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Abstract

Theoretically, the functional traits of native species should determine how natives respond
to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion
using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders’
web-building behaviors could explain differences in spider population responses to struc-
tural changes arising from C. stoebe invasion. After two years, irregular web-spiders were
>30 times more abundant and orb weavers were >23 times more abundant on simulated
invasion plots compared to controls. Additionally, irregular web-spiders on simulated inva-
sion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey,
leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size
or prey captures between treatments. Web-spider responses to simulated invasion mim-
icked patterns following natural invasions, confirming that C. stoebe’s architecture is likely
the primary attribute driving native spider responses to these invasions. Differences in spi-
der responses were attributable to differences in web construction behaviors relative to his-
toric web substrate constraints. Orb-weavers in this system constructed webs between
multiple plants, so they were limited by the overall quantity of native substrates but not by
the architecture of individual native plant species. Irregular web-spiders built their webs
within individual plants and were greatly constrained by the diminutive architecture of native
plant substrates, so they were limited both by quantity and quality of native substrates. Eval-
uating native species traits in the context of invader-driven change can explain invasion out-
comes and help to identify factors limiting native populations.

Introduction

The introduction of exotic organisms can result in immediate and substantial reorganization of
native species within recipient communities [1]. Yet, the mechanisms driving native species
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responses to invasions are not well understood. Advances have been made in elucidating how
invaders negatively impact native species via competition, consumer interactions, and natural
enemies [2-4]. However, some exotic species generate a range of positive responses in native
species [5, 6]. The positive effects of invaders on resident species has received far less attention,
yet positive interactions are critical aspects of community structuring (e.g., [7]). Understanding
how anthropogenic perturbations like biological invasions will affect native communities
requires accounting for the full range of potential responses of native species from negative to
neutral to positive [8]. Moreover, understanding the mechanisms that underlie native species
responses to invasions can help elucidate those factors structuring native communities.

Niche theory proposes that a species’ presence or absence and relative abundance within a
community is determined by how its functional traits interact with biotic and abiotic processes
to determine its fundamental and realized niches [9-11]. This body of theory should also be
applicable for understanding native species responses to invasions and other anthropogenic
perturbations. However, an important caveat in applying niche theory to invasions is that inva-
sions more often involve “community reassembly” in response to a new community member,
rather than complete community assembly as is often idealized in community theory. That is
to say, the initial composition and relative abundance of native system has already been deter-
mined by regional and local filters, so that the introduction of an exotic organism creates a
biotic perturbation that reorganizes native species within an already defined parameter space.
Within this framework, it should be possible to understand how native species respond to an
invasion by evaluating how the invader’s traits alter the system (biotically and/or abiotically)
and how native species traits align or fail to align with these new conditions. While functional
traits of invaders have been examined extensively in an effort to predict invader success [12],
few studies have explored how functional traits of native species might help predict their
responses to invasion in the context of fitting those traits to invader-driven change [8].

Native web spiders represent an important guild of predators that are strongly influenced
by exotic plant invasions [13-16], an outcome that can have profound food web ramifications
[17]. These spiders exhibit a range of web-building strategies that represent extended pheno-
types or functional traits which are tightly linked to their ecological roles in native communities
[18, 19]. Because different web designs require specific substrate attributes, web spiders are sen-
sitive to habitat modification [16, 18, 20]. Hence, web spider responses to plant invasions
should be predictable, at least in part, as a function of how plant invasions alter web substrates
in relation to specific web-building strategies.

In the intermountain grasslands of the western United States, invasions by the perennial
forb spotted knapweed (Centaura stoebe L. formerly C. maculosa) have been linked to a dra-
matic reshuffling of native web spider communities ([13], Smith pers. obs.). In invaded areas,
native web spiders primarily use C. stoebe’s persistent, standing dead stems as web substrate,
secondarily moving to new growth later in the summer as the plants get taller and intermingle
with previous years’ dead stems [13]. Late stage C. stoebe invasions may result in an approxi-
mate 20-fold increase in orb weaver densities and a near 80-fold increase in irregular web spi-
der densities [13]. These changes in native spider abundance have been attributed to a shift in
plant architecture associated with the fact that C. stoebe and other invading forbs generate tal-
ler, more expansive, and far more abundant flowering stems than the native forbs commonly
used by native spiders [13, 21]. However, studies to date have been observational, comparing
spider populations between invaded and uninvaded grasslands. Because C. stoebe invasions
greatly alter native plant, vertebrate, and invertebrate communities [22-24], all of which could
affect native spider populations [14-16], the specific mechanism by which C. stoebe invasion
affects spider populations is not certain. As this example demonstrates, only so much can be
learned from biological invasions using observational approaches. Yet, there have been
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remarkably few large-scale in situ invasion experiments demonstrating the causal mechanisms
underlying invasion outcomes.

