuvastatin significantly suppressed hyper‑
lipidemia‑induced LOX‑1 protein expression. This suggests 
that sarpogrelate and rosuvastatin can inhibit ox‑LDL uptake 
in the arterial wall by interfering with LOX‑1 activation. The 
5‑HT2A receptor is known to modulate both the MAPK/ERK 
and the PI3K/PDK/AKT pathways, which serve prominent 
roles in cell survival (41,43). Inhibitors of ERK, PKC and 
NF‑κB attenuate LOX‑1 expression, indicating that activation 
of the ERK/PKC/MAPK pathway is an initial signaling event 
in LOX‑1 expression regulation (44). Other circumstantial 
evidence suggests that LDL induces inflammation via LOX‑1 
and increases phosphorylation of members of the ERK 
signaling pathway (45). Thus, it is hypothesized that p‑ERK, 
which is downstream of LOX‑1, is the target of aortic injury. 
Following 8 weeks of combined treatment with sarpogrelate 
and rosuvastatin, p‑ERK levels significantly decreased in 
ApoE‑/‑ HFD mice. A possible explanation for this may be that 
increased blood lipids level result in an increase in ox‑LDL 
levels in artery walls. As a LOX‑1 ligand, ox‑LDL activates 
LOX‑1 and its downstream signaling molecules, including 
p‑ERK (30,29,46). Activated p‑ERK results in LOX‑1 upregu‑
lation and promotes arteriosclerosis (47), thereby resulting in 
aortic injury. This effect on ox‑LDL/LOX‑1/p‑ERK signaling 
was more prominent in the HF+RS group compared with the 
HF+R group. Thus, it is hypothesized that by blocking LOX‑1 
or downstream p‑ERK signaling, sarpogrelate and rosuvas‑
tatin may improve hyperlipid‑induced vascular remodeling 
and aortic injury.

Dyslipidaemia, characterized by increased plasma levels of 
LDL‑C, VLDL‑C, TG, and decreased plasma levels of HDL‑C, 
is a key factor associated with atherosclerotic disease (48). The 
effects of sarpogrelate and rosuvastatin on VLDL‑C, HDL‑C 
and inflammatory factors in plasma of HFD ApoE‑/‑ mice 
were not assessed in the present study. However, the results 
of the present study suggest that sarpogrelate may enhance 
the lipid‑lowering effect of statins, improve the elevation of 
TG, TC and LDL‑C caused by hyperlipidaemia (Table II), 
and improve the formation of foam cells in aortic tissues and 
the infiltration of inflammatory cells (Fig. 1). Further studies 
are required to confirm the association between sarpogrelate 
enhanced statin therapy and cardiovascular outcomes to better 
understand the benefits of sarpogrelate in CVD.

In conclusion, the novel effects of sarpogrelate in synergis‑
tically acting with rosuvastatin to inhibit hyperlipid‑induced 
aortic damage through the LOX‑1/p‑ERK pathway were 
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determined. These findings may provide novel insight into the 
roles of sarpogrelate and rosuvastatin in vascular protection 
and highlight the potential of a novel therapeutic intervention 
for the treatment of aortic lesions.
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