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Abstract: Kasai portoenterostomy (KP) represents the first-line treatment for biliary atresia (BA). The
purpose was to compare the accuracy of quantitative parameters extracted from laboratory tests, US
imaging, and MR imaging studies using machine learning (ML) algorithms to predict the long-term
medical outcome in native liver survivor BA patients after KP. Twenty-four patients were evaluated
according to clinical and laboratory data at initial evaluation (median follow-up = 9.7 years) after KP
as having ideal (n = 15) or non-ideal (n = 9) medical outcomes. Patients were re-evaluated after an
additional 4 years and classified in group 1 (n = 12) as stable and group 2 (n = 12) as non-stable in the
disease course. Laboratory and quantitative imaging parameters were merged to test ML algorithms.
Total and direct bilirubin (TB and DB), as laboratory parameters, and US stiffness, as an imaging
parameter, were the only statistically significant parameters between the groups. The best algorithm
in terms of accuracy, sensitivity, specificity, and AUCROC was naive Bayes algorithm, selecting only
laboratory parameters (TB and DB). This preliminary ML analysis confirms the fundamental role of
TB and DB values in predicting the long-term medical outcome for BA patients after KP, even though
their values may be within the normal range. Physicians should be alert when TB and DB values
change slightly.

Keywords: artificial intelligence; bilirubin; ultrasound; magnetic resonance; shear-wave elastography

1. Introduction

In the past decades, due to the growth of medical information digitalization and
thanks to the availability of increasingly sophisticated technological quantitative tools,
large volumes of patient data have become widely available. In this scenario, new ap-
proaches from computational sciences can be used to analyze medical data to extract critical
health information that can help clinicians in the decision-making process and prognostic
evaluation [1]. In particular, machine learning (ML) has gained great interest thanks to
cheaper computing power and inexpensive memory and also because it is agnostic to the
domain of application. It is a methodology of data analysis, a branch of artificial intelli-
gence, that enables systems to learn and improve from data [2]. The ML methodology is
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spreading in clinical research with applications in several medical fields, such as neurology,
cardiology, ophthalmology, pediatrics, and fetal monitoring [3–11].

Biliary atresia (BA) is a rare cholangiopathy of unknown etiology, which is character-
ized by inflammatory obliteration of both intrahepatic and extrahepatic bile ducts [12–15];
an early diagnosis is needed, and Kasai portoenterostomy (KP) represents the treatment
of choice [16,17]. During the post-surgical follow-up, diagnostic evaluation consists of
monitoring clinical and laboratory data as well as performing abdominal ultrasound (US)
and magnetic resonance imaging (MR) [18–22]. In the literature, a good correlation of
qualitative imaging findings using US and/or MR with the medical outcome of BA patients
with native liver after KP during follow-up was described, as well as the potential role of
US and MR findings in predicting the long-term medical outcome in such patients [21,22].

The aim of this study was to compare the accuracy of several quantitative parameters
extracted from different methodologies, such as laboratory tests, US, and MR imaging,
using ML algorithms in predicting the long-term medical outcome for native liver survivor
patients with BA who have undergone KP.

2. Materials and Methods
2.1. Patient Population

Native liver survivor patients with BA after KP were retrospectively enrolled from the
pediatric liver unit (January 2012 to December 2019). Exclusion criteria were (1) patients
with liver transplantation and (2) patients with a time interval between acquisition of
imaging studies (US and MR) greater than 30 days. Patients were initially evaluated by
clinical, laboratory, and imaging (US and MR) studies to assess the medical outcome after
KP. Patients were classified as having an ideal or a non-ideal medical outcome after KP
following the criteria suggested by Ng et al. [23] and modified by Lee et al. [18]. An ideal
medical outcome was defined as normal laboratory parameters with no evidence of medical
complications of chronic liver disease (CLD), while a non-ideal medical outcome was based
on at least one abnormal laboratory parameter and/or one CLD medical complication [18],
including cholangitis, portal hypertension, variceal bleeding, fractures, hepatopulmonary
syndrome, and portopulmonary hypertension. Successively, patients were similarly re-
evaluated during long-term follow-up from initial evaluation to assess the disease course
as stable or non-stable. The disease course was considered stable when the patient medical
outcome remained unchanged at re-evaluation, whereas the disease course was considered
non-stable when the patient medical outcome changed at re-evaluation to ideal from non-
ideal or to non-ideal in progression; in particular, the status of non-ideal in progression
consisted of the occurrence of at least one additional laboratory or clinical abnormality.

2.2. Laboratory Tests

The following laboratory parameters were used: white blood cell (WBC) count
(n.v. > 4000/mm3), platelet (PLT) count (n.v. > 150,000/mm3), total bilirubin (TB;
n.v. < 1.2 mg/dL), direct bilirubin (DB; n.v. < 0.5 mg/dL), albumin (n.v. > 3.5 g/dL), interna-
tional normalized ratio (INR; n.v. < 1.3), alanine aminotransferase (ALT; n.v. < 40 IU/L),
aspartate aminotransferase (AST; n.v. <40 IU/L), and γ-glutamyl transpeptidase (GGT;
n.v. < 55 IU/L).

