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Distinct methylation signals are found in non-atopic and atopic asthma. Most are related to gene
expression and are replicated in asthma-relevant tissues, confirming the value of blood DNA
methylation for identifying novel genes linked in asthma pathogenesis. https://bit.ly/2VnbJg3
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ABSTRACT Epigenome-wide studies of methylation in children support a role for epigenetic
mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We
conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in
relation to non-atopic and atopic asthma.

We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286
participants in a case-control study of current adult asthma nested within a United States agricultural
cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as
atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group
of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression.

No associations were observed with atopy without asthma. Numerous cytosine–phosphate–guanine
(CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER)
p<9×10−8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG
sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104
FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated
in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were
enriched in pathways related to the nervous system or inflammation.

We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma.
Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk
and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma.
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Introduction
Asthma is a heterogeneous, chronic disease of the airways that affects over 300 million people worldwide [1].
Although asthma has a substantial familial component, only a small portion of the variation in disease risk
and heritability is explained despite large genome-wide association studies (GWAS) [2, 3]. Epigenetic
mechanisms may contribute to the unexplained variation and the best-studied epigenetic modification is
DNA methylation.

Most epigenome-wide association studies (EWAS) of methylation in relation to asthma have been
conducted in children [4]; however, asthma risk factors and pathogenetic mechanisms vary between
children and adults [3]. Compared to childhood asthma, a higher proportion of adult asthma is non-atopic
and pathogenesis of asthma may differ by atopy status. The few published EWAS in adults have fewer than
80 asthma cases, measured DNA methylation using the older Illumina Infinium 27K BeadChip or 450K
BeadChip, or did not stratify by atopy status.

Using DNA from blood, we conducted the largest EWAS of DNA methylation and adult asthma to date,
using the more comprehensive Illumina Infinium MethylationEPIC BeadChip, which assesses methylation
at over 850 K cytosine–phosphate–guanine (CpG) sites. To better elucidate the pathogenesis of asthma, we
stratified by atopy, defined objectively by specific immunoglobulin E (IgE). We assessed the potential
functional impact of the differentially methylated CpG sites through enrichment of functional genomic
features, pathway analyses, associations with gene expression and identification of druggable targets. We
replicated our differentially methylated CpG sites in blood using existing studies with methylation assessed
in whole blood, purified eosinophils, nasal epithelium, or bronchial airway epithelium.

Methods
Study population
Participants were enroled in the Agricultural Lung Health Study (ALHS), a case-control study of adult
current asthma nested within the Agricultural Health Study (AHS). The AHS is a cohort of farmers and
their spouses from Iowa and North Carolina. Details of the AHS and ALHS have been described
previously [5, 6]. The ALHS enroled 3301 participants in the period 2009–2013.

Based on responses to an AHS questionnaire administered in the period 2005–2010 (data version
P3REL201209.00), the ALHS enroled asthma cases using three definitions: 1) self-reported current
diagnosed asthma without any self-reported diagnosis of chronic obstructive pulmonary disease (COPD)
or emphysema (n=876); 2) potential undiagnosed asthma identified by self-report of current asthma
symptoms or use of asthma medication without COPD or emphysema diagnosis among never smokers or
light, former smokers (⩽10 pack-years) (n=309); or 3) current self-reported diagnosed asthma with COPD
or emphysema diagnosis among never smokers or light, former smokers (⩽10 pack-years) (n=38).
Controls (n=2078) were randomly selected from the AHS participants without the above criteria. A full
description of the methods can be found in the supplementary material.
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All participants provided informed consent and the Institutional Review Board at the National Institutes of
Health approved this study.

Stratification by atopy
Atopy was determined by a positive blood IgE test (based on IgE ⩾0.70 IU·mL−1) [7] to at least one of 10
common antigens: Bermuda grass, ragweed, Timothy grass, mountain cedar, Alternaria, dust mite, cat
dander, milk, egg and wheat. IgE was measured at ImmuneTech (Foster City, CA, USA) using the
Luminex platform (Luminex Corp., Austin, TX, USA). Asthma case-control status was stratified by atopy
to categorise individuals into one of four mutually exclusive groups: atopy alone (individuals with atopy
but without asthma), non-atopic asthma (individuals with asthma but no atopy), atopic asthma
(individuals with asthma and atopy), or non-cases (individuals with neither asthma nor atopy).

DNA methylation and quality control
The DNA was bisulfite converted using the EZ-96 DNA Methylation kit (Zymo Research Corp., Irvine,
CA, USA). Methylation was assessed for 2391 ALHS participants using the Infinium MethylationEPIC
BeadChip, following Illumina’s protocol.

Sample level quality control excluded 102 participants with either 1) >5% of CpG sites with detection
p-values greater than 1.0×10−10 or 2) intensity values less than three standard deviations below the mean
bisulfite control intensities. In addition, one participant was excluded due to a sex mismatch. CpG sites
were removed if >5% of samples had detection p-values greater than 1.0×10−10 (n=31533). Background
correction and dye-bias correction were done using “Relic” in ENmix [8, 9]. Data were normalised using
inter-array (quantile) normalisation [8]. Probe-type bias adjustment was conducted using the “Rcp”
function in ENmix [10]. We corrected for batch effect (i.e. plate effect) using “ComBat” in sva [11]. We
used “gaphunter” in minfi to trim extreme methylation outliers at individual CpG sites (threshold=0·3,
outCutoff=0·0025) [12]. We analysed 817235 autosomal CpG sites.

