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Recent advances in technology have made multi-omics datasets increasingly available to
researchers. To leverage the wealth of information in multi-omics data, a number of
integrative analysis strategies have been proposed recently. However, effectively
extracting biological insights from these large, complex datasets remains challenging.
In particular, matched samples with multiple types of omics data measured on each
sample are often required for multi-omics analysis tools, which can significantly reduce the
sample size. Another challenge is that analysis techniques such as dimension reductions,
which extract association signals in high dimensional datasets by estimating a few
variables that explain most of the variations in the samples, are typically applied to
whole-genome data, which can be computationally demanding. Here we present
pathwayMultiomics, a pathway-based approach for integrative analysis of multi-omics
data with categorical, continuous, or survival outcome variables. The input of
pathwayMultiomics is pathway p-values for individual omics data types, which are then
integrated using a novel statistic, the MiniMax statistic, to prioritize pathways dysregulated
in multiple types of omics datasets. Importantly, pathwayMultiomics is computationally
efficient and does not require matched samples in multi-omics data. We performed a
comprehensive simulation study to show that pathwayMultiomics significantly
outperformed currently available multi-omics tools with improved power and well-
controlled false-positive rates. In addition, we also analyzed real multi-omics datasets
to show that pathwayMultiomics was able to recover known biology by nominating
biologically meaningful pathways in complex diseases such as Alzheimer’s disease.
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INTRODUCTION

Recent advances in technology have made multi-omics datasets
increasingly available to researchers. For example, The Cancer
Genome Atlas (TCGA) and the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) have generated comprehensive
molecular profiles including genomic, epigenomic, and
proteomic expressions on matched samples for many types of
human tumors. The underlying hypothesis is that multiple types
of molecular profiles (e.g., copy number, DNA methylation,
protein) might provide a more coherent and complete
signature of the disease process.

To leverage the wealth of information in multi-omics data, a
number of integrative analysis strategies have been proposed
(Meng et al., 2016; Huang et al., 2017) and compared (Le Cao
et al., 2009; Pucher et al., 2019). These methods can be roughly
classified into three different categories, characterized by the way
they leverage information from themulti-omics datasets. The first
group of methods (Parkhomenko et al., 2009; Waaijenborg and
Zwinderman, 2009; Witten and Tibshirani, 2009; Lin et al., 2013)
analyzes only intersecting (i.e., matched) samples from the
multiple omics datasets and only shared genes measured by all
types of omics platforms. The second group of methods (Dray
and Dufour, 2007; Kaspi and Ziemann, 2020) analyzes only genes
shared by multiple types of omics datasets, which may be
measured on the same or distinct samples in different omics
datasets. The third group of methods (Gao et al., 2004; Kutalik
et al., 2008; Zhang et al., 2012; Meng et al., 2014) analyzes
matched samples in multi-omics datasets, where each dataset
may have the same or distinct genes.

Because of the complexities in multi-omics datasets, effectively
extracting biological insights from these datasets remains
challenging. A major challenge for multi-omics data analysis is
that the samples are often measured on one or a few, but not all,
omics data types. Therefore, multi-omics analysis tools that
require matched samples (with measurements for all omics
data types) as input can significantly limit the sample size
when several omics data types are considered. Another
challenge is that analysis techniques such as dimension
reduction techniques are typically applied to genome-wide
data, which can be computationally demanding. Thus, to
maximally leverage information from the multi-omics datasets,
there is a critical need for developing additional integrative
methods that are not restricted to only matched samples and/
or shared genes in the input datasets.

Here we present pathwayMultiomics, a pathway-based
approach for integrative analysis of multi-omics data. Instead
of testing individual genes, pathway analysis tests joint effects of
multiple genes belonging to the same biological pathway, such as
those defined in the KEGG (Kanehisa et al., 2012) database.
Higher power in the pathway-based analysis is achieved by
combining weak signals from a number of individual genes in
the pathway (Subramanian et al., 2005). The input of
pathwayMultiomics is pathway p-values for individual omics
data types, which are then integrated using a novel statistic,
the MiniMax statistic, to prioritize pathways dysregulated in
multiple types of omics datasets. Because pathwayMultiomics

only requires summary statistics (i.e., pathway p-values) as input,
it is computationally efficient. In addition, it is also flexible and
can be used to analyze multi-omics datasets with categorical,
continuous, or survival outcome variables. Importantly, using
summary statistics as input allows pathwayMultiomics to
maximally leverage information in multi-omics datasets by not
restricting to only shared samples and/or genes. Using simulated
datasets, we showed that pathwayMultiomics significantly
outperforms currently available multi-omics methods with
improved power and well-controlled false-positive rates. In
addition, we also analyzed multi-omics datasets in Alzheimer’s
disease to show that pathwayMultiomics was able to recover
known biology by nominating biologically meaningful pathways.

MATERIALS AND METHODS

An Overview of pathwayMultiomics
Algorithm
Figure 1 illustrates the workflow of the pathwayMultiomics
analysis pipeline. We next describe the input datasets,
analytical algorithm, and output in detail. The
pathwayMultiomics package for R can be accessed from
https://github.com/TransBioInfoLab/pathwayMultiomics.

