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Invasive meningococcal disease (IMD) is an important cause of meningitis and bacteremia worldwide. Seasonal
variation in IMD incidence has long been recognized, but mechanisms responsible for this phenomenon remain
poorly understood. The authors sought to evaluate the effect of environmental factors on IMD risk in Philadelphia,
Pennsylvania, a major urban center. Associations between monthly weather patterns and IMD incidence were
evaluated using multivariable Poisson regression models controlling for seasonal oscillation. Short-term weather
effects were identified using a case-crossover approach. Both study designs control for seasonal factors that might
otherwise confound the relation between environment and IMD. Incidence displayed significant wintertime season-
ality (for oscillation, P < 0.001), and Poisson regression identified elevated monthly risk with increasing relative
humidity (per 1% increase, incidence rate ratio ¼ 1.04, 95% confidence interval: 1.004, 1.08). Case-crossover
methods identified an inverse relation between ultraviolet B radiation index 1–4 days prior to onset and disease risk
(odds ratio ¼ 0.54, 95% confidence interval: 0.34, 0.85). Extended periods of high humidity and acute changes in
ambient ultraviolet B radiation predict IMD occurrence in Philadelphia. The latter effect may be due to decreased
pathogen survival or virulence and may explain the wintertime seasonality of IMD in temperate regions of North
America.

case-control studies; environment; environmental exposure; meningitis; meningitis, bacterial; meteorological fac-
tors; Neisseria meningitidis; regression analysis

Abbreviations: CI, confidence interval; IRR, incidence rate ratio; OR, odds ratio; UVB, ultraviolet B.

Neisseria meningitidis is an important cause of bacterial
meningitis and bacteremia worldwide (1). This microbe
causes considerable morbidity and mortality, both in sub-
Saharan Africa, where epidemics are frequent and control
measures have met with limited success (2), and elsewhere
in the developed and developing world (3, 4). In the United
States and Canada, meningococcal disease is primarily en-
demic (3), and a recent downward trend in case occurrence
has been noted (5). Nevertheless, N. meningitidis remains
a leading cause of septicemia and bacterial meningitis in
North American children (6); the high case-fatality rates
associated with invasive infection (1) and the risk of trans-
mission to close contacts (7) contribute to the continued
public health importance of invasive meningococcal disease.

A striking feature of meningococcal epidemiology is the
seasonality with which cases occur (8, 9). In the African
‘‘meningitis belt,’’ risk is increased during the dry season,
when humidity is low and the Harmattan wind blows off the
Sahara Desert (9, 10). The arrival of the wet season gener-
ally signals the end of high rates of disease (9). In North
America, incidence is also seasonal, but in the United States
it is highest during the late winter and early spring (1, 3). As
with many other infectious diseases displaying seasonal pat-
terns (11), the mechanisms driving the predictable seasonal
periodicity of meningococcal disease are not well under-
stood, and the specific effects of environmental factors on
case occurrence remain unclear. An understanding of such
causative phenomena could contribute to our understanding
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of meningococcal pathogenesis, enhance surveillance sys-
tems designed to monitor case occurrence, and provide in-
sight into the potential effects of climate change on disease
incidence (12, 13). However, the study of climatic exposures
in relation to disease occurrence remains complex. Human
behavior, the frequency of testing for a disease, and the
occurrence of other disease are all likely to show seasonal
variation, which may lead to biased inferences about causal
mechanisms (12).

Traditional regression methods, such as Poisson regres-
sion analysis, are potentially useful in controlling for con-
founding by concurrent environmental exposures and in
evaluating underlying seasonal oscillation and temporal
trends (14). However, when the disease being studied is rare,
the granularity of data is lost through necessary temporal
aggregation of case counts and exposure measures, creating
the potential for ecologic fallacy (15). Alternate approaches,
such as the case-crossover design, are useful for identifying
acute environmental effects when the outcome of interest is
uncommon and exposures are repeated and transient (16).
The latter method has been applied to evaluation of envi-
ronmental effects on cardiorespiratory disease occurrence
(17, 18) and to the study of infectious diseases with envi-
ronmental reservoirs (19–21) but has not, to our knowledge,
been applied previously to infectious diseases characterized
by person-to-person transmission.

We sought to use these complementary methodological
tools to evaluate the seasonality of invasive meningococcal
disease in Philadelphia County, a major urban center in the
United States. Our objectives were to define the environ-
mental correlates of enhanced monthly case counts, after
controlling for nonspecific seasonal oscillation, and to iden-
tify environmental effects that acutely enhance the risk of
invasive meningococcal disease.

