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Abstract: The recent approval of immune checkpoint inhibitors drastically changed the standard
treatments in many advanced cancer patients, but molecular changes within the tumor can prevent
the activity of immunotherapy drugs. Thus, the introduction of the inhibitors of the immune
checkpoint programmed death-1/programmed death ligand-1 (PD-1/PD-L1), should prompt deeper
studies on resistance mechanisms, which can be caused by oncogenic mutations detected in cancer
cells. PTEN, a tumor suppressor gene, dephosphorylates the lipid signaling intermediate PIP3 with
inhibition of AKT activity, one of the main effectors of the PI3K signaling axis. As a consequence
of genetic or epigenetic aberrations, PTEN expression is often altered, with increased activation of
PI3K axis. Interestingly, some data confirmed that loss of PTEN expression modified the pattern of
cytokine secretion creating an immune-suppressive microenvironment with increase of immune cell
populations that can promote tumor progression. Moreover, PTEN loss may be ascribed to reduction
of tumor infiltrating lymphocytes (TILs), which can explain the absence of activity of immune
checkpoint inhibitors. This review describes the role of PTEN loss as a mechanism responsible for
resistance to anti PD-1/PD-L1 treatment. Moreover, combinatorial strategies between PD-1/PD-L1
inhibitors and PI3K/AKT targeting drugs are proposed as a new strategy to overcome resistance to
immune checkpoint inhibition.
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1. Introduction

Accumulating evidence suggests that agents targeting immune checkpoints produce clinical
benefit, including prolonged response and survival. In particular monoclonal antibodies (mAbs) as
nivolumab, pembrolizumab, atezolizumab, avelumab, and durvalumab directed to the programmed
death-1/programmed death ligand-1 (PD-1/PD-L1) immune checkpoint pathway proved significant
efficacy as single arm, and represents a new therapeutic opportunity for many cancer patients.
Nevertheless, as reported for melanoma patients, the effect of these mAbs is often restricted to a
reduced percentage of patients, with lack of durable response as a consequence of the appearance of
intrinsic or acquired resistance mechanisms [1,2].

Recently, mutations of JAK1-2 kinases have been proposed as alterations responsible for primary
resistance in melanoma [3]. Moreover, in the last few years, multiple lines of evidence suggested a
correlation between PTEN loss and lack of sensitivity to anti-PD-1/PD-L1 therapy.

This review focuses on this correlation as well as on the rationale of targeting deregulated
PI3K/AKT/mTOR signaling, coupled with anti PD-1/PD-L1 agents.
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2. PTEN Pathway

The PI3K/AKT/mTOR axis is one of the main intracellular signaling pathways regulating a
wide range of biological functions, such as cell growth and proliferation, cell energy metabolism,
and expression of cytokines that regulate the immune compartment (Figure 1A). Membrane tyrosine
Kinase Receptors (RTKs) activate phosphatidylinositol 3-kinase (PI3K) which in turn converts
phosphatidylinositol (4,5)-bisphosphate (PIP2) in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [4].
PIP3 plays a key role as a second messenger, recruiting and activating AKT and PDK1 kinases at the
plasma membrane. PDK1 phosphorylates AKT at the Thr308 residue and, in turn, activates other
downstream effectors, including GSK3, FoxO, and the mTORC1 complex [5,6]. However, for the
complete AKT activation, a further phosphorylation at the Ser473 residue is required: PIP3 by
interacting with the pleckstrin homology (PH) domain of SIN1 [7], a component of mTORC2 complex,
activates mTORC2 which in turn catalyzes AKT phosphorylation at Ser473 [6,7]. In addition, AKT can
inhibit the tumor suppressive tuberous sclerosis complex (TSC1/2) [4] with consequent activation
of the ras-like GTPase RHEB which in turn directly activates mTORC1 [8]. For its crucial role in
controlling multiple intracellular processes, the PI3K-AKT-mTOR pathway is regulated by many
negative regulators aiming at preventing an aberrant activation. One of the main mechanisms
responsible for the constitutive activation of this pathway is the loss of phosphatase and tensin
homolog deleted from chromosome 10 (PTEN) expression [9]. PTEN is a PIP3 3-phosphatase encoded
by the PTEN gene located on chromosome 10q23 [10]. Structurally, the PTEN protein has an N-terminal
PIP2-binding domain (PBD), a catalytic domain, a C2 lipidic domain, and a C-terminal domain
containing a PEST (Pro, Glu, Ser, Thr) sequence [11,12]. Since PTEN is involved in the control of a
wide range of processes including tumor growth and spread, metabolism, senescence and epithelial to
mesenchymal transition (EMT), its downregulation plays a pivotal role in the progression of many
types of cancer.
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Moreover, alterations in the PI3K/AKT/mTOR pathway, e.g., PTEN loss, have an impact on cell
energy metabolism and the metabolic reprogramming of cancer cells is another important hallmark
of cancer. In particular, PTEN inactivation increased glucose uptake through the translocation of the
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glucose transporter 4 (GLUT4) protein at the plasma membrane [13]. The abrogation of PTEN function
induces also the activation of 4EBP1 and p70S6 kinase, involved in the protein synthesis processes [14].
PTEN is involved in cell migration and cellular senescence as well. In particular, as reported for gastric
and lung cancer, the down-regulation of PTEN expression is associated with the activation of the Focal
Adhesion Kinase (FAK) which in turn leads to an increase of cell motility [15,16] (Figure 1A). It has
been also described that PTEN inactivation may induce the loss of apical-basal polarity, promoting the
EMT and consequently cellular dissemination [11,16]. Cellular senescence is an irreversible growth
arrest process mainly controlled by p53, p21, and p16ink4a proteins [17], and as reported for prostate
cancer [18], PTEN loss can trigger cellular senescence both in vitro and in vivo.