Input Datasets
The input dataset consists of omics datasets for several different
molecular traits, such as SNPs, DNA methylation (DNAm), copy
number alterations (CNAs), or gene expressions. Of particular
interest are dysregulated pathways at multiple molecular levels,
for example, those with changes in both DNA methylation and
gene expressions. Importantly, pathwayMultiomics is flexible; the
samples can be either matched (multiple types of molecular traits
are measured on the same set of samples), or un-matched
(distinct samples from the same disease are measured with
different types of omics technology). Moreover, because the
units of analyses for pathwayMultiomics are pathways
(i.e., groups of genes participating in the same biological
processes), different omics datasets can also include different
genes, as long as pathway-level association statistics that relate
each type of omics profiles to the phenotype (e.g., pathway p-
values) can be computed. This flexibility enables
pathwayMultiomics to take advantage of different pathway
analysis software to model and account for special
characteristics in different types of omics datasets. For
example, for pathway analysis of DNAm data, the missMethyl
method (Phipson et al., 2016), which takes account of the varying
number of probes mapped to each gene, could be used. For
pathway analysis of gene expression data, pathwayPCA method
(Odom et al., 2020), which selects the coherent subset of genes
before estimating and testing principal components with
phenotypes, could be applied.

MiniMax Statistic
Given pathway p-values for each omics data type,
pathwayMultiomics next computes the MiniMax statistic. To
this end, we first consider all pairs of p-values from different
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omics types and take the maximum for each pair of p-values.
Next, we take theminimum of allmaximums computed from the
last step. For example, suppose we are interested in an apoptosis
pathway for a cancer study, which has p-values of 0.01, 0.03, and
0.05 for copy number variations, gene expressions, and protein
assays, respectively. We then have a total of three pairs of p-values
(0.01, 0.03), (0.01, 0.05), (0.03, 0.05), with maximums 0.03, 0.05,
and 0.05 respectively. The MiniMax statistic is the smallest value
of these maximums, which is 0.03. Intuitively, the MiniMax
statistic provides a way to identify pathways with differential
changes (i.e., small p-values) in at least two types of omics data.
Note that in this case, theMiniMax statistic is equivalent to taking
the second smallest p-value among all p-values; that is, the
second-order statistic, P(2), of the pathway p-values. Instead of
considering pairs of p-values, the MiniMax statistic can also be
computed for triplets or quadruplets of p-values from three, four,
or more types of omics data similarly to identify pathways with
differential changes (i.e., small p-values) in more than two types
of omics data.

Statistical Significance Assessment
To compute p-values for the MiniMax statistic,
pathwayMultiomics has two modes: 1) by approximation or 2)
by simulation. More specifically, the “approximation” approach is
based on the theory that when different types of omics data are
independent, the rth order statistic p(r) of the p-values follows a
Beta distribution, that is, P(r) ∼ B(α � r, β � G − r + 1), where
B(·, ·) denotes the Beta distribution and G is the number of
different types of omics data (Gentle, 2009; Jones, 2009).

Therefore, for integrative analysis that identifies pathways with
differential changes in at least two types of omics datasets, the
MiniMax statistic is the second-order statistic and has the
distribution P(2) ∼ B(2, 3 − 2 + 1) � B(2, 2) under the null
hypotheses. The “approximation” approach is easy to compute
and is useful when computational resources are limited or when
raw data in different omics data types are not available.

On the other hand, in the “simulation” approach, we simulate
the distribution of MiniMax statistics under the null hypothesis,
that is, when there is no association between phenotype and the
pathway in each type of omics data. More specifically, we generate
random phenotype labels for each sample and then re-compute
pathway p-values. These resulting p-values are our empirical null
p-values. To account for non-independence in the different data
types, instead of using the above formula, we estimate values for α
and β from the empirical null p-values. In practice, we have found
that the more correlated the p-values are across the multi-omics
platforms, the smaller (α̂< 2, β̂<G − 1) are. The “simulation”
approach provides more accurate statistical significance
estimation and is recommended when both raw data for
different omics and large computational resources are available.

Output
The output of pathwayMultiomics is prioritized pathways with
small p-values in multiple omics data types, the MiniMax statistic
and significance level for each pathway, and the omics data types
that were contributing to the MiniMax statistic. For example, in
the apoptosis pathway example we described above, the MiniMax
statistic was 0.03, its p-value (using the approximate B(2, 2)

FIGURE 1 | Workflow of pathwayMultiomics analysis.
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distribution) would be 0.0026, and the omics data that
contributed to MiniMax statistic were the copy number
variations and gene expression data.

Design of Simulation Studies
We performed a comprehensive simulation study to evaluate and
compare the performance of the proposed pathwayMultiomics
approach with four alternative methods for prioritizing pathways
enriched with concordant but often subtle associations signals. To
simulate multi-omics datasets with realistic correlation patterns,
we used the TCGACOADREAD dataset (Vasaikar et al., 2018) as
our input dataset, which included 614, 222, and 90 samples of
copy number alterations (CNAs), gene expression, and
proteomics data, respectively. More specifically, the CNA data
included gene-level GISTIC2 log2 ratios for 24,776 genes; gene
expression data included normalized counts (log2(x + 1)
transformation) of 6,149 genes generate by the Illumina
GenomeAnalyzer platform; and the proteins data include log-
ratio normalized protein expression levels of 5,538 genes.

To simulate multi-omics datasets for a collection of pathways,
we first created synthetic pathways by performing hierarchical
clustering on the 1,710 genes measured by all three types of assays
for CNA, gene expression, and protein. More specifically, first, a
data matrix with 1,710 genes and 928 samples (from the 623
subjects with at least one type of omics data) was created. Next,
within each data type, data for each gene were centered and
scaled. Finally, a modifiedWard’s method (method � “ward.D” in
hclust() function) was then used to partition the genes into 50
clusters or 50 synthetic pathways. The number of genes in the
resulting pathways ranged from 9 to 74, with an average of
34 genes.