MATERIALS AND METHODS

Philadelphia County is an urban region covering 350 km2

(135 square miles) in southeastern Pennsylvania. In 2000 it
had a population of 1,517,550, consisting of 705,107 men
and 812,443 women; the median age of residents was
34 years (22). Climate in the area is moderated by the At-
lantic Ocean to the east and the Appalachian Mountains to
the west. Consequently, while summers tend to be warm and
winters are relatively cold, long periods of extreme temper-
ature are rare.

Environmental exposures

We obtained meteorologic data for the period 1995–2006
from the weather station at Philadelphia International Air-
port, located 8 km southwest of Philadelphia’s city center
(23). We retrieved ultraviolet B (UVB) radiation index fore-
cast estimates for Philadelphia during the same period from
the National Weather Service’s Climate Prediction Center
(24). Clear-sky UVB indices represent an integral of mea-
sured UVB radiation levels weighted by the ability of the
different UVB wavelengths to cause skin erythema. The
issued UVB index is a similar measure which accounts for
the effect of clouds on radiation transmission; because of

inconsistencies in cloud measurement during the study pe-
riod, we used the clear-sky UVB index as our exposure
variable.

Information pertaining to air quality in Philadelphia
County during the years of interest—including concentra-
tions of lead, ozone, particulate matter, and sulfur oxides—
was obtained from the Environmental Protection Agency
(25). Because daily readings were taken at various locations
throughout the region, the arithmetic means of the air qual-
ity values were used as exposure variables.

Case data

Invasive meningococcal disease is a notifiable condition
in the Commonwealth of Pennsylvania. As such, health-care
providers or their surrogates are required to report any dis-
ease suspected to have been caused by N. meningitidis to the
appropriate state or local authorities. Information on cases
occurring in Philadelphia County is directed to the Phila-
delphia Department of Public Health, which identifies close
contacts of cases and initiates postexposure prophylaxis if
indicated. The Philadelphia Department of Public Health
also classifies cases as probable or confirmed, as defined
by the National Notifiable Diseases Surveillance System
(26). Confirmation requires isolation of N. meningitidis
from a normally sterile site, such as cerebrospinal fluid or
blood, in addition to a clinically compatible illness. Proba-
ble cases include those with meningococcal antigens iden-
tified in the cerebrospinal fluid and those with a compatible
clinical syndrome without microbiologic confirmation.

Information on cases occurring between January 1, 1995,
and December 31, 2006, was obtained from the Philadelphia
Department of Public Health. The available data included
report date, patient’s age and sex, outcome, and N. menin-
gitidis serogroup (if known). The date on which symptoms
began, as recorded, was considered to be the date of disease
onset for study purposes.

Statistical analysis

Rates of meningococcal disease were calculated using
demographic data for Philadelphia County from the 1990
and 2000 US censuses, with linear interpolation and extrap-
olation used as necessary to generate estimates for age and
sex strata in between-census years (22). Seasonal periodic-
ity in case occurrence was assessed through spectral decom-
position, with construction of a periodogram. Such
decomposition is performed by fitting multiple cosine re-
gression models, each with a distinct frequency, to observed
data; the frequency of oscillation associated with the max-
imum squared amplitude represents the ‘‘best fit’’ frequency
of oscillation for the observed data (12). The observed an-
nual periodicity of disease occurrence was incorporated into
Poisson regression models, such that

EðYÞ ¼ exp faþ b1ðyearÞ þ b2½sinð23p3month=12Þ�
þb3½cosð23p3month=12Þ�g:

E(Y) represents the case count expected in a given month,
a is a constant, and each b term denotes a regression
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coefficient for year or month (8). We used the Poisson re-
gression model to evaluate associations between environ-
mental exposures and monthly case counts of invasive
meningococcal disease. We constructed both univariable
models and multivariable models with seasonal smoothers
and yearly terms.

We also used a less restrictive approach to smoothing,
using cubic splines (27) to account for long-term trends
and seasonal variance. To avoid the pitfalls associated with
both overfitting and underfitting, we used Akaike’s Infor-
mation Criterion to optimize the number of knots within
the spline model; our optimal model incorporated knots at
4-month intervals (27). Multiple environmental exposures
were incorporated into the models using a backwards-
elimination algorithm, in which covariates were retained
at P � 0.20 (28).

