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Abstract
Eukaryotic cells are precisely “wired” to coordinate changes in external and
intracellular signals with corresponding adjustments in the output of complex
and often interconnected signaling pathways. These pathways are critical in
understanding cellular growth and function, and several experimental trends
are emerging with applicability toward more fully describing the composition
and topology of eukaryotic signaling networks. In particular, recent studies have
implemented CRISPR/Cas-based screens in mouse and human cell lines for
genes involved in various cell growth and disease phenotypes. Proteomic
methods using mass spectrometry have enabled quantitative and dynamic
profiling of protein interactions, revealing previously undiscovered complexes
and allele-specific protein interactions. Methods for the single-cell study of
protein localization and gene expression have been integrated with
computational analyses to provide insight into cell signaling in yeast and
metazoans. In this review, we present an overview of exemplary studies using
the above approaches, relevant for the analysis of cell signaling and indeed,
more broadly, for many modern biological applications.
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Wild-type cell growth and function require the precise processing 
of both intrinsic and external signals, resulting in the regulation of 
nucleic acid/protein networks that coordinate genetic, physiologi-
cal, and biochemical changes necessary for cellular adaptation. 
Mutations in these signaling networks are the hallmark of numer-
ous cancers and diseases; consequently, such signaling pathways 
have been the focus of extensive research interest1–3. Signaling  
circuits have been studied for many decades through methods 
that are now classic, encompassing the application of forward and 
reverse genetic screens as well as targeted studies to identify gene-
to-gene relationships regulating transcription, translation, and post-
translational modifications. These methods have provided a wealth 
of data, but, with so much regarding these signaling circuits still to 
be uncovered, the need persists for improved methods to more fully 
dissect signaling pathways. In this review, we highlight some of the 
most promising recent trends in the analysis of cell signaling cir-
cuits and discuss selected recent studies exemplifying these trends. 
In particular, we review ongoing advances for precise chromosomal 
DNA manipulation in higher eukaryotes and improved methods 
for the quantitative analysis of the proteome and its dynamics. We 
additionally present an overview of studies integrating multiple  
laboratory and bioinformatic analyses and a focus on the analysis of 
signaling at the level of single cells.

Genetic screening with the CRISPR/Cas system
In dissecting cell signaling responses, a critical first step often 
entails identifying constituent genes encoding products required 
for the signaling event. Traditionally, gene functions have been 
identified broadly by using forward genetic screens, wherein 
phenotype-to-genotype relationships are established through the 
generation of non-specific mutations and subsequent selection/
screening of mutants exhibiting a desired phenotype4. Reverse 

genetic screens have become much more commonly employed over 
the last 25 years, particularly for screens in organisms amenable 
to facile genetic manipulation. The budding yeast Saccharomyces 
cerevisiae stands as an excellent example. In yeast, polymerase 
chain reaction-based approaches have been used to generate DNA 
with a selectable marker flanked by a sequence that can be used to 
target the DNA to a precise locus upon chromosomal integration 
by homologous recombination; the resulting mutant allele, often 
a gene deletion, can be screened for any number of desired phe-
notypes in stable haploid or diploid yeast5,6. Extensive libraries of 
mutant alleles have been constructed for reverse genetics in the  
budding yeast by this method as well as through methods encompass-
ing transposon mutagenesis7–10. Transposon mutagenesis has also 
been used to generate mutant allele collections in metazoans11–13, 
although more recent reverse genetic screens in higher eukaryo-
tes have predominantly used RNA interference-based approaches 
to reduce expression of target genes14,15, and additional notable 
studies have used zinc-finger nucleases and transcription activator- 
like effector nucleases (TALENs) for the generation of mutant 
alleles16–18. The recent discovery and application of CRISPR/ 
Cas-based systems, however, has provided researchers with argu-
ably the most promising tool to date for the manipulation of meta-
zoan genes with ease and specificity19,20. For thorough reviews of 
the basics of genome editing via CRISPR/Cas, see the indicated 
articles21,22. Figure 1 presents an overview of typical steps in 
generating a library of single-guide RNAs (sgRNAs) and its appli-
cation for CRISPR/Cas screening. Recently, CRISPR/Cas-based 
methods have been employed with great success for genome  
editing and phenotypic screening in a wide variety of organisms, 
including mice, flies, zebrafish, and human cells23–30. Below, we 
review a few exceptional studies using CRISPR/Cas approaches for 
phenotypic analysis in mouse and human cell lines.