Here, we set out to disentangle the effects of C. stoebe invasion on native spider species in
this system by conducting a large-scale simulated invasion. In particular, we wished to deter-
mine whether linking novel aspects of the invader’s traits with native species traits could
explain the natives’ responses to invasion. Our objectives were to (1) experimentally determine
whether the invader’s architecture caused native web spider population changes observed in
natural invasions and (2) evaluate whether differences in web construction strategies could
explain the differences in population responses of native spider species to C. stoebe invasion.
To accomplish this, we simulated large-scale in situ invasions by introducing only dead stems
of C. stoebe into native grasslands in order to isolate the plant’s architecture from other effects
of invasion. We compared web construction, prey capture rates, reproduction, and population
densities of spiders on these simulated invasion plots with adjacent control plots (no stems
added), with initial spider densities on all plots standardized by removing native spiders and
seeding plots with known spider densities. We predicted that spider population responses to
the simulated invasion treatments would mimic those observed in natural invasions if invader
architecture was the primary factor driving spider responses. We also predicted that population
and demographic responses of different spider species to the treatments should link to differ-
ences in web construction strategies if web construction was the key trait determining native
species responses to invasion.

Materials and Methods
Ethics statement

Fieldwork was conducted with permission on public lands managed by Montana Fish, Wildlife,
and Parks; Montana Department of Natural Resources and Conservation; U.S. Fish and Wild-
life Service; the Bandy Ranch deeded to the Montana Forest and Conservation Experiment Sta-
tion at the University of Montana; and private lands owned by Verne Imboden. All methods
used in this study complied with the requirements of the Institutional Animal Care and Use
Committee of the University of Montana, which does not require protocol review or permits
for research with invertebrates. During the experiment we avoided any unnecessary harm, suf-
fering, or distress to study subjects. This research did not involve endangered or protected
species.

Study system

We conducted our research in the semi-arid, low-elevation grasslands of the Rocky Mountains
in the Blackfoot Valley of western Montana, USA. These grasslands are dominated by one
native bunchgrass (Festuca capestrus Rydb., formerly F. scabrella; Fig 1A), with native forbs
comprising much of the plant diversity. Forbs, primarily their standing dead stems, serve as the
dominant web substrates for native spiders in this habitat. However, native forbs are highly
ephemeral, flowering in the wetter months of May and June and senescing by mid-July, leaving
few residual standing stems for most of the year. They also generate flowering stems that are
shorter, less expansive, and less abundant than C. stoebe (and other invaders), thereby provid-
ing lower quality and less plentiful substrates for web-building spiders ([13, 21], Fig 1B and
1C). Web-building spider communities in this system are fairly simple, being comprised of
only a few species of cribellate or irregular web spiders (Family Dictynidae: Dictyna major
Menge and D. coloradensis Chamberlin), orb weaving spiders (Family Araneidae: Aculepeira
packardi Thorell; Family Tetragnathidae: Tetragnatha laboriosa Hentz), and funnel web
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Fig 1. Plant architecture changes following C. stoebe invasion in Montana. (A) Native, uninvaded
grasslands dominated by bunchgrasses; (B) grasslands invaded by Centaurea stoebe; and (C) native spiders
building webs on C. stoebe plant architecture.

doi:10.1371/journal.pone.0153661.g001
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weavers (Family Agelenidae), none of which are abundant [25]. Of these groups, Dictyna spp.,
A. packardi, and T. laboriosa were the most abundant in our study areas.