To evaluate acute (i.e., day-to-day) associations between
environmental exposures and case occurrence, we used
a case-crossover approach. This study design is similar to
the case-control design, except that the case-crossover
method utilizes self-matching rather than an external control
group (16, 29). As a result, confounding by participant char-
acteristics is reduced while the risk of selecting unrepresen-
tative controls is essentially eliminated (16). In studies using
the case-crossover method to explore environmental effects,
the hazard period is constituted by person-time during
which the event occurred. Person-time during which the
event of interest did not occur defines the control period.

In the present study, a 2:1 matched case-crossover design
was used. Hazard periods were defined according to the date
of symptom onset. Beginning on January 1, 1995, person-
time at risk was divided into 3-week time blocks. The 2 days
within each block that could be matched to the hazard pe-
riod according to day of the week were defined as control
periods; thus, each analytic stratum consisted of 1 case day
and 2 control days. This approach was used to produce
random directionality of control period selection, since sea-
sonal or temporal trends may introduce bias in environmen-
tal case-crossover studies when only unidirectional or
bidirectional control periods are used (30). With random
directionality of control selection, control periods can fol-
low, precede, or both precede and follow the hazard period.
On 3 occasions during the study period, 2 cases occurred on
a single day; we tested the influence of these observations on
overall results by excluding these case days in a restriction
analysis.

Estimates of plausible effect periods were based on the
incubation period of meningococcal disease, which is usu-
ally 3–4 days but may range from 2 days to 10 days (31).
Daily measurements of environmental variables were used
as exposures, as were aggregated or averaged values of the
environmental variables. Exposures averaged over the 1–4
days prior to onset were defined as probably occurring dur-
ing incubation. Those averaged over the 5–10 days prior to
onset were considered to have probably preceded incuba-
tion, while those averaged over the 11–15 days before case
onset were defined as preceding incubation.

Odds ratios for case occurrence, based on environmental
exposures, were determined through construction of condi-
tional logistic regression models, with standard errors ad-

justed for clustering by 3-week time blocks (28). Quintile
ranks for exposure variables were used as indicator variables
for purposes of evaluating the association between a given
level of exposure and risk of a disease outcome, and were
also treated as 5-level ordinal variables in regression models
for the purpose of evaluating linear dose-response relations
(considered to be present if P was less than 0.05 using
quintile ranks and the Wald v2 test for trend (32)).

To explore the possibility of effect modification by patient
characteristics, we created multiplicative interaction terms
and incorporated them into regression models (33). We ex-
plored heterogeneity of environmental effects by serogroup
and by lethality of infection (fatal vs. nonfatal) using
stratum-specific analyses, with heterogeneity of effects across
strata assessed through calculation of the meta-analytic Q
statistic (34). SAS, version 9.1 (SAS Institute Inc., Cary,
North Carolina), and Stata, version 9.1 (Stata Corporation,
College Station, Texas), were used to perform all analyses.

RESULTS

Descriptive epidemiology, seasonality, and temporal
trends

The Philadelphia Department of Public Health received
162 reports of meningococcal disease between January 1995
and December 2006; 153 cases were confirmed, and 9 were
probable. Serogroup Y N. meningitidis accounted for the
largest proportion of these cases (33%), while serogroups
B and C accounted for 19% each. Incidence was highest in
children under age 5 years (incidence rate ratio (IRR) ¼
2.66, 95% confidence interval (CI): 1.66, 4.09) and adoles-
cents aged 15–19 years (IRR ¼ 1.89, 95% CI: 1.14, 3.01).
Meningococcal disease was also more common in males
than in females (IRR ¼ 2.09, 95% CI: 1.29, 3.27). There
were 17 reported fatalities, for a case-fatality rate of 10.5%
(95% CI: 6.2, 16.3). Table 1 presents case numbers and
annualized rates by sex, age, and serogroup.

The seasonality of case occurrence was confirmed
through spectral decomposition, which suggested an annual
periodicity to infection (Figure 1). Case counts increased in
the winter (IRR ¼ 2.85, 95% CI: 1.71, 4.74), spring (IRR ¼
2.30, 95% CI: 1.36, 3.89), and fall (IRR ¼ 1.95, 95% CI:
1.14, 3.34) relative to summer. The incorporation of sine and
cosine terms in Poisson models confirmed the seasonal os-
cillatory nature of N. meningitidis infection (for seasonal
oscillation, P < 0.001) (Figure 2). A significant decrease
in yearly incidence was also observed during the study pe-
riod (per year, IRR ¼ 0.95, 95% CI: 0.90, 0.99), though this
effect was no longer significant after adjustment for relative
humidity (P ¼ 0.20).