Figure 1. An overview of CRISPR/Cas-based screening. (A) A simplified representation of target DNA cleavage by single-guide RNA 
(sgRNA)-directed Cas9 nuclease activity. Double-stranded DNA cleavage is indicated by the slash marks. (B) A typical vector for expression 
of the sgRNAs is presented. The U6 Pol III promoter for expression of the sgRNA is indicated with an arrow labeled “U6” to the left of the 
diagram. Adapted from Zhou et al.57. (C) Overview of an approach for sgRNA library construction. Oligonucleotides corresponding to the 
region of the sgRNA providing target specificity may be synthesized commercially on microarrays. Oligonucleotides are eluted from the 
microarray, and Gibson assembly-based cloning with the eluted oligonucleotides and overlapping nucleic acid fragments can be used 
to construct the library of sgRNA expression constructs for subsequent lentiviral packaging. Target cells are transduced with the lentiviral 
sgRNA pools to generate mutants for screening as indicated. Abbreviations: CMV, cytomegalovirus; CRISPR/Cas, clustered regularly 
interspaced short palindromic repeats/CRISPR-associated; eGFP, enhanced green fluorescent protein; LTR, long terminal repeat; nt, 
nucleotide.
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In a recent landmark study, Chen et al.31 used CRISPR/Cas 
in mice to detect loss-of-function mutations that contribute to 
tumor growth and lung metastasis. In this work, the researchers 
constructed a pooled genome-wide library of 67,405 sgRNAs, and 
this lentiviral library was transduced into a cell line capable of 
inducing tumors, but not typically metastasis, upon transplantation 
into mice; this cell line was also transduced with Cas9-enhanced 
green fluorescent protein (Cas9-eGFP). The pool of mutant cells 
resulting from this transduction was transplanted into mice, and 
subsequent analyses using deep sequencing identified sgRNAs 
enriched in the late-stage primary tumor and lung metastases. 
Thus, the screen enabled the identification of mutants enriched in 
metastasis induced by the respective sgRNA. In sum, this study 
presents several important findings. In particular, analysis of the 
targets of these sgRNAs revealed novel and known tumor 
suppressors. Furthermore, characterization of the effects of indi-
vidual sgRNAs and comparison of primary tumors and metastases 
offer an explanation for the long-standing question of why the 
probability of metastases correlates with the size of the primary 
tumor. Results from this work suggest that the ability to prolifer-
ate enhances the ability to metastasize more rapidly. In sum, this 
work offers a guideline for in vivo CRISPR/Cas loss-of-function 
screens while also validating that animal models generated through 
this tool provide data relevant to the understanding of human 
disease.

In another impactful study, Parnas et al.32 used a protein marker-
based CRISPR screen in mouse primary dendritic cells to  
determine the regulators of host innate immune response against 
bacterial lipopolysaccharide (LPS). The immune response against 
LPS induces an inflammatory cytokine, tumor necrosis fac-
tor (TNF). Rather than cell viability, TNF staining was used as a  
readout in this study for immune response activity after the addi-
tion of LPS. By flow cytometry, researchers isolated the aberrantly 
stained cells resulting from under- or over-induction of the immune 
response, thereby identifying three clusters of proteins that regulate 
innate immune response.

Subsequent to early CRISPR/Cas-based loss-of-function screens 
in human cells23,24, many groups have implemented similar  
approaches for functional genomics in human cell culture. 
Recently, Ma et al.33 screened for genes required for cell death 
induced by West Nile virus by using a library of 77,406 sgRNAs 
targeting 20,121 genes. Through two rounds of screening, the 
researchers found that knockout of a subset of seven genes in the 
endoplasmic reticulum-associated protein degradation (ERAD) 
pathway protected against virus-induced cell death. Also in 2015, 
Hart et al. used a CRISPR/Cas9 sgRNA library for fitness screens 
in five human cell lines34, defining fitness phenotypes as a defect 
in proliferation. For this study, the researchers generated a sgRNA 
library that targeted, in particular, human protein-coding genes 
as well as a set of random controls. Using this library coupled 
with sensitive Bayesian computational methods, Hart et al. iden-
tified approximately fivefold more fitness genes than had been  
previously observed.