Next, we simulated treated (i.e., true positive) and un-treated
(i.e., true negative) pathways. First, we randomly assigned each of
the 623 subjects to one of two cancer subtypes: A or B. Next,
among the 50 synthetic pathways, we selected five pathways to be
our true positive pathways, and treatment effects at different
levels (µ � 0.1, 0.2, 0.3, 0.4, 0.5) were added to a subset of genes
(p � 20, 40, 60, 80%) within each pathway in each of the multi-
omics datasets for samples in subtype A group. This process was
then repeated 100 times to create 100 simulated multi-omics
datasets, each including 50 pathways, among which 5 pathways
are true positive pathways. Overall, we generated datasets for a
total of 20 simulation scenarios (5 values for µ × 4 values for p).
This benchmark dataset (available at https://zenodo.org/record/
5683002#.YZF5SGDMKUk), which was systematically modified
from real multi-omics data, can be used for reproducing analyses
in this study as well as benchmarking future multi-omics data
analysis methods.

To evaluate the false positive rate of each method, we also
repeated the same procedures described above, except by setting µ
� 0 (i.e., not adding any treatment effect). Multi-omics data was
created for a total of 5,000 pathways by generating random
sample labels 100 times for the 50 synthetic pathways. The
false-positive rate (i.e., test size) for each method was then
estimated by the percentage of pathways p-values less than 0.05.

Given the known status of the pathways, we next computed
the area under the ROC curve (AUC) for each method. The

receiver operating characteristic (ROC) curves is a plot of
sensitivity versus 1-specificity as the cutoff for declaring
significant pathways is varied. AUC assesses the overall
discriminative ability of the methods to determine whether a
given pathway is significantly associated with the phenotype
(i.e., subtype group of the samples) over all possible
significance cutoffs. More specifically, for each of the
simulation scenarios, we recorded the rankings of the 50
pathways from most to least extreme (by either a p-value, test
statistic, or score returned by amethod), constructed ROC curves,
and estimated AUC for each method.

Methods Compared in the Simulation Study
We compared pathwayMultiomics with four alternative multi-
omics analysis methods: Sparse Multiple Canonical Correlation
Analysis (sparse mCCA) (Witten and Tibshirani, 2009), MFA
(Dray and Dufour, 2007), iProFun (Song et al., 2019), and mitch
(Kaspi and Ziemann, 2020). We chose mCCA to represent multi-
omics matrix factorization techniques because it performed best
in a recent comparative study of multi-omics analysis methods
(Pucher et al., 2019). The last three methods, mitch, iProFun, and
MFAwere chosen because they were proposed in recent years and
can also be applied to un-matched or partially matched datasets
(Table 1). Note that each of these tools was designed specifically
for the analysis of multi-omics data, either matching by samples,
genomic features (e.g., gene or probe), or both. In the following,
we briefly describe each of the methods compared in our
simulation study. In the following, we briefly describe each of
the methods compared in our simulation study.

pathwayMultiomics
To compute pathway p-values for single omics data, we used
pathwayPCA R package (Odom et al., 2020). PathwayPCA
integrates prior biological knowledge to extract Adaptive
Elastic-net Sparse PCs (AES-PCs) within each pathway for
each omics dataset separately, the first AES-PC with the
largest variance was then tested against binary outcome
“cancer subtype” using a logistic regression model. The
pathway p-values for each type of omics data were then used
as input for pathwayMultiomics, to identify pathways
dysregulated in more than one omics data type. Because the
pathway p-values are calculated for each omics dataset separately,
the statistical accuracy and power in pathwayMultiomics analysis
will not change as the number of matched samples or shared
features decreases.

Sparse Multiple Canonical Correlates Analysis (sCCA)
Sparse Canonical Correlation Analysis (sCCA) is a matrix
factorization method that uses penalized multivariate analysis
for identifying linear combinations of two groups of variables that
are highly correlated. Witten and Tibshirani (2009) (Witten and
Tibshirani, 2009) extended sCCA to sparse multiple CCA
(mCCA), which can perform integrative analysis of more than
two sets of variables measured on the same subjects. In the first
step, sparse mCCA finds the set of intersecting (i.e., shared)
samples and genes across all multi-omics datasets, i.e., the same
set of genes are measured on the same subjects in each of the
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omics datasets. Therefore, the statistical accuracy and power of
sparse mCCA to detect multi-omics changes will decrease as the
number of shared samples or features decreases because samples
or features not shared across all data sets will be discarded. In
particular, in the TCGA COADREAD multi-omics datasets, only
71 samples and 1710 genes were measured on all three omics data
types (CNA, gene expression, protein). Next, sparse mCCA uses a
permutation procedure to determine the thresholds and to extract
a single vector of selected genes for each omics data type. The
union of these selected genes from each omics data type is then
taken as the genes selected by sparse multiple CCA. Finally, a
Fisher’s Exact Test is used to determine if a pathway is enriched
with selected genes. We used mCCA implemented via the
MultiCCA() function in the PMA R package (https://cran.r-
project.org/web/packages/PMA/index.html), optimal weights
and penalties were identified by the MultiCCA.permute()
function.