Identification of environmental effects using Poisson
regression

Univariable Poisson models identified relations between
numerous environmental factors and case occurrence; how-
ever, when oscillatory or cubic spline smoothers were in-
corporated into the models, maximum relative humidity and
(in cubic spline models) mean temperature were the only
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factors found to be independently associated with meningo-
coccal disease (Table 2). There was a significant dose-
response relation between quartile of relative humidity and
disease risk (per quartile, IRR ¼ 1.19, 95% CI: 1.02, 1.39)
after controlling for oscillation. Models that incorporated

cubic splines showed similar effects for humidity (IRR ¼
1.16, 95% CI: 1.00, 1.34) and also identified a trend towards
an inverse dose-response effect by quartile of temperature
(per quartile, IRR ¼ 0.86, 95% CI: 0.74, 1.00).

Exploratory analyses using linear splines revealed no
threshold value beyond which the effect of humidity or tem-
perature was significantly altered. No modification of the
effect of humidity by age group or sex was detected, and
no change in effect was observed when probable cases were
excluded from analyses. Although humidity was associated
with a significantly increased risk of serogroup C disease
(IRR ¼ 1.09, 95% CI: 1.00, 1.19) and was not associated
with an increased risk of disease due to other serogroups
(IRR ¼ 1.02, 95% CI: 0.99, 1.06), there was no statistically
significant heterogeneity in risk across serogroup strata
(Q statistic ¼ 1.43 (1 df), P ¼ 0.23), and no difference in
the effect of temperature was seen in cases with serogroup C
strains as compared with non-serogroup-C strains. No sig-
nificant differences were detected between fatal and non-
fatal cases with respect to the effects of humidity or
temperature.

Identification of acute environmental effects using the
case-crossover design

Using case-crossover methods, an acute protective asso-
ciation was found for clear-sky UVB index during the pe-
riod 1–4 days prior to case occurrence (odds ratio
(OR) ¼ 0.54, 95% CI: 0.34, 0.85). No significant relation
was found between UVB index and disease risk for periods
probably preceding incubation (OR ¼ 0.89, 95% CI: 0.58,
1.37) and periods preceding incubation (OR ¼ 0.90, 95%

Table 1. Numbers of Cases and Incidence Rates of Invasive

Meningococcal Disease (n ¼ 162) in Philadelphia County,

Pennsylvania, 1995–2006

Characteristic
No. of
Cases

Annualized
Rate per 100,000

Population

Total 162 0.89

Sex

Male 96 1.13

Female 66 0.68

Age, years

0–4 44 3.77

5–9 12 0.89

10–14 7 0.51

15–19 21 1.58

20–24 13 0.93

25–64 49 0.54

�65 15 0.58

Unknown 1

Neisseria meningitidis serogroup

B 31 0.17

C 30 0.17

W-135 6 0.03

Y 54 0.30

Z 2 0.01

Other/unknown 39
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Figure 2. Actual and predicted rates of invasive meningococcal dis-
ease in Philadelphia County, Pennsylvania, 1995–2006. The vertical
bars depict annualized disease rates; the solid curve represents in-
cidence predicted using a Poisson regression model incorporating
year, seasonal oscillatory terms, and relative humidity; and the
dashed curve represents predictions derived from a model incorpo-
rating natural cubic splines, relative humidity, and temperature terms.
Incidence is seasonal, with increased risk in the winter and spring
months, and it decreases over the course of the study period. Tick
marks on the x-axis denote January of each year.

Figure 1. Periodogram for invasive meningococcal disease in Phil-
adelphia County, Pennsylvania, 1995–2006. The periodogram was
constructed using spectral decomposition of monthly case counts,
as described in the text. Spectral density may be conceptualized as
a measure of goodness of fit for cosine-based regression models at
various frequencies (frequency ¼ period�1). A large peak is seen at
12 months, corresponding to annual seasonality.
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CI: 0.58, 1.37). No change in effect was seen when the 3
case days on which 2 cases occurred simultaneously were
excluded from the analysis. Figure 3 shows the relation
between daily clear-sky UVB index and risk of meningo-
coccal disease for lags of 0–15 days.