D. major and D. coloradensis dominate most web-building spider communities in western
Montana grasslands [13]. These two species are ecologically similar [26] and indistinguishable
in the field (J. Slowik, University of Alaska Fairbanks, pers. comm.), thus we treat them as a spe-
cies complex and refer to them as Dictyna. However, identification of specimens from our pop-
ulations indicate about 95% of the spiders are D. coloradensis. Dictyna are small spiders
(female mean total body length approximately 3 mm for D. major and 3.8 mm for D. colora-
densis) that overwinter in the plant litter as sub-adults, emerging in April and May as the tem-
perature warms [27, 28]. These spiders breed and begin to produce egg sacs (1-5) by the end of
June through mid-July. Spiderlings emerge and disperse by ballooning in mid- to late-July. Dic-
tyna prey mostly on small insects (e.g. Hymenoptera, Diptera), which they capture and retain
in their webs [27].

The orb-weavers are the second most abundant group of web-building spiders in these
grasslands, with Aculepeira packardi being the most abundant. These are larger spiders (female
mean total body length 10.77 + 2.19 mm) [29]. Sub-adults overwinter in plant litter, emerging
in spring. A. packardi construct large, orb webs by attaching their silk to multiple plants, sus-
pending their web between plant substrates. Adults become sexually mature in early August,
with females producing 1-3 egg sacs by late August into September [30]. Spiderlings emerge
and immediately disperse from their mother’s web via ballooning by mid-September. Tetra-
gnatha laboriosa is the second most common orb-weaver present, albeit in much lower abun-
dances. This species has a long, slender body (female mean total body length 6.17 + 0.43 mm)
and long legs [29]. T. laboriosa construct nearly horizontal orb-webs and in this system sus-
pend their webs between multiple plant substrates [31]. Reproductive timing is similar to A.
packardi [31]. Both orb-weavers have a broad spectrum of prey items (i.e. Orthoperta, Homo-
ptera, Diptera, Coleoptera, and Hymenoptera), which can range in size by nearly two orders of
magnitude [29, 31, 32].

Experimental design and sampling methods

We simulated invasions by introducing dead C. stoebe stems into native, uninvaded, grasslands
at three sites in May 2011 (Fig 2). At each site three 0.25 ha (50 x 50 m) paired plots were estab-
lished; one plot received the simulated invasion treatment of 1250 dead C. stoebe stems with
seed heads removed (to prevent invasion), the other plot served as a control with no stems
introduced (Fig 2; Ngimulated invaion = 3> Neontrol = 3). C. stoebe stems were collected locally and
set out in a grid of 25 rows spaced 2 m apart, with 100 stems placed 0.5 m apart in each row.
Stems were replaced as needed throughout the study to maintain 2500 stems on simulated
invasion plots. Due to logistical constraints of conducting a large-scale in situ experiment, stem
densities simulate a light or early invasion compared with heavily invaded areas where stem
densities can average 320,000 stems/0.25 ha [21].

Two weeks after knapweed stems were erected on the simulated invasion plots (mid-May
2011), spider densities were standardized across treatment and control plots by removing all
web-building spiders and reseeding plots with known numbers of spiders. This is feasible
because spider densities in these grasslands are extremely low and webs are very visible on veg-
etation during early morning hours (i.e. low light, dew covered webs). Removal and reseeding
of spiders was completed at both control and treatment plots at a given site on the same day,
with all sites completed over 3 consecutive days. Additionally, equal search effort was given to
treatment and control plots, thus if spiders happened to be missed the likelihood should be
equivalent between paired plots. Each plot was then seeded with 20 female Dictyna and 10
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Fig 2. Map showing locations of the three study sites (Harper’s Lake, Blackfoot Clearwater Game Range, Bandy Ranch) located in the Blackfoot
Valley of western Montana, USA. The spatial layout of simulated invasion treatment and control plots is also shown. Dashed lines on treatment plot
represent survey transects and locations of introduced C. stoebe stems. Distances between treatment and control plots ranged between 25-50 m at all sites.
Map Data: Google, Landsat.

doi:10.1371/journal.pone.0153661.9002

female A. packardi (= initial seeding densities). Spiders were placed on native vegetation
throughout each plot. These species were chosen as focal subjects because they represent the
two distinct web-building groups that show different response to C. stoebe invasion. Differ-
ences in seeding densities reflect relative abundances of these spiders in the native grasslands of
western Montana (J. Smith, pers. obs.). T. laboriosa was not experimentally added, but natu-
rally colonized and so was quantified where possible.