Although CRISPR/Cas-based systems have emerged as the most 
popular and exciting tools for genome manipulation in mammals, 

these systems are still far from perfect. Off-target effects from 
guide RNAs may confound the interpretation of results35, neces-
sitating appropriate controls. To minimize false-positive results 
from CRISPR/Cas-derived screens, initial results from a primary 
screen may be validated through a secondary targeted screen using 
sgRNAs for only those genes identified in the initial analysis. In 
total, CRISPR/Cas remains a technology undergoing great devel-
opment and expansion of application. CRISPR/Cas technologies 
hold vast potential, both singly as well as in combination with other 
genome editing tools. For example, CRISPR interference studies, 
using a catalytically inactive and endonuclease-deficient Cas9 to 
regulate transcription of target genes in an RNA-guided method, 
have proven effective in gene silencing studies36,37.

Interesting alternatives to the CRISPR/Cas9 system are begin-
ning to emerge as well. Notably, Gao et al.38 have presented a 
DNA-guided genome editing system using the Natronobacterium 
gregoryi Argonaute endonuclease for the generation of precise 
mutations in human cells. N. gregoryi Argonaute binds 5’-phos-
phorylated single-stranded guide DNA oligomers of approximately 
24 residues and efficiently generates site-specific double-strand 
breaks upon loading with the guide DNA. Initial results indicate 
that the system exhibits a low tolerance to guide-target mismatches 
as well as efficiency in editing regions with high G/C content. Thus, 
in the immediate future, the application of newly developed gene 
editing platforms using CRISPR/Cas-based approaches as well as 
alternative methods is expected to yield an exciting volume of data 
deciphering previously uncovered metazoan signaling circuitry.

Quantitative proteomics
In addition to analyses of signaling pathways at the genetic level, 
protein-based or proteomic studies (or both) have proven to be 
highly informative in dissecting eukaryotic signaling pathways. 
Over the last two decades, the proteomics field has advanced 
substantially toward determining the protein landscape of the 
cell at a specific time under specific conditions. Recently, this 
proteomic “snapshot” has been furthered to provide a quantita-
tive as well as dynamic representation of protein abundance and 
localization in eukaryotes.

With published reports already presenting a draft catalog of the 
human proteome39–41, current research efforts are now more aggres-
sively addressing the dynamics of protein abundance and interac-
tions. Relative to the results from steady-state proteomic studies, 
data sets presenting protein interaction dynamics may provide 
unique insight into the signaling events occurring in human cells. 
In 2015, Huttlin et al.42 investigated the human interactome, the 
proteome-wide set of interactions in a given cell, through affinity 
purification of a large set of tagged proteins followed by mass spec-
trometry (termed AP-MS). In this work, the researchers infected 
293T cells with a lentiviral library of FLAG-HA-tagged open read-
ing frames (ORFs) from the human ORFeome, a project designed 
to clone ORFs from the human genome into expression vectors for 
protein purification. Subsequently, complexes with these proteins 
were affinity-purified and analyzed by mass spectrometry. The 
resulting data revealed more than 50,000 interactions, and network 
analysis indicated 354 “communities” of protein complexes, gener-
ating a collective network that the researchers named BioPlex (for 
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Biophysical Interactions of ORFeome-Based Complexes). This 
network analysis was further successful in assigning characteristics 
of proteins, such as localization and function, by position within the 
network. Most importantly, and satisfyingly, proteins with similar 
domains were clustered together in the network, implying a role 
for structure in the formation of protein-protein interactions. These 
findings suggest a basis for new bioinformatics approaches enabling 
the inference of protein function, localization, and structure through 
the analysis of interacting partners, or vice versa. Furthermore, the 
examination by these methods of sub-networks from individuals 
may shed light on signaling circuits that are important for specific 
diseases. Huttlin et al. provide an elegant example of such analy-
ses by examination of the B- and A-isoform sub-network of the 
VAMP-associated proteins (VAPs): They report that interactions of 
the mutated form of VAPB with some of its targets were different 
from those observed with the wild-type protein.