Multi-Factor Analysis (MFA)
The MFA method is also a matrix factorization technique, but it
differs from sparse mCCA in that it only requires data to be
matched on features rather than samples. For MFA analysis of
multi-omics data, the main requirement is that the same set of p
genes are measured on all omics data types on potentially
different subjects. Therefore, the statistical accuracy and power
of MFA to detect multi-omics changes will not be affected by the
number of matched samples, but will decrease as the number of
shared features decreases, because features not shared across all
data sets will be discarded. In the first step, MFA reshapes data by
stacking the multi-omics datasets, each with samples as rows and
the same p genes as columns. Next, MFA performs a weighted
principal components analysis, where the weights from each data
set are inversely related to the principal eigenvalue of the data set
(a measurement of the overall variability in the dataset). Then,
genes are given a score measuring its concordance across the
datasets for different omics types, where the distribution of these

scores follows N (0, p−1/2) where p is the number of genes
measured on all omics data types. Finally, genes with upper-
sided p-values < 0.05 are selected, and Fisher’s Exact Test is used
to identify pathways significantly enriched with selected genes.
We implemented the MFA method using the mfa() function in
ade4 R package under default settings.

Multi-Contrast Pathway Enrichment Analysis (mitch)
The mitch method is very similar to the proposed MiniMax
statistic because it also computes pathway-level enrichment
scores from summary statistics rather than using the data
itself. There are several steps in the mitch algorithm: first,
users identify the set of p genes measured by all G omics data
types, and subsets the multi-omics datasets to include only these
p genes. Next, for each omics dataset, methods appropriate for
each platform (e.g., DESeq2 for RNASeq data) are used to
compute gene-wise summary statistics or gene scores (e.g., p-
values or t-statistics) that associate each gene with the phenotype.
This step produces a p × G data matrix (i.e., p genes × G omics
data types). Therefore, the statistical accuracy and power of mitch
to detect multi-omics changes will not be affected by the number
of matched samples, but will decrease as the number of shared
features decreases, because features not shared across all data sets
will be discarded. Finally, for each pathway, mitch performs a
one-way MANOVA to test if gene scores across the G omics data
types are different for genes within the pathways compared to
background genes. We compared the mitch algorithm, computed
using the mitch_calc() routine from the mitch R package with
priority � “effect”, with two alternative gene-wise summary
statistics: the gene-specific t-statistic obtained after fitting a
linear model that associated each gene with subtype group
effect (labeled as “mitch_tStat” in Figure 2), and the gene-
specific p-values from the same linear models (labeled as
“mitch_pValue”). Note that using the t-statistic accounted for
different directions of associations among genes while using the
p-value did not.

TABLE 1 |Methods compared by simulation study. Methods that analyze only matched samples would require multiple types of molecular data (e.g., gene expression and
protein) to be generated for the same subject, methods that analyzes only matched genes would require multiple types of molecular data to be generated for the same
gene. Summary data refers to resulting statistics such as p-values or t-statistics from differential expression analysis for genes or pathways. All function calls used default
function arguments unless specified.

Method Matches on Analyzes
only

matched
samples

Analyzes
only

matched
genes

Can
analyze
summary

data

Implementation R package::function

sCCA Samples measured by all
omics data types

Yes Yes No PMA::MultiCCA.permute() with nperms � 100; and PMA::
MultiCCA()

MFA Features (e.g., genes) No Yes No ade4::ktab.list.df() and ade4:mfa() with option � “lambda1”
mitch Features (e.g., genes) No Yes Yes mitch::mitch_calc() with minsetsize � 5 and priority � “effect”
iProFun Samplesmeasured on at least

two omics data types
No Yes No iProFun::iProFun_permutate() with parameters in package

example (pi � rep (0.05, 2); grids � c (seq (0.75, 0.99, 0.01), seq
(0.991, 0.999, 0.001), seq (0.9991, 0.9999, 0.0001)); filter � 1;
seed � 123).

pathwayMultiomics Pathways No No Yes pathwayMultiomics:MiniMax() with parameters orderStat � 2 and
method � “parametric"

Abbreviations: sCCA, Sparse Canonical Correlates Analysis; MFA, Multi-Factor Analysis; mitch, multivariate gene set enrichment analysis; iProFun, Integrative Proteogenomic Functional
Traits Analysis.
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Integrative Screening for Proteogenomic Functional
Traits (iProFun)
The iProFun method (Song et al., 2019) aims to detect DNA copy
numbers (CNA) and methylation alterations (DNAm) with
downstream functional consequences in mRNA expression
levels, global protein abundances, or phosphoprotein
abundances. In the first step, iProFun fits three linear models,
each with a molecular trait (mRNA, global protein, or
phosphoprotein) as the outcome, and CNA or DNAm as the
predictor, along with additional covariate variables (e.g., age, sex).
Next, multiple comparison correction is applied to p-values of the
predictor (CNA or DNAm) in each of the three linear models,
and genes with at least one significant predictor are selected.
Finally, Fisher’s Exact Test is used to identify pathways enriched
with selected genes. Notably, iProFun allows more flexibility in
the input dataset and can take advantage of samples not
completely measured on all omics types. Specifically, iProFun

requires samples to be measured by at least one genomic (e.g.,
copy number, DNA methylation) trait and at least one
transcriptomic (i.e., mRNA) or proteomic (e.g., global,
phosphor protein) trait, but it does not require samples to be
measured by more than one genomic trait or more than one
transcriptomic/proteomic traits. In the simulation study, the
number of shared samples analyzed by iProFun were 216
(copy number and RNAseq) and 88 (copy number and
proteomics). The statistical accuracy and power of sparse
iProFun to detect multi-omics changes will decrease as the
number of these shared samples (between copy number and
RNAseq, or between copy number and proteomics) decreases,
because samples not shared by at least two data sets will be
discarded. In our simulation study, we used the
iProFun_permutate() function in the iProFun package to
independently predict synthetic gene expressions and
proteomics data from simulated copy number aberrations.