3. PTEN Alterations

PTEN expression is not only controlled by the heterozygous or homozygous loss but also by
a number of different molecular mechanisms, including epigenetic silencing, post-transcriptional
and post-translational modifications, and protein-protein interactions. Starting from its localization
at locus q23.3 of chromosome 10, an hotspot mutation site, the PTEN gene is susceptible to many
alterations, such as point mutations, insertions, and deletions [9]. Since its identification, germline PTEN
mutations have been frequently observed in a group of patients affected by a rare autosomal dominant
syndrome note as PTEN hamartoma tumor syndrome (PHTS) [19]. In PHTS patients, these mutations
are most frequently localized into the exon 5 of the PTEN gene, which encodes the phosphatase
domain, but also exons 7 and 8 are affected [20]. Furthermore, somatic alterations occur in a wide
range of cancers, including melanoma, glioblastoma, colon, breast, and lung cancer (Table 1) [21,22].
From ≈100,000 samples analyzed in the Catalogue of Somatic Mutation in Cancer (COSMIC) website,
somatic alterations including point mutations, insertions, and deletions are reported in the whole
PTEN gene. However, hotspot mutation sites have been identified at amino acids Arg130, Arg173,
Arg233 among the phosphatase domain and the C2 domain (https://cancer.sanger.ac.uk/cosmic) [9,23].
Beside genetic alterations, PTEN expression can be regulated by epigenetic mechanisms as well. In fact,
in melanoma and lung cancer the hypermethylation of CpG islands on the PTEN promoter induces
the silencing of the PTEN gene [24,25]. Moreover, the PTEN promoter has different transcription
factor binding sites, which may enable the regulation of PTEN expression. Among these, SNAIL,
c-Jun, and NF-kB can downregulate PTEN expression [26–29]. Conversely, other transcription
factors, such as p53, EGR1, and PPARγ can upregulate PTEN expression [30–32]. In particular,
several lines of evidence have underlined how PTEN and p53 can regulate each other: by binding
the PTEN promoter at its responsive element (RE), p53 induces PTEN expression and, on the other
hand, PTEN indirectly increases p53 level by reducing MDM2 expression [33]. In the last decade,
microRNAs (miRNAs) emerged for their role as regulators of gene expression at the post-transcriptional
level. These 22 nucleotides RNAs caused mRNA degradation when fully paired to the seed region,
binding site at the 3′ untranslated region (3′ UTR) of the mRNA target. The miR-17-92 cluster has
been associated with downregulation of PTEN in lymphoproliferative diseases [34]. The oncomir
miR-21 is frequently altered in different tumors, including lung, ovarian, and hepatocellular cancer.
miR-21 can downregulate PTEN expression by directly targeting its 3′UTR and therefore reducing
PTEN mRNA translation (Table 1) [16,35]. Different other miRNAs can regulate PTEN expression
in other cancers, including miR-19a, 22, and 25 (Table 1). The fine regulation of PTEN expression
is also affected by post-translational modifications such as phosphorylation, acetylation, oxidation,
and ubiquitination. Concerning the role of PTEN phosphorylation as a mechanism of post-translational
modification, six phosphorylation sites in the C-terminal domain have been reported for PTEN [36].
These sites are mainly phosphorylated by SRC, CK2, and GSK3β kinases resulting in a deregulation
of PTEN function [37–39]. PTEN activity is also downregulated by acetylation through the histone
acetyltransferase P300/CBP-associated factor (PCAF) and by oxidation through the interaction with
reactive oxygen species (ROS) [40,41]. The reduction of PTEN expression can be a consequence of
its degradation as well. Recent evidence identified neural precursor cell expressed developmentally
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down-regulated protein 4–1 (NEDD4–1), an E3 ubiquitin protein that can target PTEN causing its
degradation by the proteasome system [42]. The PTEN deregulation by the ubiquitination is one of the
main mechanisms involved in many types of cancers, including NSCLC [43]. Recent evidence
demonstrated that protein-protein interactions are able to regulate PTEN activity affecting its
conformation, stability, and localization. For example, the interaction with membrane-associated
guanylate kinase inverted 2 (MAGI2) can induce PTEN activity. On the other hand, Parkinson Protein
7 (PARK7) binds PTEN under oxidative stress conditions with a consequent inhibition of PTEN
function [44].