Hein et al.43 employed a different approach to analyze the human 
interactome, using proteomics applied in three quantitative 
“dimensions”: interactions between proteins, the stoichiometry of 
interacting proteins, and their cellular abundance. The researchers 
generated a bacterial artificial chromosome library with GFP- 
tagged proteins and expressed the library in a HeLa cell line. 
Subsequently, interacting complexes were immunoprecipitated 
by using an anti-GFP antibody, and protein quantities were deter-
mined through a single run of liquid chromatography-tandem mass 
spectrometry. These data revealed both known complexes and 
interactions as well as previously unknown complexes. Interest-
ingly, the previously unannotated complexes identified in this 
work were typically composed of fewer proteins than the known 
complexes. Further validation of these results indicated an interac-
tion between the selected low-abundance protein KIAA1430 and 
the anaphase-promoting complex/cyclosome (APC/C), suggesting 
that this method is indeed capable of detecting transient interac-
tions exceeding the limits detectable through traditionally avail-
able methods. Moreover, the stability of the interaction was cor-
related with interaction stoichiometry. The authors concluded that 

although strongly associated complexes can be identified without 
stoichiometric analysis, weaker interactions between transiently 
interacting sub-stoichiometric proteins may be missed, potentially 
obscuring important linkages between complexes that collectively 
yield a global representation of network connectivity in cells.

It is useful to note that while both the BioPlex and three- 
dimensional quantitative interactome studies discussed above 
yield a coverage far exceeding that which has been obtained from  
traditional interactome studies, neither work can claim to be  
comprehensive. In fact, researchers are currently expanding the 
BioPlex network through additional rounds of AP-MS analysis to 
address this point. It would be interesting to determine the degree to 
which the resulting networks overlap in the two studies.

Recently, Savitski et al. developed a clever approach to identify 
chemical-protein interactions (for example, the interactions 
between a drug and its protein target) by using mass spectrome-
try44. The researchers implemented a cellular thermal shift assay to  
identify proteins for which ligand binding affects thermal stabil-
ity. By this approach, cells, cultured with and without drug, are 
heated to a range of temperatures, thereby inducing protein dena-
turation. At each temperature, soluble proteins are extracted and 
identified by mass spectrometry. Protein thermal stability profiles 
affected by drug treatment thus can be determined, suggesting puta-
tive drug  targets. Adding to their other results, researchers used 
this method to identify more than 50 targets of the kinase inhibitor  
staurosporine.

In a study that complements the ones above, Humphrey et al. in 
Matthias Mann’s laboratory recently developed a method they refer 
to as EasyPhos45. The EasyPhos method enables the rapid quan-
tification of protein phosphorylation on a proteome-wide scale 
in vivo (Figure 2). EasyPhos indeed offers many improvements 
over traditional mass spectrometry-based proteomic tools. In 
particular, a smaller amount of starting sample is required as 
compared with amounts required for conventional methods. In 

Figure 2. The EasyPhos pipeline for quantitative and dynamic phosphoproteomics. Basic steps in the EasyPhos protocol are indicated. 
Steps that can be performed in a 96-well format are indicated as such. Phosphorylation sites are indicated graphically with a circled 
“P”; peptides are indicated as wavy lines. Collectively, the EasyPhos protocol is more streamlined than commonly used alternatives. The 
EasyPhos method uses a tetrafluoroethylene (TFE)-based digestion buffer, in place of a more labor-intensive peptide desalting step, 
prior to phosphopeptide enrichment; this further facilitates the implementation of EasyPhos in a 96-well format. The metal-oxide affinity 
chromatography techniques implemented typically using microcolumns are popular and established means by which phosphopeptides may 
be enriched or separated from non-phosphorylated peptides for subsequent mass spectrometry.
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EasyPhos, the sample is digested by using tetrafluoroethylene 
instead of urea or methods for filter-assisted sample preparation. 
Hence, desalting and lyophilizing the sample become unneces-
sary, and a single parallel enrichment of phosphopeptides becomes 
possible before liquid chromatography-tandem mass spectrometry 
analysis. The ease and speed with which EasyPhos can be used 
make it suitable for the analysis of dynamic phosphoproteomes 
and provide a convenient alternative to widely applied approaches 
based on SILAC (stable isotope labeling of amino acids in cell 
culture). For example, Humphrey et al. used EasyPhos to analyze 
dynamic insulin signaling in the mouse liver. From this work, many 
unknown phosphorylation events were detected and mapped to a 
time-resolved atlas. Through this atlas, the researchers revealed 
a link between insulin signaling and lipid storage in the liver as 
well as an interconnection between insulin and fibroblast growth 
factor signaling. As EasyPhos enables detection of the timing of 
phosphorylation events, Humphrey et al. were able to detect the 
directionality of signal transduction. Rather surprisingly, at least 
for the Akt signaling response analyzed in this work, signal was 
not transduced linearly from the cell surface to the nucleus. By 
incorporating a temporal dimension into the analysis of cell signal-
ing, EasyPhos and other methods yet to be invented, coupled with 
improved sample preparation, labeling techniques, and enrichment, 
promise proteomic studies that will improve our understanding of 
signaling circuits toward the development of more accurate compu-
tational signal response simulations.