FIGURE 2 | Performance of different multi-omics analysis methods in the simulation study. To simulate multi-omics datasets, we used the TCGA COADREAD
datasets (in copy number alterations, gene expressions and proteomics data) as an input, created 50 synthetic pathways by clustering genesmeasured by all three types
of omics data, and then added treatment with different effect sizes (mu) to a proportion (p � 0.2, 0.4, 0.6, 0.8) of the genes. This process was repeated for 100 times to
create 100 simulated multi-omics datasets for each simulation scenario (i.e., different combinations of mu and p). Shown are area under ROC curves (AUCs) for
each method averaged over 100 simulation datasets at each simulation scenario.
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Default parameter values, as shown in package examples, were
used for all functions.

Analysis of Multi-Omics Datasets in
Alzheimer’s Disease
pathwayMultiomics Analysis
We next applied pathwayMultiomics to analyze a set of multi-
omics datasets in Alzheimer’s disease. The input of
pathwayMultiomics analysis is pathway p-values for single
omics data. Therefore, we first performed pathway analysis for
genetic variants, DNAm, and gene expressions using the mixed
model approach (Wang et al., 2011), MissMethyl (Phipson et al.,
2016), and fgsea (Korotkevich et al., 2021) methods, which were
specifically designed for pathway analyses of these different omics
data types.

More specifically, for the analysis of genetic variants, Kunkle
et al. (2019) (Kunkle et al., 2019) described a recent large meta-
analysis of more than 90,000 individuals to identify genetic
variants associated with AD. We downloaded summary
statistics for individual variants obtained in this study from
https://www.niagads.org/igap-rv-summary-stats-kunkle-p-
value-data (“Kunkle_et al._Stage1_results.txt”). Next, we
performed GWAS pathway analysis using the mixed model
approach (Wang et al., 2011), which tested the combined
association signals from a group of variants in the same
pathway against the null hypothesis that there is no overall
association between SNPs in a pathway and the outcome
(i.e., AD status). An empirical null distribution, estimated
using the bacon R package (van Iterson et al., 2017), was used
to estimate the statistical significance of the pathways.

For the analysis of DNA methylation data, we recently
performed a meta-analysis of more than 1,000 prefrontal
cortex brain samples (Zhang et al., 2020) to identify epigenetic
changes associated with AD Braak stage, a standardized measure
of neurofibrillary tangle burden determined at autopsy. Braak
scores range from 0 to 6, corresponding to increased severity of
the disease (Braak and Braak, 1995). Supplementary Tables 1, 2
in Zhang et al. (2020) included summary statistics for 3,751
differentially methylated individual CpGs and 119 differentially
methylated regions (DMRs) that reached a 5% FDR significance
threshold in our meta-analysis. The combined collections of the
significant individual CpGs and CpGs located in the DMRs were
then used as input for pathway analysis via the MissMethyl R
package (Phipson et al., 2016), which performs over-
representation analysis by determining if AD Braak-associated
CpGs are significantly enriched in a pathway. In particular,
MissMethyl models the multiple probes mapped to each gene
on the methylation arrays using the Wallenius’ noncentral
hypergeometric test.

For the analysis of RNASeq data, we analyzed 640 samples of
RNAseq data measured on postmortem prefrontal cortex brain
samples in the ROSMAP AD study. Normalized FPKM
(Fragments Per Kilobase of transcript per Million mapped
reads) gene expression values generated by the ROSMAP AD
study were downloaded from the AMP-AD Knowledge Portal
(Synapse ID: syn3388564). For each gene, we assessed the

association between gene expression and Braak stage. More
specifically, for each gene, we fitted the linear model log2
(normalized FPKM values +1) ∼ Braak stage + ageAtDeath +
sex + markers for cell types. The last term, “markers for cell
types,” included multiple covariate variables to adjust for the
multiple types of cells in the brain samples. Specifically, we
estimated expression levels of genes that are specific for the
five main cell types present in the CNS: ENO2 for neurons,
GFAP for astrocytes, CD68 for microglia, OLIG2 for
oligodendrocytes, and CD34 for endothelial cells, and included
these as variables in the above linear regression model, as was
done in a previous large study of AD samples (De Jager et al.,
2014). This linear model identifies genes for which gene
expressions are associated with AD Braak stage linearly
(Zhang et al., 2020). For pathway analysis, we ranked each
gene by p-values for the Braak stage in the above linear
model, which was then used as input for the Fast Gene Set
Enrichment Analysis (fgsea) (Korotkevich et al., 2021) software.
The fgsea software performs pathway analysis of genome-wide
gene expression data by determining if genes within a pathway
are enriched on top of the gene list (ranked by gene-wise
differential gene expression p-values) compared to the rest of
the genes.