Among the 2286 participants with methylation data passing quality control and with complete
information on smoking history, there were 185 with atopy alone, 673 with non-atopic asthma, 271 with
atopic asthma and 1157 non-cases (supplementary figure E1).

Cell type proportions
Details of the peripheral blood smears have been described previously [13] and were available in 1894
participants. Monocytes, lymphocytes, neutrophils and eosinophils were counted in smears without
platelet clumping and <20% smudged cells. Cell type proportions were calculated from counts for 1658
participants. For individuals without cell counts, cell type proportions were estimated from methylation
data using the Houseman method [14] with the REINIUS et al. [15] reference panel.

Identification of differentially methylated CpG sites
Epigenome-wide analyses were conducted using logistic regression separately for three outcomes: atopy
alone, non-atopic asthma and atopic asthma. Non-cases were the referent group. Untransformed β
methylation values were used as the predictor. All analyses were adjusted for age (continuous), sex, body
mass index (BMI) (continuous), smoking status (never, former, or current), pack-years of
smoking (number of packs smoked per day•years of smoking, continuous), state of residence (North
Carolina or Iowa) and four cell type proportions (monocyte, lymphocyte, neutrophil and eosinophil). As
farmers were less likely to be enroled in the busy autumn harvest season, we also adjusted for autumn
enrolment (yes/no). Significance was assessed using a family-wise error rate (FWER) of p<9×10−8 [16], as
well as a Benjamini–Hochberg false discovery rate (FDR) of less than 0.05 [17].

Several sensitivity analyses were conducted. To evaluate possible influences of asthma-related genotypes on
the associations, we calculated a weighted polygenic risk score for asthma using the results from a large
genome-wide meta-analysis of asthma [2]. Single nucleotide polymorphisms (SNPs) with p<5×10−8 were
clumped using PLINK (r2=0.5) to identify independent loci within ±250 kb [18]. Methylation analyses
were repeated adjusting for the polygenic risk score of asthma. We also repeated the analyses adjusting for
current farming status (i.e. currently farming crops, working with farm animals, or working with
pesticides). Analyses were conducted using the seven Houseman estimated cell types (monocyte, NK,
B-cell, CD4+, CD8+, neutrophil and eosinophil) instead of the four measured cell types. As we used a
stricter threshold to classify atopy than some previous studies, we conducted methylation analyses after
re-stratifying asthma case-control status with an atopy cut-off of ⩾0.35 IU·mL−1. Analyses were conducted
in R version 3.4.0 (www.r-project.org).
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Examination of polymorphic probes and additional filtering
We excluded cross-reactive probes [19], probes with SNPs at the extension base (minor allele frequency
>1%) [20] and “ch” probes from downstream analyses (i.e. enrichment of functional genomic features,
pathway analyses, expression quantitative trait methylation, druggable targets and replication look-ups).
We visually inspected distributions of significant CpG sites for departure from unimodality.

Enrichment of functional genomic features
We localised CpG sites to four genomic features: CpG islands, CpG island shores, promoters and
transcription factor binding sites. We evaluated enrichment or depletion for these features among
FDR-significant CpG sites using a two-sided Fisher’s exact test and applied a Bonferroni threshold
(p<0.05/4=0.0125). Enrichment of transcription factor motifs was identified using eFORGE TF [21]. We
used eFORGE version 2.0 to identify tissue-specific and cell type-specific enrichment in blood, lung and
fetal lung for the following functionally relevant genomic features: DNase I hypersensitive sites, 15
chromatin states and five histone marks [21].

Pathway analyses
We conducted pathway analyses using the “gsameth” function in the missMethyl package in R [22], which
accounts for the differing number of probes per gene. Pathways within the Kyoto Encyclopedia of Genes
and Genomes (KEGG) gene sets from the Gene Set Enrichment Analysis Molecular Signatures Database
(GSEA MSigDB) [23–25] were evaluated. We reported pathways with a nominal p-value of less than 0.05.

Expression quantitative trait methylation (eQTM) analyses
We evaluated association of significant CpG sites with expression of nearby genes (cis-eQTMs). We found
no studies with both gene expression and blood methylation based on the EPIC array. Therefore, we
evaluated eQTMs for the significant CpG sites present on the 450K array. Illumina 450K methylation and
gene expression data from RNA-seq were available in blood samples from 3075 adults in the
Biobank-based Integrative Omics Study (BIOS) consortium [26]. We evaluated cis-eQTMs using
expression transcripts within ±250 kb of each significant CpG site. Significance was assessed at FDR less
than 0·05.

Search for druggable targets among novel asthma genes
A previous systematic literature review [27] identified asthma-related genes from EWAS or a large asthma
GWAS and we updated their search to incorporate more recent studies. Genes not previously associated
with asthma were annotated to the ChEMBL database version 25 (released on January 02, 2019) to identify
approved or in development drugs that target novel genes implicated by our significant CpG sites [28].