The integration of pathway analyses at the single-cell 
level
Although genetic screens and proteomic profiling studies provide 
important information regarding the makeup of pathways as well 
as mechanistic insight at the protein level, the most important 
advancement in dissecting signaling circuitry may result from the 
integration of many such approaches. Furthermore, the application 
of such integrative approaches at the single-cell level is a particu-
larly exciting development, since in many instances data averaged 
over a population of cells may obscure important signaling mecha-
nisms. For example, important protein interactions may occur in 
only a subset of cells46, necessitating analysis at the single-cell level 

for detection. Below, we present several recent examples of stud-
ies at the single-cell level coupling microscopy or transcriptional 
analysis with sophisticated computational methods.

Chong et al.47 present an exceptional study from the laboratories 
of Brenda Andrews, Charlie Boone, Jason Moffat, and Andrew 
Moses quantitatively analyzing protein localization and abundance 
on a proteome-wide scale in S. cerevisiae. This work also assesses 
dynamic changes in the proteome in response to chemical treat-
ments and genetic mutation. For these analyses, the researchers 
used high-throughput genetics, in the form of synthetic genetic 
array methodologies developed in the Boone and Andrews labo-
ratories48,49, to cross a large collection of yeast strains expressing  
ORF-GFP fusions with a cytosolic red fluorescent protein (RFP) 
marker, thereby delineating cell boundaries in red (Figure 3A). 
With this collection of yeast strains for microscopy, the authors 
implemented a machine learning approach to train software for the 
recognition of 16 subcellular compartments using a subset of pro-
teins that each localize to only one compartment. The full collec-
tion of ORF-GFP strains with RFP were visualized by automated  
microscopy, and analysis of the resulting images enabled assign-
ment of proteins to the predefined subcellular compartments. Both 
the localization and abundance of proteins were determined in this 
manner. From these data, an abundance localization map (ALM) 
was generated, with cell compartments as hubs and proteins as 
nodes within the network. A large number of proteins localized 
to more than one compartment, linking one hub to another. The 
researchers tracked changes in protein localization and abundance 
in response to chemical treatment with rapamycin and hydroxyu-
rea, mimicking nutrient deprivation and DNA replication stress, 
respectively. The yeast collection was also assessed for changes in 
protein dynamics upon deletion of RPD3, a gene encoding a lysine 
deacetylase. An ALM was generated for each of the conditions 
tested, and changes in the ALMs from one condition to the next were 
quantified, yielding a flux network indicating the dynamic nature of 
the proteome (Figure 3B). Interestingly, the flux network revealed 
changes for a given protein in either localization or abundance, but 
seldom both in response to environmental or genetic perturbation. 
Collectively, this work provides a framework for future applications 

Figure 3. Overview of the generation of abundance localization maps (ALMs) and a dynamic flux network from the analysis of protein 
localization and abundance in yeast. (A) A collection of yeast strains containing gene-green fluorescent protein (GFP) fusions were crossed 
with a yeast strain containing a cytosolic red fluorescent protein (RFP) chimera by synthetic genetic array (SGA) methods. SGA methods were 
developed as a means to cross a haploid yeast strain containing a mutant allele with another yeast mutant strain of opposite mating type for 
the subsequent selection of a haploid double mutant. By this approach, yeast strains were generated where the cytoplasm of the yeast cells 
can be visualized in red, and the localization of each target protein can be observed as green fluorescence. Subsequently, the yeast strains 
are imaged by automated microscopy. (B) The acquired data are integrated into ALMs. Changes in these maps in response to cell stress, 
chemical treatments, and genetic perturbations can be captured in dynamic flux networks, as presented. Abbreviations: ORF, open reading 
frame.
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of high-throughput microscopy while exemplifying the utility in 
integrative approaches for the analysis of protein dynamics.