The pairwise correlations of p-values in individual omics data
types are very small, at ρ � 0.0045 (SNP pathway p-values vs.
DNAm pathway p-values), −0.0263 (SNP pathway p-values vs.
RNAseq pathway p-values), and 0.0432 (DNAm pathway
p-values vs. RNAseq pathway p-values). In
pathwayMultiomics, we used the approximation approach,
supported by the relatively low pairwise correlations in
pathway p-values of individual omics data types.

mitch Analysis
The input of mitch R package is summary statistics for genes
such as p-values for different types of omics data. For the
GWAS meta-analysis results described in (Kunkle et al., 2019),
we assigned SNPs to a gene if they were located within 5 kb
upstream of the first exon or downstream of the last exon
(Wang et al., 2011). Next, we represented each gene by the
smallest p-value if there are multiple SNPs associated with it. To
remove selection bias due to different numbers of SNPs
associated with each gene (i.e., the smallest p-value for a
gene with many SNPs is likely to be smaller than the
smallest p-value for a gene with only a few SNPs), we next
fit a generalized additive model using the R package gam:
Yi ∼ f(n.linksi) where Yi is - log10 transformation of the
smallest p-value for gene i, n. linksi is the number of SNPs
associated with gene i, and f is a spline function. We assumed
gamma distribution for Yi, as under the null hypothesis of no
association, Yi follows the chi-square distribution (a special
case of gamma distribution). The spline model allows us to
model linear and nonlinear associations between the number of
SNPs mapped to a gene and the strength of significance for the
gene as previously described (Zhang et al., 2021). The residuals
from this model, which represented -log10 transformation of
the p-values with gene size effects removed, were then
estimated, and used as input for genetic data in mitch.
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Similarly, for the analysis of DNA methylation data, we
assigned CpGs to genes based on Illumina annotation,
represented each gene by the CpG with the smallest p-value,
and removed the bias due to gene size using the same spline
model described above, except n. linksi is the number of CpGs
associated with gene i. The residuals from the spline model were
then used as input for DNAm data in mitch.

For the analysis of RNAseq data, we used the R package
fgsea (Korotkevich et al., 2021). For each gene, we fit a linear
model log2 (normalized FPKM values +1) ∼ Braak stage +
ageAtDeath + sex + markers for cell types. As described above,
the last term, “markers for cell types” included covariate
variables (marker gene expressions of ENO2, GFAP, CD68,
OLIG2, CD34) to adjust for the multiple types of cells in the
brain samples. The -log10 transformation of the p-values for
the Braak stage in the above model was then used as input for
RNASeq data in mitch.

All analyses were performed using the R software (version 4.0)
and SAS software (version 9.4). We used the venny tool (Oliveros,
2007-2015). To account for multiple comparisons, we computed
the false discovery rate using the method of Benjamini and
Hochberg (Benjamini Y and Y, 1995). The scripts for the
analysis performed in this study can be accessed at https://
github.com/TransBioInfoLab/pathwayMultiomics_manuscript_
supplement.

RESULTS

Results of the Simulation Study
As discussed in Methods, pathwayMultiomics has two
approaches for computing p-values, either by approximation
using formula or by simulation. Our results showed the
estimated parameters α and β for Beta distribution based on
simulation are α � 1.85 and β � 1.9, which are very similar to the
theoretical values of α � 2 and β � 2 used in the approximation
approach. The results in Supplementary Table 1 showed that
both the simulation and approximation approaches had Type-I
error rates close to 5%. Therefore, we next compared AUCs for
the pathwayMultiomics method in the approximation approach
with the other four methods.

Among all methods, the pathwayMultiomics method
performed best with the highest AUCs across all 20 simulation
scenarios (Figure 2, Supplementary Table 2). The second-best
performing method is mitch, for which ranking genes by p-values
performed better than ranking genes by t-statistic in most
simulation scenarios, except the ones with weak association
signals (i.e., effect size � 0.1). The iProFun method also
performed well in the simulated pathways that included a high
proportion (e.g., 80%) of genes with large association signals (e.g.,
effect size � 0.5). On the other hand, the sparse mCCA and MFA
methods lacked power, probably because these matrix
factorization techniques lost information by requiring matched
samples or genes across all platforms, and their unsupervised
framework also ignored phenotype information. Because sparse
mCCA lacked power even in the last simulation scenario with the
strongest signal (80% genes in a true positive pathway are treated

with an effect size of 0.5), we only included AUC for sparse
mCCA in the last simulation scenario.

Case Study: Analysis of Multi-Omics
Datasets in Alzheimer’s Disease
We next applied the two methods that performed best in our
simulation study, pathwayMultiomics and mitch, to analyze a
collection of real multi-omics datasets in Alzheimer’s disease,
which included summary statistics for genetic variants and DNA
methylation from two recent large-scale meta-analysis studies
(Kunkle et al., 2019; Zhang et al., 2020), as well as a gene
expression dataset measured on the prefrontal cortex of brain
samples generated by the ROSMAP study (De Jager et al., 2014;
De Jager et al., 2018). Note that because we did not have access to
raw genotype data included in the meta-analysis, many of the
tools that require raw omics data would not be applicable here. In
contrast, pathwayMultiomics and mitch can be applied to analyze
summary statistics obtained in meta-analyses. For comparison,
we also included a third method, the commonly used Venn
diagram method, which identifies pathways that are significant
in multiple omics data types.