Replication of findings in blood, eosinophils, nasal and bronchial epithelium
We looked up our FDR significant CpG sites identified in atopic asthma in two studies with blood
methylation: the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA)
and the Pregnancy and Childhood Epigenetics Consortium (PACE) meta-analysis [27]; in four studies with
nasal methylation: the Epigenetic Variation and Childhood Asthma in Puerto Ricans (EVA-PR) study [29],
the Inner-City Asthma Consortium (ICAC) study [30], the Prevention and Incidence of Asthma and Mite
Allergy (PIAMA) study [29] and Project Viva [31]; in one study with eosinophil methylation: the Saguenay–
Lac-Saint-Jean (SLSJ) study [32, 33]; and in one study with bronchial epithelium methylation [34]. FDR
significant CpG sites identified in non-atopic asthma were looked up in SAPALDIA, the PACE
meta-analysis, the EVA-PR study, Project Viva and the SLSJ study.

Results
Table 1 includes descriptive characteristics of the study population. The median age across the four
outcome groups ranged from 60–63 years. Participants with atopic asthma were more likely to have
adequately controlled asthma than participants with non-atopic asthma (58% versus 45%).

Atopy alone
No CpG sites were differentially methylated among individuals with atopy without asthma (n=185) compared
to non-cases (neither atopy nor asthma) (n=1157) at the FWER (p<9×10−8) or a FDR less than 0.05 (λ=0.97)
(supplementary figure E2). Using a lower atopy cut-off (⩾0.35 IU·mL−1), we compared 528 participants with
atopy alone to 814 non-cases and no CpG sites were significant. No additional analyses were conducted.

Non-atopic asthma
For non-atopic asthma participants (n=673) compared to non-cases (n=1157), eight CpG sites were
differentially methylated using the FWER (p<9×10−8) and 524 at a FDR less than 0.05 (figure 1). The top
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30 CpG sites are shown in table 2, while all FDR CpG sites are given in supplementary table E1. In 516 of
the 524 differentially methylated CpG sites, methylation was lower in non-atopic asthma participants
compared to non-cases. Systematic inflation was minimal (λ=1.14) (supplementary figure E3). All
differentially methylated CpG sites had a unimodal methylation distribution.

Results were not appreciably altered after adjusting for the polygenic risk score of asthma or current farming
status (supplementary table E2). Repeating analyses using the seven estimated cell types, instead of the four
measured and estimated cell types, resulted in greater inflation (λ=1.66; 127 CpG sites were significant at the
FWER, while 2243 were for a FDR less than 0.05) (supplementary table E2). When individuals were recategorised
using the less stringent atopy cut-off (⩾0.35 IU·mL−1) (483 non-atopic asthma participants versus 814 non-cases),
the number of associations decreased (nine CpG sites at a FDR less than 0.05) (supplementary table E2).

In case-only analyses (i.e. those restricted to non-atopic asthma participants), we calculated adjusted odds
ratios (ORs) for the 524 differentially methylated CpG sites, comparing 278 inhaled corticosteroid (ICS)
users to 395 non-users and found no significant associations (none had FDR less than 0.05). Adjusted
ORs comparing 131 non-atopic asthma participants with inadequately controlled asthma to 305 with
controlled asthma identified differential methylation (FDR less than 0.05) by asthma control at 17 of the
524 CpG sites (OR range 0.63–0.95) (supplementary table E3).

TABLE 1 Characteristics of participants in the Agricultural Lung Health Study (ALHS) stratified
by asthma and atopy status (n=2286)

Characteristic Non-cases#

(n=1157)
Atopy alone
(n=185)

Non-atopic asthma
(n=673)

Atopic asthma
(n=271)

Sex
Male 625 (54.0) 110 (59.5) 300 (44.6) 138 (50.9)
Female 532 (46.0) 75 (40.5) 373 (55.4) 133 (49.1)

Smoking status
Never 754 (65.2) 121 (65.4) 456 (67.8) 192 (70.9)
Former 342 (29.6) 56 (30.3) 201 (29.9) 68 (25.1)
Current 61 (5.3) 8 (4.3) 16 (2.4) 11 (4.1)

State of residence
Iowa 839 (72.5) 114 (61.6) 502 (74.6) 179 (66.1)
North Carolina 318 (27.5) 71 (38.4) 171 (25.4) 92 (33.4)

Autumn enrolment
Yes 219 (18.9) 45 (24.3) 179 (26.6) 75 (27.7)
No 938 (81.1) 140 (75.7) 494 (73.4) 196 (72.3)

Currently farming
Yes 797 (68.9) 130 (70.3) 440 (65.4) 180 (66.4)
No 360 (31.1) 55 (29.7) 233 (34.6) 91 (33.6)

Asthma control
Adequately
controlled

– – 305 (45.3) 156 (57.6)

Inadequately
controlled

– – 131 (19.5) 44 (16.2)

Missing data – – 237 (35.2) 71 (26.2)
ICS use
Yes – – 278 (41.3) 103 (38.0)
No – – 395 (58.7) 168 (62.0)

Age at home visit
years

63 (55–72) 60 (55–68) 62 (55–71) 60 (52–68)

Pack-years of
smoking¶

14.5 (2.3–35) 7.3 (0.9–25) 6 (1.5–19) 7.7 (1.5–21.3)

BMI kg·m−2 28.8 (25.6–32.6) 29.0 (25.3–32.5) 30.5 (26.9–35.1) 29.6 (26.1–33.9)
Cell type
Monocyte 0.08 (0.06–0.10) 0.08 (0.06–0.11) 0.07 (0.05–0.10) 0.08 (0.06–0.10)
Neutrophil 0.56 (0.48–0.63) 0.56 (0.47–0.63) 0.57 (0.48–0.65) 0.57 (0.50–0.65)
Eosinophil 0.01 (0.00–0.03) 0.02 (0.00–0.05) 0.02 (0.00–0.04) 0.02 (0.00–0.04)
Lymphocyte 0.34 (0.27–0.42) 0.34 (0.26–0.40) 0.33 (0.25–0.40) 0.32 (0.25–0.40)