Minimal changes in observed effects were seen when
analyses were restricted to confirmed cases (for UVB expo-
sure 1–4 days prior to case occurrence, OR ¼ 0.58, 95%
CI: 0.36, 0.94). The possible existence of a dose-response
relation was also assessed for the 1- to 4-day effect period;
a negative linear relation was found between clear-sky UVB
index and disease occurrence (Table 3). The risk of menin-
gococcal disease was not found to be acutely associated with
other environmental exposures, including maximum relative
humidity. We detected no significant modification of UVB
effect by age or sex. In subgroup analyses, no significant
differences between effects were detected by serogroup
(P ¼ 0.87) or case lethality (P ¼ 0.96).

DISCUSSION

Seasonal variation in disease occurrence is a phenomenon
that has been recognized since the Hippocratic era (35).
Nevertheless, mechanisms driving the predictable periodic-
ity of many illnesses, including invasive meningococcal dis-
ease, remain poorly elucidated (12). In this study, both
Poisson regression and case-crossover methods were used
to assess associations between environmental conditions
and cases of invasive meningococcal disease in Philadel-
phia, Pennsylvania, a major US urban area. The late
winter–early spring seasonality of this disease and the peaks
in disease risk among young children and older adolescents
observed in this study are consistent with prior observa-
tions (4). The association between perturbations in relative
humidity and meningococcal disease risk is also consistent

with prior observations in numerous geographic areas
(though the direction of this effect has varied) (10, 36–39).

However, our identification of a strong, acute, and inde-
pendent effect of UVB radiation in reducing the risk of case
occurrence is, to our knowledge, the first documentation of
this relation. Our use of the case-crossover method in eval-
uating this relation makes it unlikely that this effect is due to
confounding by other seasonal exposures (12, 16) or due to
an ecologic fallacy resulting from aggregation of cases and

Table 2. Environmental Variables Associated With the Occurrence of Invasive Meningococcal Disease in

Univariable and Multivariable Poisson Regression Models, Philadelphia County, Pennsylvania, 1995–2006

Environmental
Exposure

Univariable
Models

Multivariable Models
Including Oscillatory
Seasonal Smoothers
and Annual Trend

Multivariable Models
Including Cubic Splines

IRR 95% CI P Value IRR 95% CI P Value IRR 95% CI P Value

Wind speed, km/hour 1.14 1.06, 1.23 �0.001

Mean temperature, �C 0.97 0.95, 0.99 �0.001 0.98 0.96, 1.00 0.02

Maximum relative humidity, % 1.05 1.01, 1.08 0.01 1.04 1.00, 1.08 0.03 1.04 1.00, 1.07 0.03

Snowfall, mm 1.05 1.02, 1.07 �0.001

Ultraviolet B index, per
unit changea

0.92 0.86, 0.99 0.02

Total ozone, ppm 3 100 0.85 0.72, 1.01 0.06

Carbon monoxide, ppm 3 100 2.25 1.18, 4.27 0.01

Oxides of nitrogen, ppm 3 100 1.72 1.23, 2.39 0.002

Oxides of sulfur, ppm 3 100 2.52 1.34, 4.74 0.004

Abbreviations: CI, confidence interval; IRR, incidence rate ratio; ppm, parts per million.
a One ultraviolet B index unit is 25 mW 3 m�2.

Figure 3. Association between clear-sky ultraviolet B (UVB) radia-
tion index and risk of invasive meningococcal disease in Philadelphia
County, Pennsylvania, 1995–2006. Odds ratios are plotted on a log
scale on the y-axis, while lag times before case occurrence are plotted
on the x-axis. A decrease in the risk of invasive meningococcal dis-
ease was seen with increasing clear-sky UVB index using a lag of 1–4
days. One UVB index unit is 25 mW 3 m�2. Bars, 95% confidence
interval.
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meteorologic exposures (15). In our analysis, the highest
levels of UVB exposure, within a given 3-week time block,
reduced the risk of invasive meningococcal disease by ap-
proximately 40% over the ensuing 4-day period, and a dose-
response effect was seen. This lag is important, since it
correlates with the usual incubation period for N. meningi-
tidis (1) and suggests that the mechanism of effect of in-
creased UVB is likely to be due to reduced transmission by
colonized persons or decreased acquisition by susceptible
hosts.

Such an effect is biologically plausible, since this patho-
gen needs to be transmitted through the environment in large
respiratory droplets in order to infect new hosts (1). The
ability of UVB radiation to cause accumulation of harmful
genetic mutations in bacteria, via creation of pyrimidine
dimers, is well-documented (40, 41). In piliated Gram-
negative species, UVB irradiation causes depolymerization
of pili with concomitant diminution in pathogen-epithelium
binding (42). It is therefore conceivable that exposure to
UVB radiation could either kill bacteria on surfaces or im-
pair the ability of N. meningitidis to adhere to the mucosa,
which is an important step in its pathogenesis.