FIGURE 3 | Venn diagram of pathway analyses results for individual
omics data types. A total of 666, 2 and 66 significant pathways reached 5%
false discovery rate in the analyses of GWAS, DNA methylation (DNAm) and
RNASeq data pathway analyses, respectively. Very few pathways (n � 7)
were significantly associated with AD in more than one omics data types. The
mixed models approach, MissMethyl, and fgsea, which were specifically
designed for pathway analyses of genetic variants, DNAm, and gene
expression data were used to analyze a total of 2,833 canonical pathways in
MsigDB database.
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We analyzed 2,833 canonical pathways (C2:CP collection) in
MSigDB (Subramanian et al., 2005) that included between 3 and
200 genes. Analyzing each omics data type individually, at a 5%
false discovery rate (FDR), we identified 66, 2, and 666 pathways
associated with AD in SNP, DNAm, and gene expression data,
respectively (Supplementary Table 3–5). There was little
agreement between the FDR-significant pathways identified in
different omics datasets (Figure 3). A possible reason could be the
lack of power in single omics studies for Alzheimer’s disease,
which has relatively weaker association signals than other
complex diseases such as cancers. Among the top pathways,
only seven pathways reached 5% FDR in more than one omics
data type. These seven pathways, which reached 5% FDR in both
GWAS and RNASeq analysis, are MHC Class II antigen
presentation, TCR signaling, factors involved in megakaryocyte
development and production, Rig I like receptor signaling
pathway, DDX58 IFIH1 mediated induction of interferon
alpha-beta, and regulation of toll-like receptor signaling
pathway, all of which are involved in inflammatory responses,
highlighting the importance of immune processes in AD
(Cunningham, 2013; Heneka et al., 2015).

At 5% FDR, pathwayMultiomics identified 74 significant
pathways (Supplementary Table 6). Note that for this analysis
example, the MiniMax statistics in pathwayMultiomics is the
minimum of all maximums in pairs of p-values from individual
omics, that is min{ max (SNP pathway p-value, DNAm pathway p-
value), max (SNP pathway p-value, RNAseq pathway p-value), max
(DNAm pathway p-value, RNAseq pathway p-value) }. For these
significant pathways, we next examined which two omics data types
contributed to the MiniMax statistics. Among the 74 pathways, the
significance of the pathwayMultiomics p-value (for MiniMax
statistic) was driven by pathway p-values for DNAm and RNA in
the majority of pathways (n � 40, 54%), followed by pathway p-
values for SNP andRNA (n� 25, 34%), recapitulating the prominent
gene regulatory role of DNAm inAD (Klein et al., 2016). In contrast,
pathwayMultiomics p-values were driven by p-values for SNP and
DNAm in only 9 (12%) out of the 74 significant pathways, consistent
with the relatively independent contributions of genetic variants and
DNA methylations in influencing AD susceptibility (Chibnik et al.,
2015; Klein et al., 2016). The majority of the top 10 most significant
pathways identified by pathwayMultiomics (Table 2) involved
signaling pathways activated by the immune system in responses
to amyloid-β induced neurotoxicity in AD brains, such as the
activation of chemokines (Jorda et al., 2020), toll-like receptors
(Landreth and Reed-Geaghan, 2009), T cell receptors (Gate et al.,
2020), PDGFR-beta receptors (Liu H. et al., 2018), and CXCR4
receptors (Li and Wang, 2017). Notably, seven out of these top 10
pathways did not reach 5% FDR in more than one type of omics in
the analysis of individual omics data types (Figure 3), so these
pathways would have been missed by the conventional Venn
diagram method.

At 5% FDR, mitch identified 237 pathways (Supplementary
Table 7). The most significant pathway pointed to systemic lupus
erythematosus (SLE), an autoimmune disease in which the immune
system attacks the body’s own tissues. A recent meta-analysis found
that patients with SLE have a significantly higher risk for cognitive
impairment (Zhao et al., 2018). Other top pathways (Table 3)T
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highlighted key biological processes regulated by proteins previously
shown to be important in AD, such as PRC2 (Zhang et al., 2020),
which regulates neuronal lineage specification, proliferation, and
differentiation (Liu P.-P. et al., 2018); PKN1, which was shown to
have a neuroprotective role (Thauerer et al., 2014); and histone

deacetylases (HDACS), which maintains the histone acetylation
homeostasis and play important roles in the process of neuronal
differentiation, neurite outgrowth and neuroprotection (Shukla and
Tekwani, 2020).

Between the three methods (pathwayMultiomics, mitch, and
Venn diagram), there was only modest overlap (Figure 4). A
total of 32 pathways (11%) reached 5% FDR by both
pathwayMultiomics and mitch methods. PathwayMultiomics
identified all seven significant pathways that were significant in
more than one type of omics data type based on the Venn diagram
method. There was no overlap between significant pathways by
mitch and Venn diagram method, except for one pathway (T cell
Receptor pathway), which was identified by all three methods.

DISCUSSION

To identify pathways dysregulated inmultiple types of omics datasets,
we developed the pathwayMultiomics R package.
PathwayMultiomics is flexible and only requires pathway p-values
for individual omics data types as input, thus making it possible to
take advantage of pathway analysis tools that are specially designed
for each omics data type. In addition, pathwayMultiomics is
computationally efficient, does not require matched samples from
multi-omics data, and is applicable in situations when raw omics data
are not available, such as when aggregating summary statistics from
meta-analyses related to the same disease. PathwayMultiomics is also
informative; the individual omics data type that contributed to
pathwayMultiomics significance can be used to distinguish
pathways with potentially different underlying regulatory
mechanisms, such as the pathways for which gene expressions are
regulated by DNA methylation versus pathways for which gene
expressions are mainly regulated by genetic variants.