Data are presented as n (%) or median (IQR). ICS: inhaled corticosteroids; BMI: body mass index; IQR:
interquartile range. #: non-cases are participants with neither asthma nor atopy; ¶: pack-years among
former and current smokers.
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Functional enrichment
Removing 15 potentially cross-reactive CpG sites [19] left 509 for downstream analysis. These CpG sites
were depleted for CpG islands (p=5.4×10−27), CpG island shores (p=0.0004) and promoters
(p=1.7×10−18) (supplementary table E4), enriched for transcription factor binding sites (p=1.4×10−13) and
enriched (FDR less than 0.05) for two transcription factor motifs (V_FOXO3A_Q1 and V_AIRE_01)
(supplementary table E5). Enrichment of DNase I hypersensitivity was observed in blood, fetal lung and
lung (supplementary figure E4). Of the 15 chromatin states, we observed enrichment for active
transcription start sites in blood, as well as enrichment for enhancers, weak transcription and strong
transcription in blood and lung (supplementary figure E4). Among histone marks, we found enrichment
for H3K4me1 in blood, fetal lung and lung, for H3K4me3 in blood and fetal lung, and for H3K36me3 in
blood (supplementary figure E4).

Pathway analyses
Nine pathways showed enrichment (p<0.05), including Alzheimer’s disease, amyotrophic lateral sclerosis,
long-term potentiation, vascular smooth muscle contraction and calcium signalling (supplementary table
E6 and supplementary figures E5 and E6). Two asthma relevant pathways had p-values between 0.05 and
0.10: asthma (p=0.08) and sphingolipid metabolism (p=0.055).

cis-eQTM
Of the 509 CpG sites associated with non-atopic asthma, 169 CpG sites were on the Illumina 450K array
and 168 were available in BIOS [26]. 120 CpG sites (71.4%) were significantly associated (FDR less than
0.05) with 377 gene expressions in cis (supplementary table E7).

Druggable targets
The 509 differentially methylated CpG sites annotated to 479 genes. After excluding genes identified from
previous asthma EWAS and GWAS (supplementary table E8), 382 genes were novel (including AZU1 and
PDE4B). In ChEMBL [28], PDE4B is a target of several approved drugs related to asthma or other
respiratory diseases (e.g. Roflumilast, Dyphylline and Theophylline) (supplementary table E9).

Replication
Five replication studies assessed methylation in blood, nasal epithelium, or eosinophils. Replication studies
generally had smaller sample sizes and not all stratified by atopy (table 3). Of the 509 differentially
methylated CpG sites identified in non-atopic asthma, 169 were on the 450K array and 84 of these (50%)
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FIGURE 1 Manhattan plot of epigenome-wide analysis of non-atopic asthma. The red line represents the
family-wise error rate (FWER) threshold and the blue line represents the false discovery rate (FDR) threshold.
Analyses were adjusted for age, sex, body mass index (BMI), smoking status, pack-years of smoking, state of
residence, autumn enrolment and four cell types (monocyte, lymphocyte, neutrophil and eosinophil).
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were replicated (p<0.05, with the same direction of association) in at least one study (supplementary table
E10). Project Viva used the EPIC array, which had an additional 314 CpG sites, of which 56 were
replicated (supplementary table E10).

Atopic asthma
Comparing atopic asthma participants (n=271) to non-cases (n=1157), we identified 181 differentially
methylated CpG sites using the FWER (p<9×10−8) and 1086 with a FDR less than 0.05 (figure 2). The
top 30 CpG sites are shown in table 4 and all FDR CpG sites are given in supplementary table E11). In
99.5% of the 1086 differentially methylated CpG sites, methylation was lower in atopic asthma participants
than in non-cases. All differentially methylated CpG sites had a unimodal methylation distribution.
Systematic inflation was not observed (λ=0·98) (supplementary figure E7). Of the 1086 CpG sites, 104
(9.6%) were FDR-significant in non-atopic asthma (supplementary table E12).

Adjustment for the polygenic risk score of asthma or current farming status did not materially alter the results
(supplementary table E2). When we adjusted for the seven estimated cell types, instead of the four cell types,
the λ value increased to 1.21 (407 CpG sites were significant using the FWER and 2947 were significant with
a FDR less than 0·05, including 1076 of the original 1086 CpG sites) (supplementary table E11). When we
classified atopy using the cut-off ⩾0.35 IU·mL−1 (461 atopic asthma participants versus 814 non-cases), the

TABLE 2 Top 30 significant cytosine–phosphate–guanine (CpG) sites in non-atopic asthma