Table 1. Major structural genetic alterations of PTEN gene in solid tumors.

Tumor Type Mutation
(%)

Deletion
(%)

LOH
(%)

Promoter
Methylation

(%)

miRNA
Alteration Reference

Breast cancer 3–5 20–40 30–40 30–50 miR-106b, -93
up-regulation [45–47]

Lung cancer
6–9

predominantly
in SQCLC

20–40 20–40 20–30 miR-21
up-regulation [10,22,24,45,48]

Colorectal cancer 10–20 5–15 10–20 10–20 miR-21, -32
up-regulation [10,22,49,50]

Melanoma 10–20 5–10 20–40 30–50 miR-25, -221, -222
up-regulation [10,22,25,28,51]

Glioma 30–40 40–70 50–70 5–10 miR-26a
up-regulation [10,22,52,53]

Prostate cancer 5–15 10–20 20–50 1–5 miR-22
up-regulation [10,22,54,55]

Ovarian 1–5 30–40 30–50 5–10 miR-19a, -21, -214
up-regulation [10,22,56–58]

Pancreatic cancer <1 15–20 30–50 <1 miR-21
up-regulation [10,22,59,60]

Kidney cancer <1 1–5 20–30 <1 miR-23b-5p
up-regulation [10,22,61,62]

SQCLC: squamous cells lung carcinoma; deletion: loss of both alleles; LOH: loss of heterozygosity.

4. PTEN Loss can Modify the Tumor Microenvironment

4.1. PTEN Loss and Alteration of T-Cell Activity in Melanoma Patients

Several lines of evidence have underlined the role of PTEN loss on melanoma progression
and resistance to immunotherapy management in patients sequentially treated with anti-Cytotoxic
T-Lymphocyte Antigen 4 (CTLA-4) and anti PD-1 [63] agents. A high burden of copy number loss was
reported in non-responsive patients: further analysis revealed that copy number loss was recurrent in
9p and 10q chromosome regions. Among these areas, PTEN maps in the 10q region. Finally, the authors
reported a correlation between PTEN loss and resistance to immunotherapy treatment, suggesting that
deletion of the PTEN gene might be one of the driver resistance mechanisms exploited by tumors to
PD-1/PD-L1 inhibition.

The 30% of melanoma patients with PTEN loss often presented a V600E BRAF point
mutation [64,65]. The presence of both alterations is responsible for development of metastatic
lesions in a mouse model [51] and the inhibition of both signaling (BRAF and PI3K/AKT) caused a
regression of melanoma, but upon arrest of drug administration, melanoma restart to grow indicating
the presence of long-lived initiating cells. In this context PTEN abrogation could identify a different
subset of melanoma patients: recently, it has been reported that PTEN loss promotes resistance to
immunotherapy in a melanoma preclinical model [66] (Figure 1B). Stable silencing of the PTEN gene in
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human and murine melanoma cancer cells significantly increased the expression of immunosuppressive
cytokines, resulting in decreased T-cell infiltration, and inhibition of autophagy, which reduced the
killing properties of T-cells both in in vitro and in vivo systems. Interestingly, the effect of the anti PD-1
pembrolizumab was less highlighted in patients with PTEN-absent tumors as a consequence of reduced
TILs in the tumor microenvironment. Similarly, the authors reported that in stage IIIB/C melanoma
patients, the loss of PTEN expression is significantly correlated with low CD8+ tumor infiltration,
in respect to tumors with high PTEN level. In the small percentage of patients with heterogeneous
PTEN expression, the regions with low PTEN levels are associated with low TILs infiltration, compared
to regions with high PTEN level [66].

Further analysis of the melanoma TCGA data set revealed that reduction of PTEN copy number was
significantly associated with low expression of IFN-Υ mRNA, a classical signature of T-cell activation.
Moreover, the frequency of PTEN mutations or deletions is high in non-inflamed tumors [66].