Wachsmuth et al. also investigated the dynamic proteome through 
techniques integrating high-throughput microscopy with auto-
mated image analysis50. These researchers developed methods for 
high-throughput fluorescence correlation spectroscopy (HT-FCS), 
which in conjunction with confocal microscopy allowed them to 
assess the localization of fluorescently labeled single molecules 
in living human cells. Through automated image acquisition 
followed by automated FCS, researchers were able to capture 
many images from one sample, enabling high-throughput analysis. 
By this approach, the dynamics of 53 nuclear proteins were ana-
lyzed in HeLa cells, and three clusters of proteins were identified, 
indicating chromatin binders, single non-chromatin binders, and 
complex non-chromatin binding proteins. The authors were also 
able to track a single cell throughout its cell cycle by time-lapse 
imaging. In this study, the researchers presented software for the 
analysis of fluctuations between time points separated by as little 
as 10 minutes. This method was used to successfully track chro-
mosomal passenger complex assembly throughout the cell cycle. 
Through better labeling and improved time resolution, HT-FCS 
carries the potential to complement mass spectrometry as an 
approach for determining the dynamic proteome in vivo.

Exemplifying the utility in single-cell studies, Gary Nolan and 
Dana Pe’er and colleagues have advanced the analysis of single-
cell mass cytometry data to more fully define signaling responses. 
Krishnaswamy et al.51 developed and applied computational meth-
ods to analyze mass cytometry data quantifying the abundance of 
20 protein epitopes at a range of time points following two differ-
ent types of T-cell receptor activation in B6 mice. Levine et al.52 
used mass cytometry to profile surface and intracellular signaling 
proteins in healthy cells and in cells exhibiting acute myeloid 
leukemia. In this work, the authors determined a gene expression 
signature predictive of cell survival while validating new meth-
odologies for the analysis of large single-cell data sets from a 
heterogeneous cell population.

Although the rate at which single-cell studies have been undertaken 
has accelerated significantly over the past few years, studies of gene 
expression in single cells date back to at least 199253–55. Recently, 
these gene expression data have been used to dissect cell signal-
ing pathways. An elegant example of such a study is presented 
by Moignard et al.56, who used a combination of single-cell gene 
expression data and computational modeling to analyze signaling 
events that regulate early blood development. This experimental 
design makes use of the fact that early progenitors of blood cells 
express Flk1 but that at very late stages, Flk1 expression may be 
lost, with hematopoietic potential evident in cells expressing Runx1. 
With a Runx1-Ires-GFP mouse model, precursor blood cells were 
sorted into five groups in four stages according to the expression 
status of Flk1 and GFP and time of harvesting. In this study, the 
expression profiles of 33 transcription factors, nine markers, and 
four housekeeping genes were determined for 3,934 cells. The 
cells were clustered into three groups by unsupervised hierarchical 
clustering according to the respective gene expression profiles, 

regardless of whether blood-associated genes were expressed in a 
given cell. Interestingly, cells from different stages of development 
could be found at each cluster, suggesting that cells do not commit 
at a uniform point in time. Single-cell analysis is thus important 
in determining the exact time at which this commitment occurs. 
To analyze single-cell data, the researchers constructed a diffusion 
map, placing each of the cells on a three-dimensional map, and the 
distance between cells was determined by their degree of similar-
ity. This map eventually resembled the relevant developmental 
stages, suggesting that this approach can be used to order genes and 
proteins during development. Moignard et al. used these data to 
generate predictive models, which they subsequently validated. 
Although these computational models neglect the fact that a given 
gene may be upregulated or downregulated rather than being 
transcriptionally on or off, this study does provide a first-of-its-
kind framework for deciphering signaling networks important in 
mammalian organogenesis from single-cell expression data without 
any prior knowledge.

Areas of future development
Considered collectively, the approaches discussed here present 
advancements toward mapping signaling pathways through genetic, 
proteomic, and integrative methods, particularly in identifying 
signaling responses in individual cells within a metazoan organ-
ism or cell population. It is important to note, though, that these 
larger-scale studies can be very informatively complemented with 
more focused work on key genes and proteins. The degree to which 
apparently diverse approaches are in fact integrated within these 
studies will likely expand in the coming years. In general, pub-
lished work already involves a combination of genetic, molecular, 
biochemical, and cell biological approaches, and bioinformat-
ics further contributes to the rich and new data sets that are being 
presented. In order to effectively define signaling circuitry, this 
integration is critical, in conjunction with the continued devel-
opment of new technologies for the granular analysis of protein 
function. Although it is clear that we have yet to fully characterize 
even a single signaling pathway, the future holds exceptional 
promise toward identifying new signaling mechanisms and, conse-
quently, a clearer understanding of eukaryotic cell biology. 
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