Chromosome Position# CpG Gene name¶ n OR+ 95% CI p-value FDR Coefficient§

16 68804850 cg06085527 – 1829 0.93 0.91–0.95 1.62E-08 7.76E-03 −0.0093
14 100610407 cg14084609 DEGS2 1830 0.82 0.76–0.88 2.99E-08 7.76E-03 −0.0033
1 26091858 cg08028384 SELENON 1829 0.93 0.90–0.95 3.73E-08 7.76E-03 −0.0099
2 234608559 cg10180919 UGT1A6 1829 0.89 0.85–0.93 4.52E-08 7.76E-03 −0.006
10 22743835 cg15737719 LOC100499489 1829 0.76 0.68–0.84 4.75E-08 7.76E-03 −0.0023
1 6341287 cg09249800 GPR153 1828 0.93 0.90–0.95 7.16E-08 8.81E-03 −0.0085
14 55603874 cg23575099 LGALS3 1830 0.81 0.76–0.88 8.46E-08 8.81E-03 −0.0029
13 41631052 cg07908654 WBP4 1830 0.86 0.81–0.91 8.62E-08 8.81E-03 −0.0036
11 93456334 cg23338316 SCARNA9 1828 0.87 0.82–0.91 1.13E-07 1.03E-02 −0.0048
3 152215571 cg07952576 TMEM14EP 1828 0.97 0.96–0.98 1.87E-07 1.31E-02 −0.026
6 149450585 cg09639771 TAB2 1830 0.95 0.93–0.97 1.90E-07 1.31E-02 −0.0128
1 59543930 cg18581916 LINC01358 1830 0.95 0.93–0.97 1.93E-07 1.31E-02 −0.0126
13 97846783 cg23933458 LINC00456 1829 0.96 0.94–0.97 2.33E-07 1.46E-02 −0.0158
17 56269767 cg01955639 EPX 1830 0.88 0.84–0.92 3.18E-07 1.58E-02 −0.0038
16 21831372 cg07611887 RRN3P1 1829 0.88 0.84–0.92 3.26E-07 1.58E-02 −0.0053
15 85186517 cg17194668 WDR73 1830 0.86 0.81–0.91 3.76E-07 1.58E-02 −0.0037
7 150773709 cg06807926 FASTK 1828 0.96 0.94–0.98 3.91E-07 1.58E-02 −0.0141
9 95800911 cg03234093 SUSD3 1829 0.95 0.94–0.97 3.99E-07 1.58E-02 −0.013
4 38110810 cg07456972 TBC1D1 1825 0.81 0.75–0.88 4.13E-07 1.58E-02 −0.0025
16 68804845 cg21468244 – 1827 0.95 0.93–0.97 4.14E-07 1.58E-02 −0.0133
10 45495435 cg01614759 ZNF22 1829 0.87 0.82–0.92 4.17E-07 1.58E-02 −0.0037
15 31505024 cg08884974 LINC02352 1829 0.88 0.83–0.92 4.26E-07 1.58E-02 −0.0043
7 36077237 cg24598141 LOC101928618 1827 0.97 0.95–0.98 4.59E-07 1.63E-02 −0.0175
14 68713369 cg01171954 LOC100996664 1828 0.94 0.92–0.96 5.04E-07 1.66E-02 −0.0102
4 159969044 cg15834151 C4orf45 1830 0.93 0.91–0.96 5.08E-07 1.66E-02 −0.0076
2 74612222 cg17988187 DCTN1-AS1 1830 0.89 0.85–0.93 5.62E-07 1.70E-02 −0.0051
1 6341230 cg21220721 GPR153 1828 0.94 0.92–0.97 5.62E-07 1.70E-02 −0.009
15 81623226 cg25466522 TMC3-AS1 1828 0.82 0.76–0.89 6.02E-07 1.76E-02 −0.0024
3 159847104 cg17991030 IL12A-AS1 1829 0.97 0.95–0.98 6.46E-07 1.82E-02 −0.019
3 14708144 cg15106081 C3orf20 1827 0.76 0.68–0.85 7.20E-07 1.93E-02 −0.0017

OR: odds ratio; CI: confidence interval; FDR: false discovery rate. #: genome build GRCh37/hg19; ¶: annotated using HOMER version 4.10.3 and
an associated human genome database (hg19, 5v.10) [35]; +: logistic regression model adjusted for age, sex, body mass index (BMI), smoking
status, pack-years of smoking, state of residence, autumn enrolment and four cell types (monocyte, lymphocyte, neutrophil and eosinophil).
ORs indicate the multiplicative change in the odds of having non-atopic asthma in relation to an increase in DNA methylation; §: adjusted mean
methylation difference based on non-atopic asthma status. The coefficient is from a linear regression model with robust standard error
estimation, where methylation is the outcome and non-atopic asthma status is the predictor, adjusting for the same covariates as were used in
the logistic regression. A coefficient of −0.01 means that the mean methylation value is 0.01 lower in participants with non-atopic asthma
compared to non-cases. Possible methylation values range from zero to one.
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number of associations decreased (124 CpG sites were significant using the FWER and 847 were significant
with a FDR less than 0.05, including 669 of the original 1086 CpG sites) (supplementary table E2).

Conducting adjusted logistic regression analyses restricted to participants with atopic asthma, none of the
1086 significant CpG sites were differentially methylated (all FDR greater than 0.05) in relation to ICS use
(103 users versus 168 non-users) or asthma control (44 with inadequately controlled asthma versus 156
with adequately controlled asthma).

Functional enrichment
The removal of 16 potentially cross-reactive probes [19] left 1070 differentially methylated CpG sites for
downstream analysis. We found depletion for CpG islands (p=4.3×10−66), CpG island shores
(p=1.3×10−6) and promoters (p=1.0×10−46), enrichment for transcription factor binding sites (p=0.0057)
(supplementary table E4) and enrichment for eight transcription factor motifs (including GATA3_primary
and MA0029.1-Evi1) (supplementary table E5). Among the 15 chromatin states, we identified enrichment
of enhancers, genic enhancers, weak transcription and strong transcription in blood and lung
(supplementary figure E8). The FDR significant CpG sites were enriched for H3K4me1 and H3K36me3 in
blood, fetal lung and lung (supplementary figure E8).