Interestingly, in melanoma cancer cells and patients, loss of PTEN function does not correlate with
PD-L1 expression, enforcing the lack of relevance of PD-L1 in this context. The authors identified other
immune-regulatory factors mainly up-regulated by PTEN loss, in particular two cytokines, CCL2 and
VEGF, known to induce immune suppression in the tumor microenvironment [66,67] (Figure 1B).
Extensive analysis of inflamed-related genes demonstrated a significant reduction of their expression,
suggesting that in melanoma, loss of PTEN contributed to the reduction of tumor inflammation.

4.2. PTEN Loss and Tumor Microenvironment Modification in Glioblastoma

The glioblastoma is one of the most aggressive malignancies of the brain. At present, the current
standard of care has reduced efficacy, with an average overall survival of 16–20 months [68], and the
anti PD-1 treatment showed efficacy only in a small percentage of patients (8%) [69]. A correlation
between PTEN and immunotherapy resistance has been observed [70], where cytotoxic activity of CD8+

T-cells was more pronounced toward glioma cells wild type for PTEN. Recently, Zhao and coworkers
reported that in a cohort of 32 patients non-responsive to immunotherapy [71], 23 patients presented
PTEN mutations, whereas only three patients in the responsive group reported PTEN alterations,
confirming that PTEN changes are preferentially detected in non-responders. Moreover, as expected,
high activity of the PI3K/AKT pathway was described in the tumors of non-responders, but without
difference of PD-L1 expression between responders and non-responders, suggesting that PTEN did
not correlate with PD-L1 expression, at least in this tumor type. With the aim to further explore
the mechanism responsible for the immune resistance, the authors profiled the immune infiltrate
and observed a correlation between PTEN mutation and high levels of macrophages, microglia,
and neutrophils in the tumor microenvironment, reporting a correlation between PTEN mutation and
the tumor infiltrate. Tumor associated macrophages (TAMs) often act as protumoral macrophages,
contributing to disease progression by promoting tumor spread and metastasis, inhibition of cytotoxic
T-cell activity, and by secreting some cytokines to favor neo-angiogenesis and tumor progression [72].
These results underline the ability of PTEN to modulate the tumor microenvironment, probably as a
consequence of altered pattern of secreted cytokines in the tumor stroma.

4.3. PTEN Loss and Tumor Senescent Phenotype in Prostate Cancer

Prostate cancer is the second most common cause of male cancer-related death worldwide.
A recent study described the relevance of oncogenic alterations of PI3K axis by the discovery of point
mutations in the PI3KCA isoform [73] that contribute to cancer progression. In particular, these genetic
mutations often overlap with one of the most significant genetic aberrations, the loss of the PTEN gene,
estimated in 40%–50% of patients with prostate cancer [74].

As reported for melanoma and glioblastoma, PTEN alterations in prostate tumors contribute to
altering the tumor microenvironment [75]. Interestingly, the authors reported that PTEN null mice
developed a tumor-senescent phenotype, associated with a massive secretion of immunosuppressive
cytokines, as a consequence of the activation of JAK2/STAT3 pathway in cancer cells. In order to
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investigate the role of STAT3 on immune suppressive cytokine production, the authors used an
engineered mouse model knockout for both PTEN and STAT3 genes. In line with their findings,
a significant reduction of immune suppressive cytokines was reported. Moreover, the phenotype of
tumor-infiltrating immune cells meaningfully changed: in particular, a more relevant percentage of
NK, CD8+, and B cells was reported, associated with a marked decrease of myeloid-derived suppressor
cells (MDSC) and a reduction of markers of senescence in the tumor. Finally, tumors null for PTEN
and STAT3 were smaller in size, with significant reduction of tumor stroma. As docetaxel is the gold
standard first line treatment for hormone-refractory prostate tumors, the authors observed that single
treatment with the anti-microtubule agent improved tumor reduction marginally in PTEN null cancers,
confirming data from clinical trials [76]; if docetaxel is coupled with a specific JAK inhibitor, a dramatic
shrinkage of the tumor was observed, as a consequence of the reprogrammed cancer phenotype to an
inflamed tumor, with reduction of immune suppressive cytokines and accumulation of pro-inflamed
stromal cells in the tumor microenvironment.

At the molecular level, PTEN null cells showed a significant downregulation of SHP2, a negative
controller of the JAK/STAT3 pathway. It was stated that loss of SHP2 protein sustains tumor growth
by promoting JAK/STAT3 pathway activation. This correlation was further validated for other tumor
types [77,78].