Sites were sampled during summers 2011 and 2012 with three sampling events taking place
each year (June, July, and August) to determine demographic and population responses of
each species and to identify potential mechanisms underlying community-level responses to
invasion. During each sampling period, abundance of each species was censused by walking 50
transects per plot (spaced 2 m apart), finding occupied webs, counting the number of spiders
in each web, and noting the sex (male, female) and maturity (adult, juvenile) of observed indi-
vidual(s). The length and width of each observed web was measured to the nearest 0.5 cm with
a tape measure following Pearson 2009 [13]. These data were then used to calculate web area
based on the geometry of a triangle [26]. In each web we counted whole prey items and each
individual prey item was measured to the nearest 0.005 mm with digital calipers. The number
of spiderlings present in each web was also recorded. Web area, prey number and size, and spi-
derling number were assessed during all sampling periods in 2011. These metrics were only
observed during June 2012 in the second year of study due to increased spider abundances
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making collection of these metrics time prohibitive in July and August. The abundance of avail-
able prey on treatment and control plots was assessed in mid-July 2012 by sweep net sampling.
Ten equally spaced 50 m transect sweep net samples were collected on each plot by sweeping
once every meter (= 50 sweeps) at 0.5 m above the ground [33]. Sweep net sampling took place
between rows of stems on simulated invasion plots. Abundance of available prey in each sweep
sample was tallied by counting only those invertebrate species which were previously observed
in webs during surveys.

Analyses

The change in abundance of focal spider species (Dictyna, Aculepeira, Tetragnatha) from initial
seeding densities to final sampling densities (August 2012 abundance—seeding densities) in
response to simulated invasion treatment (simulated invasion vs. control) were analyzed using a
permutational multivariate analysis of variance (PERMANOVA) in the R statistical package
version 3.2.2, with Euclidean distance and 720 permutations using the Adonis function (package
vegan) [34-36]. This analysis allowed us to assess population-level effects of the simulated inva-
sion treatment by taking into account the potential interdependence of the species’ abundance
responses while also enabling simultaneous investigation of species-specific population
responses. It was selected because it is robust to heterogeneity of dispersion between groups,
small sample sizes, and negative data [35]. Demographic effects (i.e. web size, prey captures,
overwinter survival, and reproduction) of the simulated invasion treatment were analyzed on a
species-specific basis in Dictyna and Aculepeira using linear mixed effects models (LMM),
which allowed us to account for differences between sites. The effect of invasion treatment on
average web area was analyzed with LMMs using PROC GLIMMIX in SAS version 9.2, with
treatment and year as fixed effects, and site as a random blocking factor, using a log normal dis-
tribution to meet model assumptions [37]. We tested for differences in average web area across
sampling periods (June, July, and August) in 2011 using LMMs (package nlme) in R with plot
and sampling period as fixed effects and site as a random blocking factor, using a log normal dis-
tribution [36, 38]. The effect of simulated invasion on number of prey captured per web was
analyzed with LMMs using PROC GLIMMIX in SAS, with treatment as a fixed effect and site as
a random blocking factor, using a negative binomial distribution. The effect of simulated inva-
sion on the probabilities of capturing prey and capturing large prey (> 3 mm for Dictyna, > 4
mm for Aculepeira) was done with LMMs using PROC GLIMMIX in SAS, with treatment as a
fixed effect and site as a random blocking factor using logistic regression with a binomial distri-
bution [37]. Available prey was analyzed using LMM in R (package nlme) with treatment as a
fixed effect and site as a random blocking factor [36, 38]. Analysis of overwintering survival or
the change in abundance between year one and two of study (June 2012 —~August 2011) was
only conducted for Dictyna due to logistical issues that prevented sampling Aculepeira popula-
tions in 2011 after recruitment. This was done using a LMM in R (package nlme) with treatment
as a fixed effect and site as a random blocking factor [36, 38]. Analysis of the number of spider-
lings per female was only conducted for Dictyna in 2011 due to sampling constraints explained
further in Results. This was done with a LMM using PROC GLIMMIX in SAS, with treatment