Pathway analyses
Ten KEGG pathways had p<0.05, including insulin signalling, type II diabetes, starch and sucrose
metabolism, and valine, leucine, and isoleucine degradation (supplementary table E6 and supplementary
figures E5 and E6). The asthma pathway was marginally significant (p=0.055). Figure 3 shows a network
plot of nine disease and biological pathways implicated by genes identified in our non-atopic and atopic
asthma analyses.

TABLE 3 Summary of look-up replication

Study Tissue Study
population

Methylation
array

Stratified by
atopy?

Asthma
cases

Controls Overlap# Replicated¶ Replicated and
overlap in ALHS

asthma

Non-atopic Atopic

Non-atopic
asthma
SAPALDIA Blood Adults 450K Non-atopic 70 134 169 (100) 0 (0) 0
PACE
meta-analysis

Blood Children 450K Did not
stratify

631 2862 168 (99.4) 68 (40.5) 41

EVA-PR Nasal Children 450K Non-atopic 66 104 146 (86.4) 8 (5.5) 5
Project Viva Nasal Children EPIC Did not

stratify
65 398 471 (92.5) 143 (30.4) 86

SLSJ Eosinophil Children and
adults

450K Did not
stratify

16 8 168 (99.4) 49 (29.2) 39

Atopic Asthma
SAPALDIA Blood Adults 450K Atopic 91 134 349 (100) 0 (0) 0
PACE
meta-analysis

Blood Children 450K Did not
stratify

631 2862 347 (99.4) 288 (83.0) 41

EVA-PR Nasal Children 450K Atopic 169 104 299 (83.3) 235 (78.6) 28
ICAC Nasal Children 450K Atopic 36 36 349 (100) 222 (63.6) 26
PIAMA Nasal Children 450K Atopic 27 219 349 (100) 63 (18.1) 16
Project Viva Nasal Children EPIC Atopic 36 265 1008 (94.2) 875 (86.8) 86
SLSJ Eosinophil Children and

adults
450K Did not

stratify
16 8 338 (96.8) 274 (81.1) 39

Bronchial
epithelium

Airway
epithelial

Adults 450K Did not
stratify

74 41 254 (72.8) 49 (19.3) 4

Data are presented as n or n (%). ALHS: Agricultural Lung Health Study; SAPALDIA: Swiss Cohort Study on Air Pollution and Lung and Heart
Diseases in Adults; PACE: Pregnancy and Childhood Epigenetics Consortium; EVA-PR: Epigenetic Variation and Childhood Asthma in Puerto
Ricans; ICAC: Inner-City Asthma Consortium; PIAMA: Prevention and Incidence of Asthma and Mite Allergy; SLSJ: Saguenay–Lac-Saint-Jean. #:
overlap with ALHS false discovery rate (FDR) results. For 450K, percentages were based on 169 cytosine–phosphate–guanine (CpG) sites for
non-atopic asthma and 349 CpG sites for atopic asthma. For EPIC, percentages were based on 509 CpG sites for non-atopic asthma and 1070
CpG sites for atopic asthma; ¶: CpG sites in the replication study with p<0.05 and the same direction of association as observed in the ALHS.
Percentages were based on the number of CpG sites that overlap with the replication study.
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cis-eQTM
Of the 1070 CpG sites associated with atopic asthma, 349 were present in the 450K array and 346 were
available in BIOS. 242 CpG sites (69.9%) were significantly associated with 671 gene expressions in cis
(supplementary table E13).

Druggable targets
The 1070 CpG sites annotated to 885 genes, of which 569 have not been reported in previous asthma
EWAS or GWAS (including PDE4B and PPARG). In ChEMBL [28], PPARG is a target of a candidate
asthma drug (Rosiglitazone) [36, 37] (supplementary table E14).

Replication
Eight replication studies assessed methylation in blood, nasal epithelium, bronchial epithelium, or
eosinophils (table 3). The 1076 CpG sites identified in atopic asthma included 349 on the 450K array and
341 of these (98%) were replicated in at least one study (supplementary table E15). An additional 684 CpG
sites were available in Project Viva, which assessed nasal methylation using the EPIC array and 595 of
these (87%) were replicated (supplementary table E15).

Discussion
Several hundred CpG sites in blood were differentially methylated in blood DNA from adults with
non-atopic or atopic asthma compared to adults with neither asthma nor atopy. Many more CpG sites
were differentially methylated in relation to atopic rather than non-atopic asthma and about 10% of those
for atopic asthma overlapped with non-atopic asthma. Our findings highlight the importance of
distinguishing between non-atopic and atopic types to improve our understanding of asthma and show
that differential methylation in atopic asthma is not driven by atopy per se.