4.4. PTEN Loss and Modification of T-Cell Function in Leiomyosarcoma

To date the response to immune targeted agents is reported for some solid tumors, in particular
carcinomas and melanoma, but there is poor data from tumors of mesenchymal origin [79].
Recently, a case of leiomyosarcoma was reported [80]. After 2 years of anti-PD-1 treatment, the patient
presented no sign of malignancy, except a low, but continuous growing local metastasis. The molecular
analysis of this tumor revealed focal amplification of the myc oncogene and a large heterologous deletion
of the chromosome region containing the PTEN gene in the pre-treatment tumor. The other PTEN allele
presented a missense mutation in the exon coding the catalytic domain in the tumor resistant to treatment.
Interestingly, a VEGF increase was reported in this treatment-resistant tumor, as previously reported for
melanoma [66]. Extended analysis of sarcomas from the TCGA archive and matched for both (MYC and
PTEN) molecular alterations detected in this patient, revealed a constitutive STAT3 expression (absent
in MYC amplified tumors), as also identified in prostate tumors [75]. Parallelly, a significant decrease
of PD-1+ T-cells was observed in the microenvironment of treatment-resistant tumor, as a consequence
of a global reduction of CD8+ T-cells in the tumor infiltrate.

Globally, the loss of PTEN, associated with a reduction of T-cell function and cellularity as well as
with increased VEGF production, identifies a common tumor phenotype similar to previous reported
data in melanoma, prostate, and glioblastoma tumors.

4.5. PTEN Loss in Lung Carcinoma

Melanoma and lung cancer are two tumors currently treated with immune checkpoint inhibitors
directed to PD-1/PD-L1 or CTLA-4. Considering that PTEN is often mutated in lung cancers [4,81],
with a percentage close to 15% in the squamous histology [82], recent studies have evaluated if PTEN
inactivation contributes to squamous lung cancer progression. Recently, in [83] it was reported that,
in a mouse model, concomitant bi-allelic loss of PTEN and LKB1 contributed to development of lung
cancer with squamous histology. Interestingly, a significant enrichment in tumor associated neutrophils
(TANs) was observed in the tumor microenvironment of these animals.

The high percentage of TANs is a consequence of the secretion of chemoattractant chemokines
(CCL1, 2, 5, and G-CSF) by tumor epithelial cells, that in turn recruit and activate TANs [84],
strictly involved in tumor spread and metastasis [84].

To further examine the immune infiltrate in these tumors, a marked increase of T-reg cells
compared to T-CD8+ population is documented. Moreover, in the T-cell fraction, high PD-1 membrane
levels and high IL-6 and TGF-β cytokine concentration were reported in the tumor microenvironment.
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Both cytokines have been stated to promote immune evasion and surveillance, with consequent
increased spread of tumor cells and metastasis [85,86]. Additional data exploring the immune
phenotype in this context revealed an increase of PD-L1 in tumor cells, indicating that bi-allelic loss of
LKB1 and PTEN can significantly induce suppression of activity of CD8+ T-cells.

Concerning the correlation between PTEN and PD-L1 in lung cancer, conflicting results have been
proposed [87,88]. Interestingly, Hlaing and coworkers observed a positive correlation between PTEN
expression and PD-L1 level, differently from the previously reported data for other tumor types, with a
80% of correlation observed in the squamous histology [88]. Currently, a rational explanation is not
provided, but the authors speculated on the mechanisms responsible for PD-L1 upregulation and arrest
of immune surveillance in the tumor microenvironment. PD-L1 can be directly regulated by intracellular
signaling pathways, mainly deregulated in many tumor types (RAS/RAF/MEK, PI3K/AKT/mTOR,
JAK, and STAT) or by the IFN-Υ signaling, as a consequence of IFN-Υ release by immune cells in the
tumor microenvironment. High PD-L1 expression in patients with high PTEN levels was probably a
consequence of high IFN-Υ produced in these tumor types. By this way, PTEN positive tumors can
evade immune surveillance by increasing PD-L1 protein levels. These data are partially confirmed by
a recent case report [89], where the presence of PTEN and LKB1 alterations were reported in a NSCLC
patient in advanced stage. Additionally, high PD-L1 expression was reported, confirming previous
observations. Interestingly, this patient was not responsive to immune checkpoint inhibition, in spite of
high PD-L1 and tumor mutational burden (TMB), but surprisingly it showed an exceptional response
to an mTOR inhibitor. The lack of durable response to immune checkpoint inhibition in the presence of
high PD-L1 expression and TMB, associated with the success of targeting specific genomic alterations
suggested that in a PTEN loss context, further assessment and investigation are required.