as a fixed effect and site and sampling period as random blocking factors using a negative bino-
# juveniles August 2012
# reproducing females June 2012

mial distribution [37]. Mean number of juveniles per female (= ) was ana-

lyzed using LMMs in R (package nlme) with treatment as a fixed effect and site as a random
blocking factor [36, 38]. For all analyses, we inspected plots of residuals against predicted values
to assess model fit and found no indications of significant deviations from assumptions of lin-
earity and homoscedasticity.
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Results

Web-building spider populations were 31 times higher on simulated invasion plots (N = 3,

X = 872.333 £ 208.132 SE) compared to controls (N =3,x = 28.667 & 7.265 SE) at the end
of the study (PERMANOVA: F, , = 13.72, P = 0.1; Fig 3; S1 Table). Dictyna populations increased
dramatically in response to the treatment with final densities 31 times higher on simulated inva-
sion plots (X = 840.667 £ 212.289 SE) compared to controls (X = 27.333 £ 7.881 SE, F; 4, =
13.7, P = 0.098). Similarly, final Aculepeira densities were 23 times higher on simulated invasion
plots (x = 31.0 £ 13.429 SE) compared to controls (x = 1.333 £ 0.667, F, , = 4.87,

P =0.113). Tetragnatha only colonized simulated invasion plots.

Species-specific demographic responses to the simulated invasion treatment appeared to be
related to web-building strategy. Dictyna constructed larger webs on treatment versus control
plots (Table 1, Fig 4A). Although Dictyna webs were larger in 2012 compared to 2011, the pat-
tern of larger webs on simulated invasion plots held in both years (Table 1). Aculepeira web
size did not differ by invasion treatment, year, or their interaction (Table 1, Fig 4B). Web size
data was pooled in 2011 as webs of both spider species do not persist across sampling periods

A Tetragnatha

June 2011

August 2011 June 2012 August 2012

Fig 3. Spider density (mean £ SE) on plots where C. stoebe dead stems were introduced (simulated invasion) compared to control plots for three
dominant grassland spiders over two-years (2011-2012). Spider density on treatment plots was >30x higher in Dictyna and >23x higher in Aculepeira

compared to controls (see Results).

doi:10.1371/journal.pone.0153661.9003
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Table 1. Results from linear mixed effects models testing the effects of simulated invasion treatment and year on web area, proportion capturing
prey, number of prey per web, proportion capturing large prey, number of spiderlings per female, and number of juveniles per female.

Treatment effect Year effect Treatment x Year
Species Spider species responses df F P df F P df F P
Dictyna Web area 1,4 57.23 0.002 1,4 21.40 0.010 1,4 0.34 0.591
Proportion capturing prey 1,4 9.73 0.036 1,4 6.17 0.068 1,4 0.03 0.877
# Prey/web 1,4 4.51 0.101 1,4 10.07 0.034 1,4 0.07 0.811
Proportion capturing large prey 1,4 0.00 0.969 1,4 0.00 0.974 1,4 0.00 0.975
# Spiderlings/female 1,4 4.27 0.108
# Juveniles/female 1,2 62.96 0.016
Aculepeira Web area 1,4 0.39 0.579 1,4 0.28 0.632 1,4 1.76 0.276
Proportion capturing prey 1,4 7.75 0.069 1,4 3.88 0.143 1,4 3.12 0.176
# Prey/web 1,4 1.82 0.270 1,4 1.25 0.345 1,4 1.35 0.329
Proportion capturing large prey 1,4 2.02 0.250 1,4 0.55 0.512 1,4 1.01 0.389
# Spiderlings/female
# Juveniles/female 1,2 1.64 0.329

doi:10.1371/journal.pone.0153661.t001

(~1 month) and web area did not differ between sampling periods (Dictyna F{’5; = 1.835,
P =0.178; Aculepeira F'%" = 0.907, P = 0.349).