We performed several analyses to further evaluate our findings. Results were similar after adjustment for the
polygenic risk score of asthma, suggesting that our findings are not influenced by known genetic variations
of asthma. In most participants, we directly measured differential blood counts for monocytes, lymphocytes,
neutrophils and eosinophils. Adjustment for all seven estimated cell types instead, which disaggregates
lymphocytes into NK, B-cell, CD4+ and CD8+ types, resulted in some inflation; however, results were
similar. Eosinophils are higher in individuals with asthma than the general population [38]. Estimation of
eosinophils from a small reference panel of healthy participants may not be highly accurate, as suggested in
our data (Spearman correlation between measured and estimated=0·09). Using a less stringent atopy cut-off
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FIGURE 2 Manhattan plot of epigenome-wide analysis of atopic asthma. The red line represents the
family-wise error rate (FWER) threshold and the blue line represents the false discovery rate (FDR) threshold.
Analyses were adjusted for age, sex, body mass index (BMI), smoking status, pack-years of smoking, state of
residence, autumn enrolment and four cell types (monocyte, lymphocyte, neutrophil and eosinophil).
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(⩾0.35 IU·mL−1) yielded fewer significant findings, consistent with previous evidence that the lower
threshold is less discriminatory [7]. Notably, results for atopic asthma were more robust in response to the
threshold change (more CpG sites remained significant) than the results for non-atopic asthma.

A substantial proportion of our differentially methylated CpG sites were replicated in at least one published
study. A higher proportion were replicated in atopic asthma than in non-atopic asthma, probably reflecting
the much larger quantity of studies available for atopic asthma and thus the higher power. Most CpG sites
that were replicated in non-atopic asthma overlapped with our findings in atopic asthma (table 3),
suggesting that these are asthma-related CpG sites independent of atopy status. Our results in atopic asthma
were highly consistent in a small cohort of participants with methylation measured in isolated eosinophils, a
critical cell type for atopic asthma. Nasal epithelium is a good surrogate for lower respiratory epithelium
[39] and 89% of our findings in atopic asthma were replicated in nasal tissue, suggesting that methylation in
blood is a good surrogate for nasal tissue in methylation studies of atopic asthma. This is an important
observation, given the wide availability of stored blood for methylation analyses.

In our study and in most of the replication studies, methylation at significant CpG sites tended to be lower
in participants with asthma than in individuals without asthma. We hypothesise that lower methylation in
individuals with asthma reflects the combination of a cell-type composition which displays lower
methylation at these CpG sites [40] and the activation of cell types related to disease processes. For example,
there might be a shift from naïve T-cells to effector memory CD8T cells and NK cells [40], or activation of

TABLE 4 Top 30 significant cytosine–phosphate–guanine (CpG) sites in atopic asthma

Chromosome Position# CpG Gene name¶ n OR+ 95% CI p-value FDR Coefficient§

2 31302644 cg26382374 GALNT14 1425 0.76 0.71–0.82 2.27E-14 1.86E-08 −0.0101
15 31248701 cg16606719 MTMR10 1428 0.72 0.66–0.79 5.51E-13 2.25E-07 −0.0066
9 126497597 cg01745810 DENND1A 1428 0.76 0.71–0.82 8.29E-13 2.26E-07 −0.0082
17 79851485 cg12380988 ANAPC11 1428 0.74 0.68–0.80 1.40E-12 2.86E-07 −0.0075
3 33112660 cg26396322 TMPPE 1428 0.72 0.66–0.79 2.32E-12 3.79E-07 −0.006
1 6341287 cg09249800 GPR153 1428 0.88 0.85–0.91 6.80E-12 9.26E-07 −0.0161
15 81623226 cg25466522 TMC3-AS1 1426 0.70 0.63–0.78 1.75E-11 2.04E-06 −0.0051
11 65546210 cg05300717 AP5B1 1421 0.87 0.84–0.91 2.32E-11 2.37E-06 −0.0121
7 65439512 cg04290133 GUSB 1422 0.81 0.75–0.86 3.61E-11 3.09E-06 −0.008
1 6341327 cg11699125 GPR153 1426 0.90 0.87–0.93 3.78E-11 3.09E-06 −0.0191
1 180940378 cg11649969 STX6 1428 0.60 0.51–0.70 5.10E-11 3.49E-06 −0.0032
10 135061670 cg12227660 MIR202HG 1419 0.88 0.84–0.91 5.13E-11 3.49E-06 −0.0158
12 6342778 cg20560376 CD9 1427 0.71 0.64–0.79 6.03E-11 3.79E-06 −0.0056
1 160309220 cg09332506 NCSTN 1428 0.53 0.44–0.64 7.96E-11 4.15E-06 −0.0027
18 8720395 cg27550672 MTCL1 1428 0.68 0.61–0.76 8.37E-11 4.15E-06 −0.0038
16 16143033 cg24304533 ABCC1 1426 0.73 0.67–0.81 8.52E-11 4.15E-06 −0.0057
16 11709855 cg24517604 LITAF 1425 0.77 0.71–0.83 8.64E-11 4.15E-06 −0.0068
7 149543136 cg05184016 ZNF862 1427 0.68 0.61–0.76 1.01E-10 4.59E-06 −0.0048
14 95615731 cg01901579 DICER1 1428 0.78 0.72–0.84 1.07E-10 4.60E-06 −0.0074
3 195974300 cg02803925 SLC51A 1424 0.77 0.71–0.83 1.13E-10 4.62E-06 −0.0051
15 52427175 cg05853552 BCL2L10 1428 0.74 0.67–0.81 1.28E-10 4.87E-06 −0.0063
17 55190679 cg13947225 AKAP1 1424 0.81 0.76–0.87 1.31E-10 4.87E-06 −0.0083
7 99507261 cg17717565 TRIM4 1421 0.84 0.79–0.88 1.43E-10 5.08E-06 −0.0103
13 41631052 cg07908654 WBP4 1428 0.78 0.73–0.84 1.53E-10 5.21E-06 −0.0068
2 96965099 cg01923915 SNRNP200 1428 0.73 0.67–0.81 2.07E-10 6.54E-06 −0.005
8 22169041 cg16427256 PIWIL2 1428 0.76 0.69–0.82 2.08E-10 6.54E-06 −0.0052
16 616212 cg04497992 NHLRC4 1428 0.87 0.83–0.91 2.75E-10 8.32E-06 −0.0127
17 25897247 cg06127160 LGALS9 1428 0.87 0.83–0.91 3.08E-10 8.65E-06 −0.0114
15 40093898 cg18852698 LOC105370941 1427 0.82 0.77–0.87 3.20E-10 8.65E-06 −0.007
2 32946576 cg18399629 MIR4765 1428 0.69 0.62–0.78 3.28E-10 8.65E-06 −0.004