We performed a comprehensive simulation study to assess the
statistical properties of our method. To emulate correlation
patterns in real omics datasets, we generated simulation
datasets using real TCGA multi-omics datasets as input. We
showed that pathwayMultiomics significantly outperforms
currently available multi-omics methods with improved power
and well-controlled false-positive rates. A challenge with

TABLE 3 | Top 10 most significant pathways identified by the mitch method in the analysis of Alzheimer’s disease multi-omics datasets.

Pathway Size p-value FDR

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 128 7.49E-19 2.11E-15
REACTOME_SIRT1_NEGATIVELY_REGULATES_RRNA_EXPRESSION 65 3.16E-15 4.46E-12
REACTOME_DNA_METHYLATION 62 1.21E-13 1.14E-10
REACTOME_ACTIVATED_PKN1_
STIMULATES_TRANSCRIPTION_OF_
AR_ANDROGEN_RECEPTOR_REGULATED_
GENES_KLK2_AND_KLK3

64 2.40E-13 1.69E-10

REACTOME_HDACS_DEACETYLATE_HISTONES 91 6.03E-13 3.40E-10
REACTOME_CONDENSATION_OF_PROPHASE_CHROMOSOMES 71 5.28E-12 2.48E-09
REACTOME_HDMS_DEMETHYLATE_HISTONES 45 5.17E-11 2.08E-08
REACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE 129 4.21E-10 1.48E-07
REACTOME_PRC2_METHYLATES_HISTONES_AND_DNA 70 5.40E-10 1.69E-07
REACTOME_TRANSCRIPTIONAL_REGULATION_OF_GRANULOPOIESIS 88 6.79E-10 1.91E-07

FIGURE 4 | A comparison of FDR significant pathways identified by
pathwayMultiomics, mitch, and Venn diagram analyses. At 5% FDR,
pathwayMultiomics and mitch identified 74 and 237 pathways, respectively.
The Venn diagram method identified 7 pathways with 5% FDR in more
than one type of omics data type. There was only modest overlap between the
three methods. A total of 32 pathways (11%) were significant in both
pathwayMultiomics and mitch methods. PathwayMultiomics identified all the
significant pathways using the Venn diagram method. There was no overlap
between significant pathways by mitch and Venn diagram, except for one
pathway (T cell Receptor pathway), which was identified by all three methods.
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analyzing multi-omics datasets is that many of the samples with
data recorded for one molecular type did not have matching data
from other data types. Therefore, methods that require matched
samples across all data types (e.g., mSCCA) would only analyze a
subset of the samples, which would result in reduced statistical
power. Also, often only a subset of genes is measured by multiple
omics platforms. Therefore, methods that require the same set of
genes measured on all omics data types (e.g., MFA) may also
exclude important biological signals, leading to reduced power.
Finally, unsupervised methods (e.g., NMF, sCCA, and iProFun)
might also lose power because they do not leverage information in
the phenotypes. In contrast, pathwayMultiomics gains power by
leveraging information in all samples (including the un-matched
samples), and all features (e.g., genes) mapped to the pathways, as
well as phenotype information along with multi-omics data.

To further assess the performance of pathwayMultiomics on real
datasets, we also compared it with two alternative approaches using
the Venn diagram andmitch. When multiple types of omics data are
available, a commonly used strategy is to test formarginal associations
between each type of omics data with phenotype first, and then use
Venn diagram to intersect significant pathways or genes that overlap
in different omics data types. Although a good visualization tool,
Venn diagrams do not provide prioritization or any statistical
assessment for pathways. In addition, it might be overly stringent
because when several types of omics data are considered, often few (if
any) pathways pass the threshold of statistical significance in all omics
data types. In contrast, pathwayMultiomics provides prioritization
and statistical assessment for pathways with moderate to strong
association signals in multiple omics data types. In our analysis of
multi-omics AD datasets, at 5% FDR, pathwayMultiomics identified
67 pathways in addition to the seven FDR-significant pathways in
more than one type of omics data as identified by the Venn diagram
method. The discrepancy in multi-omics analysis results by
pathwayMultiomics and mitch is not unexpected. In addition to
the differences in underlying algorithms, an important reason might
also be the different hypotheses these methods test. While mitch tests
the competitive null hypothesis that the genes in a pathway show the
samemagnitude of associationswith the disease phenotype compared
with genes in the rest of the genome, pathwayMultiomics tests the
self-contained null hypothesis that the genes in a pathway are not
associated with the disease phenotype (Tian et al., 2005). Therefore,
mitch and pathwayMultiomics analysis complement each other in the
analysis ofmulti-omics datasets. PathwayMultiomics is available as an
R package and can be accessed at https://github.com/
TransBioInfoLab/pathwayMultiomics.

CONCLUSIONS

In summary, we have presented the pathwayMultiomics
method, which can be used to analyze multi-omics data
with any type of outcome variables (e.g., categorical,
continuous, or survival phenotypes). We have shown that
pathwayMultiomics significantly outperforms currently
available multi-omics methods with improved power and
well-controlled false-positive rates. In addition, we also
analyzed multi-omics datasets in Alzheimer’s disease to

show that pathwayMultiomics was able to recover known
biology, as well as nominate novel biologically meaningful
pathways. We expect pathwayMultiomics to be a useful tool for
integrative analysis of multiple types of omics data.
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