The larger Dictyna webs constructed on treatment plots were more likely to capture prey
(Table 1, Fig 4C). The likelihood of capturing prey tended to be higher in 2011 compared to
2012, but the pattern of Dictyna being more likely to capture prey on simulated invasion plots
held in both years (Table 1, Fig 4C). Mean number of prey captured in Dictyna webs trended
towards being greater on simulated invasion plots compared to control plots, and although
Dictyna captured more prey in 2011 compared to 2012, there was no interaction between treat-
ment and year (Table 1, Fig 4E). The likelihood of Aculepeira capturing prey was not different
between control and treatment plots (though there was a trend toward higher captures on the
control plots), between years, or treatment by year (Table 1, Fig 4D). There was no difference
in the mean number of prey captured per web by treatment, year, or their interaction (Table 1,
Fig 4F) for Aculepeira. Dictyna on treatment plots were not more likely to capture large prey
(> 6 mm), there were no differences between years, nor was there an interaction between treat-
ment and year (Table 1, Fig 4G). Similarly for Aculepeira there were no differences in the pro-
portion of individuals capturing large prey by treatment, year, or their interaction (Table 1, Fig
4H). Abundance of available prey surveyed in July 2012 did not differ between control and
treatment plots (F; , = 4.96, P = 0.156; S2 Table).

Overwintering survival did not differ for Dictyna on treatment versus control plots (F; , =
0.015, P = 0.913). During sampling in July and August 2011, Dictyna webs on treatment plots
tended to have more spiderlings compared with on control plots (Table 1, Fig 5A). Timing of
sampling in 2012 missed capturing this metric for Dictyna, thus only 2011 data are presented.
Aculepeira spiderlings disperse rapidly from their natal web, making quantification of this
reproduction metric unfeasible. Thus, interspecific comparisons of reproduction were con-
ducted on the mean number of juveniles per female, which was shown to be higher on treat-
ment compared to control plots for Dictyna, but not for Aculepeira (Table 1, Fig 5B). T.
laboriosa only colonized simulated invasion plots, so formal statistical analyses were not possi-
ble for web size, prey capture rates, and recruitment.
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Fig 4. Responses of Dictyna (left) and Aculepeira (right) spiders to simulated C. stoebe invasion in
terms of web area (mean * SE, raw data; A, B), proportion of females capturing prey (mean * SE; C, D);
number of prey captured per web (mean * SE; E, F), and the proportion capturing large prey

(mean * SE; G, H). Dictyna on simulated invasion plots constructed larger webs that increased their
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likelihood of capturing prey compared to webs on control plots. We observed no differences in any of these
investigated metrics in Aculepeira between simulated invasion and control plots, however Aculepeira on
control plots tended to be more likely to capture prey (see Results).

doi:10.1371/journal.pone.0153661.g004

Discussion

Exotic species invasions restructure recipient communities around the world, yet we seldom
understand the mechanisms driving native species responses to invasions. Here, we use a large-
scale simulated invasion experiment to show that native web spider population responses to C.
stoebe invasions can be explained as a function of how key invader traits interact with species-
specific traits of the natives. By introducing only dead stems of C. stoebe into native grasslands,
we caused dramatic increases in native web spider populations that paralleled those docu-
mented following natural invasions [13]. This result suggests that C. stoebe’s architecture is the
primary trait causing native web spider responses to invasion. We also show that the mecha-
nism underlying differences in species-specific responses to simulated invasion derived from
differences in web-building behavior, particularly as they relate to web substrate constraints in
the native system. While web-spiders generally exhibited strong population responses to the
simulated invasion treatment, the strongest population response in Dictyna was additionally

A

25 Simulated invasion [l
Control []

20
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1.0
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Mean number of
spiderlings/female
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o

-
(6]

Mean number of
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3

0 |
Dictyna Aculepeira

Fig 5. (A) Mean number of spiderlings per female (mean * SE) in 2011 and (B) mean number of
juveniles per female (mean * SE, raw data) in 2012 for Dictyna and Aculepeira. There were more Dictyna
juveniles present and spiderlings tended to be higher on simulated invasion plots compared to controls. We
saw no differences in reproduction by treatment for Aculepeira (see Results).

doi:10.1371/journal.pone.0153661.g005
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associated with increased web size, higher prey captures, elevated recruitment, and greater
release from substrate constraints. Examining in detail how these web-building behaviors relate
to demographic and population responses of native spiders to invasion helps to elucidate key
factors (i.e. web substrate quantity and quality) constraining and structuring the native web-
spider community.