OR: odds ratio; CI: confidence interval; FDR: false discovery rate. #: genome build GRCh37/hg19; ¶: annotated using HOMER version 4.10.3 and
an associated human genome database (hg19, 5v.10) [35]; +: logistic regression model adjusted for age, sex, body mass index (BMI), smoking
status, pack-years of smoking, state of residence, autumn enrolment and four cell types (monocyte, lymphocyte, neutrophil and eosinophil).
ORs indicate the multiplicative change in the odds of having atopic asthma in relation to an increase in DNA methylation; §: adjusted mean
methylation difference based on atopic asthma status. The coefficient is from a linear regression model with robust standard error estimation,
where methylation is the outcome and atopic asthma status is the predictor, adjusting for the same covariates as were used in the logistic
regression. A coefficient of −0.01 means that the mean methylation value is 0.01 lower in participants with atopic asthma compared to
non-cases. Possible methylation values range from zero to one.
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basal cells [41]. Mechanistic studies are needed to investigate why methylation is generally lower among
individuals with asthma than those without asthma at differentially methylated CpG sites across the studied
tissues.

This study provides substantial replication of prior studies. Our analysis of non-atopic asthma participants
implicated 479 genes, including 96 identified in previous asthma GWAS or EWAS (supplementary table
E16). Of 885 genes implicated in our analysis of atopic asthma, 315 were identified in other GWAS or
EWAS of asthma (supplementary table E17). We also identified many novel asthma-related genes not
previously implicated in GWAS or EWAS. For example, high expression of AZU1, an inflammatory mediator
that regulates neutrophils, is correlated with poor asthma control [42]. Additionally, DEGS2 is involved in
sphingolipid metabolism, which has been implicated in respiratory outcomes [43] including asthma [40].

Enrichment of functional genomic features and pathway analyses provide biological insight into our
differentially methylated CpG sites. Our results highlighted certain genomic features, histone marks in
blood, lung and fetal lung, and transcription factor motifs that might be biologically relevant to asthma.
For example, transcription factors FOXO3A and GATA3 help regulate type-2 helper T-cells [44, 45], an
important cell type in asthma and EVI-1 interacts with SMAD3 [46], a known asthma gene. The
differentially methylated CpG sites in non-atopic asthma were enriched in signalling pathways related to
the nervous system (e.g. sphingolipid metabolism, calcium signalling and vascular smooth muscle
contraction). Sphingolipids and calcium are signalling molecules involved in vascular smooth muscle
contraction [47–50], suggesting that mechanisms related to innervation of the airways may play a greater
role in non-atopic asthma versus atopic asthma. Atopic asthma CpG sites were enriched in pathways
involved in inflammatory response (i.e. insulin signalling) [51] or characterised by chronic inflammation
(i.e. diabetes) [52], consistent with the inflammatory nature of atopic asthma.
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FIGURE 3 Network plot of nine enriched pathways (squares) with connecting implicated genes (circles) from
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Previous studies have identified CpG sites differentially methylated in relation to total serum IgE [33, 53–55],
atopy [29, 56, 57] and allergies [56, 58] but, in our study, no CpG sites were differentially methylated in
relation to atopy alone. As previous studies have been conducted in children, or a combination of children
and adults, and our study is comprised of older adults (median age 62 years), it is possible that differential
methylation related to atopy in children may not persist into adulthood.

This study has some limitations. Our population was rural and may differ in environmental factors
compared to urban populations (e.g. air pollution). However, we found high levels of replication across
geographically distinct populations from published studies. Furthermore, heterogeneity in disease
phenotypes likely remains even though we stratified asthma by atopy status and, as the study is
cross-sectional, we cannot determine if findings reflect the pathogenesis or consequences of asthma.

This study also has several strengths. It is the largest EWAS of adult asthma that has been conducted and
the substantial replication in nasal epithelium and purified eosinophils suggests that methylation in blood
is a good proxy for asthma-relevant tissues in discovering novel differential methylation in atopic asthma.
Pathway analyses support the biological plausibility of our findings and the CpG sites implicated in blood
are enriched for localisation to functional genomic elements in blood and lung. Many CpG sites were
associated with gene expression in both non-atopic and atopic asthma, further supporting the potential
functional impact of the differential methylation we identified at these loci. Different findings for
non-atopic and atopic asthma confirm the importance of separating forms of asthma to discover novel
associations, which may better inform disease aetiology and lead to improved treatment strategies.
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