5. Correlation between PTEN and PD-L1

The role of PTEN as “supervisor” of the response to PD-1/PD-L1 inhibitors is not only restricted
to changes in the tumor microenvironment, but some data reported the ability of PTEN to modulate
PD-L1 level. As reported in a seminal article [90], loss of PTEN or constitutive expression of the
PI3K/AKT pathway can regulate PD-L1 expression in some tumor types in both IFN-Y dependent and
independent manners.

The PI3K/AKT signaling is mainly activated by interferons and controls the mRNA translation
of interferon-dependent genes. By pharmacological inhibition with PI3K or AKT targeting agents,
a significant reduction of IFN-Υ-induced PD-L1 is reported [90].

The PI3K axis can also regulate PD-L1 expression independently from IFN-Υ release, as reported
for many solid tumors. For instance, the inhibition of PI3K/AKT/mTOR pathway with specific targeting
agents reduced PD-L1 levels in NSCLC cells; in particular the authors of this study reported that
PD-L1 expression is dependent from mTOR signaling and then pharmacological inhibition of mTOR
by rapamycin or AZD8055 markedly reduced PD-L1 level [91].

The increase of PD-L1 by constitutive activation of PI3K signaling is at least in part ascribed to
altered PD-L1 mRNA levels [90]. Moreover, PI3K signaling is also involved in the up-regulation of
PD-L1 by extracellular stimuli (i.e., EGF in NSCLC cells, and 17β-estradiol in estrogen-receptor-α
positive breast cancer cells [90]).

In colorectal cancer cell lines [92], silencing of PTEN caused PD-L1 increase at the membrane
level, without increase of PD-L1 mRNA, suggesting that PTEN loss could contribute to PD-L1
protein stabilization. Interestingly, IFN-Υ does not affect the ability of PTEN to modulate PD-L1,
revealing a different mechanism of regulation. In colorectal patients, the authors reported a relationship
between PTEN loss and PD-L1 expression, but only a partial correlation with distant metastasis, TNM,
and overall survival. Moreover, a strong correlation between PD-L1 and TNM and metastasis was
reported. These data suggest that the connection between PD-L1 and cancer progression is only
a marginal consequence of PTEN loss. A similar relationship was reported for gastric cancer [93]:
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in particular, patients with PTEN loss of heterozygosity (LOH) displayed higher PD-L1 expression.
On the contrary, this correlation was not observed in mesothelioma patients [94].

6. Discussions

Deregulated expression of the PTEN gene is often observed in solid tumors, and recently it
was associated with resistance to immune checkpoint inhibition. To date, loss of PTEN expression
is only marginally correlated with up-regulation of PD-L1 on the membrane surface of tumor cells;
in fact, PTEN abrogation often caused alteration in the tumor microenvironment, with increase of a
non-inflamed tumor as a consequence of the release of anti-inflammatory cytokines and significant
reduction of T-cell activity.

The presence of infiltrated T-cells in the tumor microenvironment is associated with high percentage
of immunotherapy efficacy, including targeting of the immune checkpoint PD1/PD-L1. Considering the
critical role exerted by T-cells, it is relevant to know the mechanisms that cause T-cell accumulation
or reduction, in order to develop or employ new strategies for restoring the T-cell population in the
tumor microenvironment. Several mechanisms are proposed as candidates for resistance to immune
checkpoint inhibition: one of the most important mechanisms is the constitutive activation of the
PI3K/AKT/mTOR signaling axis, as a consequence of the activation of upstream oncogenic drivers,
such as NRAS, KRAS, and RET [91]. Moreover, loss of PTEN function is an alteration responsible
for constitutive activation of this signaling, as a consequence of point mutation, gene deletion, or
hyper-methylation events [23]. This pathway is both active in tumor cells and in the microenvironment,
regulating not only cancer growth and dissemination, but also the activity of immune cells inside the
tumor and other processes as neovascularization and reorganization of tumor matrix [95].

Recently, it has been demonstrated that the microenvironment can alter the gene expression profile
of tumor cells. In particular, disseminated tumor cells, often acquire essential traits from the metastatic
microenvironment for successful growth of tumors; in this context the peculiar characteristics of cells
of the microenvironment can significantly modify the RNA expression signature of disseminated
tumor cells. As reported [96], loss of PTEN expression is relevant in brain metastasis [97,98] as a
consequence of the release of exosomal miRNA targeting PTEN mRNA in cancer cells by resident
astrocytes. This evidence supports the hypothesis that metastatic sites are different, based on the niche
where metastasis grows, and the knowledge of metastatic lesions could provide new anti-metastatic
and personalized therapies.