One of the greatest barriers to understanding biological invasions is the challenge of experi-
mentally manipulating invasions at appropriate spatial scales. Large-scale, in situ experimental
examinations of invasions are rare due to logistical, economical, and ethical constraints, but
such studies are necessary to fully understand outcomes of perturbations like species introduc-
tions (e.g., [24]). While we overcame many of these constraints, we were still limited to three
replicate sites, which limited our ability to demonstrate clear statistically significant differences
in web spider populations between simulated invasion and control plots. Nonetheless, the
degree of differences in population responses and consistency with observations following nat-
ural invasions [13] suggest that these findings are biologically quite significant. Moreover, our
experimental treatment was conservative and basically simulated earlier stages of invasion
given that the C. stoebe stem densities we used were two orders of magnitude lower than the
densities C. stoebe can achieve through natural invasion [21].

The irregular web spiders, Dictyna, showed the strongest positive responses to simulated
invasion. Final Dictyna mean densities were 841 spiders/0.25 ha on simulated invasion plots
versus 27 spiders/0.25 ha on control plots (>30 times higher densities on treatment). The orb
weaving spiders, Aculepeira, also showed strong positive population responses following simu-
lated invasion. Aculepeira mean densities were 31 spiders/0.25 ha on simulated invasion grids
versus 1 spider/0.25 ha on control grids (>23 times higher densities on treatment) and Tetra-
gnatha naturally colonized only simulated invasion grids. Overall, spider population responses
suggested that initial seeding densities were reasonable and that the study duration was suffi-
cient to capture equilibrium responses to initial stages of invasion for Aculepeira on both treat-
ment and control plots and for Dictyna on controls. On control grids, Dictyna densities
fluctuated but remained fairly stable, ending at levels slightly higher than seeding densities.
This result suggests that initial seeding densities approximated native carrying capacity for Dic-
tyna. In contrast, Aculepeira declined rapidly on control plots to stabilize at very low densities,
suggesting that initial seeding densities were likely high despite attempts to adjust for the lower
natural densities of this species when seeding the plots. The addition of a non-manipulated
(= no spiders added) reference plot at each site would have allowed quantitative assessment of
initial seeding densities on control plots and provided stronger inference into if final spider
densities had indeed reached a new equilibrium. On experimentally invaded plots, the popula-
tions of both species increased substantially, but differed in that Aculepeira densities appeared
to stabilize by the end of the experiment while Dictyna were still increasing (Fig 3). This result
suggests that at the termination of the experiment Aculepeira densities approximated their
maximal response to the treatment, while Dictyna populations were still increasing, despite
their dramatic positive population response over the first two years. It is important to note that
our study ran for only two years and it is possible that competition for prey or web substrates
could become important factors as one or both species continue to increase in abundance over
time. For example, Aculepeira constructing webs on simulated invasion plots tended to be less
likely to capture prey compared to Aculepeira on control plots. This result suggests that Acule-
peira populations may become prey limited as Dictyna populations continue to increase. How-
ever, observational studies suggest that over the long term both species increase substantially in
invaded compared to uninvaded habitats.