Note that the UVB effects reported here are distinct from
the casual correlation between decreased environmental UVB
radiation during wintertime in temperate areas and increased
occurrence of respiratory disease (43). While season-long
decreases in UVB exposure may contribute to wintertime
surges in respiratory illness, the effect we report here is an
acute reduction in risk associated with increases in UVB
radiation within a 3-week time block (i.e., the self-matching
characteristic of the case-crossover design) (16). Further,
while the mechanism of the effect of diminished UVB ra-
diation on increased respiratory disease has been suggested
to be decreased host production of 1,25-dihydroxyvitamin D
(43), the results presented here occurred on too short a time
scale to be consistent with acute enhancement of vitamin D
levels.

Other environmental exposures identified in this study as
being linked to increases in N. meningitidis case counts were
relative humidity and temperature. The association with hu-
midity is well-described, although, as noted above, the di-
rection of this association has varied geographically:
Increased humidity is associated with increased incidence
in Israel (36), New Zealand (37), and England (39) and with

decreased incidence in the African ‘‘meningitis belt’’ (10)
and Italy (38). The reason for altered ambient humidity’s
increasing the risk of invasive meningococcal disease is
unclear; 1 theory holds that changes in humidity alter the
susceptibility of the nasopharynx to colonization by bacteria
(44). The apparent disparity in findings between regions
suggests that effects related to humidity may be region-
specific. Identification of weather effects as important driv-
ers of meningococcal infection, independent of season-level
behavioral patterns (e.g., indoor crowding or school atten-
dance), is of particular interest given the rapid changes in
global climate documented by the Intergovernmental Panel
on Climate Change (13). Drying and perturbation of
Harmattan winds in the face of a warming climate could
increase the magnitude of meningitis epidemics in the
sub-Saharan meningitis belt; the implications of such link-
ages for disease control activities are described elsewhere
(10, 13, 45). The potential implications of our findings for
meningococcal disease in North America are less clear:
Projections of warmer, wetter winters might suggest an in-
creased risk of meningococcal disease based on the associ-
ation between relative humidity and disease risk described
here (13). However, although UVB radiation exposure in the
Northern Hemisphere is projected to increase in coming
decades (which could theoretically diminish meningococcal
risk), the magnitude of this increase is uncertain and pro-
jections vary widely (46).

This study had several limitations. The first is the possible
incompleteness of public health surveillance data. It is
thought that many notifiable infectious diseases are under-
reported despite state and local laws (47), possibly because
of a lack of understanding as to how to report cases or the
belief that another person will assume the responsibility for
doing so (48). Therefore, there may have been cases of in-
vasive meningococcal disease in Philadelphia County dur-
ing the study period that were not included in our analyses.
However, this would have biased our results only if envi-
ronmental effects were somehow correlated with the likeli-
hood of disease reporting. Another limitation is that
misclassification of exposures may have occurred, which
is an inherent issue in any study using environmental data.
Because this misclassification is likely to have been random
or nondifferential rather than differential, our results may
have been underestimates and are probably biased towards
the null (49).

In summary, the seasonal nature of meningococcal dis-
ease in Philadelphia County was confirmed, and environ-
mental factors that might contribute to the observed
seasonality were evaluated. While traditional Poisson re-
gression analysis identified maximum relative humidity
and temperature as significant predictors of monthly disease
incidence, case-crossover methods found acute increases in
clear-sky UVB index to be protective—a finding that may be
important in explaining the wintertime seasonality of other
droplet-borne respiratory pathogens as well. These results
provide insight into host and pathogen factors that affect
disease risk and the importance of environmental conditions
in infectious disease occurrence. In future studies, investi-
gators might seek to establish whether this effect is observ-
able in other geographic locales.

Table 3. Dose-Response Relation Between Clear-Sky Ultraviolet B

Radiation Index and Risk of Meningococcal Disease for an Effect

Period of 1–4 Days, Philadelphia County, Pennsylvania, 1995–2006a

Quintile of
Ultraviolet B Index

Odds Ratio
95% Confidence

Interval

1 (low; referent) 1

2 0.89 0.49, 1.67

3 1.20 0.68, 2.14

4 0.72 0.40, 1.31

5 (high) 0.59 0.34, 1.03

a Wald v2 test for trend: v2 ¼ 4.22 (1 df); P ¼ 0.04.
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