In this context, further studies should re-examine of specific targeted agents directed to the
PI3K/AKT/mTOR pathway, that failed in monotherapy on the majority of solid tumors [99], as single
treatment, whereas in a combination regimen a partial response (PR) was reported, compared to
single-agent therapy [100]. This may be due to intrinsic or acquired resistance to PI3K inhibition,
or the consequential stimulation of parallel intracellular signaling pathways activated in tumor cells
after PI3K inhibition [101]. In particular, in a PTEN loss context, increased activity of the PI3K-β
isoform [102] and the efficacy of PI3K-β isoform inhibition, by specific targeted agents (GSK2636771,
AZD8186) [103], could overcome the resistance mechanisms to immune targeted agents, as reported for
example in melanoma patients [66]. Since PI3K is involved in T-cell activation as well, the optimization
of the schedule regimens may be considered; otherwise employing specific PI3K isoform inhibitors
(not relevant for T-cell activity, i.e., PI3K-β) without anti-tumor activity and sparing of T-cell function
could be taken into consideration. It is also important to consider that PI3K-α and β isoforms are
predominantly expressed in non-immune cells; on the contrary, PI3K-Υ or δ isoforms largely control
PI3K pathway activation in immune cells (T-cells, myeloid derived suppressor cells, and T-regs);
because of these findings, the use of agents specifically directed to PI3K α and β isoforms, which are
mainly detected in the tumor cells, can produce only marginal side effects on TILs and other immune
cells in the tumor microenvironment [95,104].

However, accumulation of T-reg cells in the tumor microenvironment is a crucial process in the
immune evasion, as a consequence of cytokines released by tumor and stromal cells that recruit T-regs
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at the tumor stroma. T-reg-mediated immunosuppression causes a relevant reduction of CD8+ and
CD4+ functionality in the tumor stroma and can recruit myeloid-derived suppressor cells. In this
context the inhibition of PI3K-Υ can reprogram T-regs and myeloid cells from an immunosuppressive
to an immune-stimulatory phenotype, restoring the number of functional CD8+ cells that can synergize
with immune checkpoint inhibitors.

Recent studies reported several emerging mechanisms of resistance to immune checkpoint
inhibition. Among these mechanisms, myeloid cells have a major role in limiting effective tumor
immunity [105]. In particular an interesting study showed that high infiltration of tumor associated
myeloid cells induced resistance to immune checkpoint blockade; while selective pharmacologic
targeting of PI3K-Υ, highly expressed in myeloid cells, restored the sensitivity to immune check
point agents by switching the tumor microenvironment to a pro-inflammatory phenotype [106].
Similar results have been proposed in a head and neck cancer model [107].

Moreover, the PI3K axis exerts a critical role in other cells of the tumor stroma; in particular,
the α isoform has been shown to be the most important isoform in endothelial cells, in both blood
and lymph vessels [108,109]. Some pre-clinical studies performed with pan-class I PI3K inhibitors
showed reduced total intra-tumor vessel area with reduced vessel function [110] but these effects were
mild when compared to standard anti-angiogenic therapy. Currently, only a few data describe the
role of the PI3K axis in the fibroblasts associated with tumor stroma. In a breast cancer model [111]
functional PTEN inactivation has been reported in cancer-associated fibroblasts, contributing to
cancer development and progression. Although the effects of specific PI3K inhibitors have not been
reported, the tumor-promoting activity by cancer-associated fibroblasts might therefore be inhibited by
employing PI3K targeting agents.

Different drugs are currently in clinical trials for the treatment of cancer patients with loss of
PTEN. Several of these clinical studies are evaluating the benefit of PI3K/AKT/mTOR inhibition in
association with immune checkpoint inhibitors in patients with colorectal, lung, leukemia, or other
solid tumors (Table 2).

Additional data focusing on the rationale combination of PI3K inhibitors and anti PD-1/PD-L1
agents is reported for breast cancer [112]. In a preclinical in vivo model of murine breast cancer,
the effect of concomitant BKM120 (a pan-PI3K inhibitor) and anti PD-1 treatment is better than the
effect of single agents. Interestingly, the authors reported that BKM120 does not alter the number of
CD8+ T-cells inside the tumor, but an increase of CD4+ T-cells migrating on the neoplastic lesion was
observed, with production of IFN-Υ. Moreover, the differentiation of myeloid cells to the monocyte
lineage is stimulated by BKM120, enforcing the pro-inflammatory properties as a consequence of PI3K
inhibition. Keeping with these data, PI3K inhibitors showed a pro-inflammatory role, with massive
IFN-Υ secretion [113].