Identifying the key invader attributes restructuring the recipient community is a prerequi-
site to linking native species traits to their responses to invasion. Of course, key invader traits
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will differ as a function of the native species being considered. Invasion by C. stoebe affects
many community attributes, including plant diversity and productivity, invertebrate abun-
dance and composition, and abundance of birds and small mammals [22-24, 39-41], all of
which could affect spider populations. However, by experimentally isolating C. stoebe’s plant
architecture from all other aspects of its invasion, we established that changes in architecture
alone are sufficient to drive increases in native web spider populations to levels that mimic
those observed following C. stoebe invasions. This outcome confirms that C. stoebe affects
native spider populations by serving as an invasive ecosystem engineer in this system [17]. In
particular, C. stoebe invasion in these grasslands alters two important aspects of vegetation
architecture that reflect important attributes of spider habitat—substrate quantity and quality.
Increased substrate quantity is likely the primary driver of the dramatic increases in web-spider
abundance or at least the necessary first step, given the severity of substrate constraints in this
system [13, 21]. Increasing substrate availability for sessile organisms with high reproductive
outputs commonly results in population increases due to release from substrate limitation (see
[42]). Not surprisingly then, other invasive ecosystem engineers like zebra mussels (Dreissena
spp.) have been shown to dramatically increase the abundance and richness of native species
by reducing substrate limitation [43]. However, within our system, the higher quality (e.g.,
larger, more expansive, and more persistent architecture; Fig 1B) of C. stoebe substrates also
allowed Dictyna to build 4.4 times larger webs that captured 5.0 times more prey and more
than doubled their chances of reproduction, suggesting substrate quality may also feed into
this process. Aculepeira showed no indication of change in web size or reproductive output on
simulated invasion plots compared to controls, indicating that increases in their abundance, at
least in simulated early stages of invasion, was due solely to increased substrate quantity releas-
ing them from substrate limitation. Given that Aculepeira may have experienced reductions in
prey captures on simulated invasion plots, it is possible that resource competition could limit
their populations in later stages of invasion.

An important question is, why do these spider species respond so differently to invasion,
and what can such invasions teach us about native community structuring? The substantial dif-
ferences in the strength of the responses of Dictyna compared to Aculepeira following release
from substrate limitation appeared to be driven by differences in their web-building behaviors
relative to substrate constraints present in their native pre-invasion system. Because Dictyna
construct their webs entirely within individual plants and most native plant species in our sys-
tem provide diminutive substrates for this species, web-building in these irregular web spiders
is severely constrained and every new C. stoebe stem offers a functionally viable web substrate
that also allows it to plastically increase its web size and improve its fitness through higher prey
captures. This phenomenon may extend to other spiders in this system that use individual
plant substrates as well. However, orb weavers like Aculepeira, Tetragnatha, and others that
use multiple plants to suspend their webs are unconstrained by individual plant characteristics,
and thus are much less constrained by the quality of native plant architectures.

These findings shed light on the factors determining native spider community structuring
in this system. Although spiders can be food- [15, 18, 44-47] or substrate-limited [48-50], in
this system substrate limitation appears to be severe and may be the primary factor limiting
native web spider diversity in these species-poor grasslands. Native spiders appear to produce
more offspring than can find suitable substrates for establishment. Hence, increases in sub-
strate quantity can have very powerful and immediate effects on the spider community. How-
ever, our results also show that species- or guild-specific web construction traits relative to
substrate attributes have very important ramifications for how spider communities are ulti-
mately structured. For the irregular web spiders like Dictyna and other species exhibiting plas-
ticity in web construction, changes in substrate quality could also increase reproduction by
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releasing spiders from food limitation. Orb weavers in contrast are commonly more fixed in
their web construction behaviors [51-53] and while orb weavers have been shown to be flexible
to spatial constraints [54] they may be less capable of exploiting this type of change in vegeta-
tion architecture.

Biological invasions disrupt and reorganize communities around the world, yet we seldom
understand the community-level ramifications of such invasions. This is largely because tradi-
tional approaches in invasion biology have relied heavily on observational studies. Our study
demonstrates how simulated in situ invasions may be used to identify and understand the
mechanisms restructuring native communities, while also demonstrating the inherent chal-
lenges of executing such experiments. Furthermore, our work suggests that linking functional
traits of native species to invader traits (or invader-driven changes in the recipient community)
can improve understandings of community reassembly following invasion. Retrospective stud-
ies like ours applied to other invaders may help to identify the mechanisms underlying invasion
outcomes. Moreover, applying retrospective understandings and general niche theory to new
systems may prove effective for predicting invasion outcomes. For example, exotic forb inva-
sions into grasslands in central Argentina appear to increase the complexity of plant architec-
ture and local densities of native web spiders in a manner very similar to what we have shown
here (D.E. Pearson pers. obs.). Mechanistic understandings like those we have developed here
could be applied to this system and others to test predictions for native web spider responses as
well as the responses of their prey.
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