Loss of PTEN function is not only correlated with constitutive PI3K/AKT signaling activation but
also with enforcing the intracellular activity of the focal adhesion kinase FAK [16,114] and concomitant
inhibition of both signaling is necessary to obtain synergistic effects on tumor cells [16]. To date,
accumulating data implementing the role of FAK as an enzyme involved in the regulation of the
immune compartment of tumor microenvironment are reported [115]. The authors described that the
nuclear form of FAK is involved in the transcriptional activation of some cytokines, responsible for
alteration of the immune context inside the tumor. In particular, the authors reported massive CCL5
and TGF-β production in a squamous cell carcinoma (SCC) tumor model, that is reverted by FAK
kinase inhibition. Both CCL5 and TGF-β can alter the immune context by blocking CD8+ T-cell activity
and stimulating the T-reg subpopulation with the generation of an immune suppressive phenotype in
the tumor microenvironment. Further results enforced the role of FAK as a critical kinase involved in
the generation of an anti-tumor immune evasion setting in a murine model of SCC [116].
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Table 2. Clinical trials with PI3K targeting agents coupled with PD-1/PD-L1 inhibitors (http://
clinicaltrials.gov/).

Agent Target in Combination with Tumors Phase Reference

Capivasertib
(AZD5363) AKT Olaparib + Durvalumab Advanced solid

tumors I NCT03772561

Copanlisib
(BAY80–6946) PI3K Nivolumab Colorectal I/II NCT03711058

Olaparib + Durvalumab Solid tumors 1b NCT03842228

Nivolumab Solid tumors and
lymphomas 1b NCT03502733

IPI-549 PI3K-γ

Atezolizumab +
Nab-Paclitaxel

Atezolizumab +
Bevacizumab

Breast cancer
Renal cell
carcinoma

II NCT03961698

Nivolumab Solid tumors I NCT02637531

GSK2636771 PI3K-β Pembrolizumab Melanoma I/II NCT03131908

Ipatasertib
(RG7440) AKT Atezolizumab Solid tumors I NCT03673787

Atezolizumab Breast cancer 1b NCT03800836

Idelalisib
(GS-1101) PI3K-δ Pembrolizumab Lung 1b/2 NCT03257722

SF1126
PI3 Kinase and
Bromodomain

Inhibitor
Nivolumab HCC I NCT03059147

Tenalisib
(RP6530) PI3K-δ/γ Pembrolizumab cHL I/II NCT03471351

Copanlisib
(BAY80–6946) PI3K Nivolumab Colorectal I/II NCT03711058

Olaparib + Durvalumab Solid tumors 1b NCT03842228

Nivolumab Solid tumors and
lymphomas 1b NCT03502733

cHL (classical Hodgkin Lymphoma), HCC (hepatocellular carcinoma).

Currently, new clinical trials designed to target the PI3K aberrant activation in tumors,
coupled with immune checkpoint inhibition are under evaluation. In this context, it is important
to take into consideration the mechanisms of acquired resistance to immune checkpoint inhibition.
As reported [117], late relapses are now emerging in patients treated with anti PD-1/PD-L1 therapy.
To date, considering the few data concerning the resistance mechanisms to immune check point
inhibition in different tumor types, we can only speculate that PTEN loss should be considered a
potential biomarker for the combined treatment with PD-1/PD-L1 targeting agents and PI3K inhibitors.
However, based on data reported in Table 2, some clinical trials proposed to select the patients based
on PI3K/AKT/PTEN alterations. For example, the NCT03772561 study includes the evaluation of
the relationship between AKT/PIK3CA/PTEN mutations and response. In the NCT03842228 study,
the phosphorylation of AKT, S6, 4EBP1, three members of PI3K/AKT/mTOR signaling, will be correlated
with response to treatment. In the NCT03131908 study the patients were selected based on PTEN loss
by immunohistochemistry (IHC) or molecular analysis. Finally, in the clinical trial NCT03673787 the
patients were selected based on pathogenic mutations in PIK3CA, AKT1, AKT2, identified by next
generation sequencing or PTEN loss by IHC.

7. Conclusions

Genetic re-analysis of lesions after initial response of tumor cells could reveal new acquired tumor
mutations that might affect immune-evasion mechanisms. Therefore, while the effect of specific agents

http://clinicaltrials.gov/
http://clinicaltrials.gov/
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targeted to these genetic lesions does not show any significant effect in terms of tumor shrinkage, it does
cause an effect on the tumor microenvironment. This effect, especially on T-cell function, should prompt
further studies on new therapeutic strategies to re-activate immune cells, combined with immune
checkpoint targeted agents.
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