2.3. US and MR Imaging Acquisition and Processing

US and MR studies were acquired using imaging protocols, as previously reported [21].
For US quantitative analysis, the right hepatic lobe diameter and portal vein diameter

were measured, as well as liver stiffness being analyzed using shear-wave elastography
(SWE). In particular, the right hepatic lobe diameter (mm) was obtained on the midclavicu-
lar plane using the upper margin of the liver as the uppermost edge under the dome of the
diaphragm, while the lower margin was taken as the lowermost edge of the lobe [24]; the
portal vein was visualized in its longitudinal axis, and the greatest anteroposterior diameter
at the liver hilum was measured in millimeters. SWE evaluates tissue stiffness, expressed as
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Young’s modulus (kPa) [25–27]. The position of the regions of interest (ROIs) is selected by
the operator in real-time grayscale mode imaging, allowing them to choose a homogeneous
vessel-free area placed at least 1 cm below the liver capsule [28]. For spleen diameter
measurement (mm), the longitudinal dimension in the coronal plane was obtained; of note,
the longitudinal measurement was performed between the most superomedial and the
most inferolateral points [24].

For MR quantitative analysis, liver and spleen volumes were measured using a semi-
automatic method with OsiriX® version 3.3 software. An expert abdominal radiologist
manually traced liver and spleen contours at different levels on T2-weighted images with
the closed polygon selection tool under the ROI tool button; the Grow Region (2D/3D
Segmentation) tool in the ROI dropdown menu made it possible to automatically outline
the remaining boundaries. The automatic generated outlines were hand-adjusted with the
closed polygon selection tool and the repulsor tool to optimize the ROIs. After selecting all
of the ROIs within the series, OsiriX® automatically calculated the volume by multiplying
the surface and slice thickness and then adding up individual slice volumes. OsiriX® also
provided 3D images using the ROI volume tool (Figure 1) [29]. Furthermore, the portal vein
diameter was measured in millimeters on the axial T2-weighted sequence at the liver hilum.
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Figure 1. Coronal MR image shows liver and spleen enlargement (A); axial MR image shows ROI
analysis of liver and spleen (B) to obtain 3D liver (C) and spleen (D) volume reconstruction images;
of note, ROI analysis was performed on multiple sequential slices for completely including the liver
and spleen.

2.4. Statistical Analysis

A preliminary statistical analysis was performed analyzing the data of each methodol-
ogy, both by the laboratory tests and imaging, for giving an input to ML algorithms. In
the light of the small sample size, a non-parametric Mann–Whitney test was performed
to distinguish stable (group 1) from non-stable (group 2) patients, considering each quan-
titative variable associated with the three diagnostic methodologies under examination,
namely laboratory, US, and MR parameters. A Wilcoxon signed-rank test was performed
to compare paired data. Moreover, a chi-square test was performed to compare the eval-
uation metrics (accuracy, sensitivity, specificity) of the different methodologies, since the
augmentation of the data made the dataset not paired; the first two best evaluation metrics
among laboratory tests, US, and MR parameters were compared. For all statistical tests, a
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two-tailed p-value of <0.05 was considered statistically significant. All the statistic tests
were implemented using IBM SPSS Statistics (version 26).

2.5. Machine Learning: Tools and Algorithms

The data of all parameters were merged, and a selection method was used to under-
stand the most important parameter among all diagnostic methodologies. Considering
the small sample size and to make a fair comparison among the methodologies through
machine learning analysis, an oversampling technique was performed, resulting in the
generation of artificial data, namely the Synthetic Minority Oversampling Technique
(SMOTE) proposed by Chawla et al., in order to double the amount of data [30,31]. This
technique creates synthetic examples in the feature space from randomly selected pairs of
real word–feature examples.

Because of the negative effect of irrelevant attributes on most ML schemes, it is
common to precede learning with a feature selection stage that strives to eliminate all
the redundant and irrelevant attributes for the classification and to identify the most
informative features for the specific classification task. Dimensionality reduction yields a
more compact and easily interpretable representation of the target concept, focusing the
user’s attention on the most relevant variables. A wrapper method was used for feature
selection before the final classification procedure when the features of all the methodologies
were merged [32]. To classify the prognosis of the patients (stable or non-stable), different
ML classification techniques were tested to ensure the best performance. As a result,
classification methods, including supervised learning with a random forest (RF), naive
Bayes (NB) algorithm, k-nearest neighbor (kNN) algorithm, and support vector machine
(SVM), were evaluated [33,34]. In particular, an RF is composed of a large number of
decision trees, which are mainly used to correct the overfitting problem of decision trees,
which is surely an added value in this study with a small sample size. In this technique,
multiple decision trees, trained from different subsets of the same training set, are averaged,
and overfitting is avoided by reducing the variance of the system. The training algorithm
works by applying bagging and randomization to tree learners. In this paper, the RF was
made up of 100 models, used the information gain ratio as a split criterion, and had a
tree depth of 10. Differently, the NB algorithm is a probabilistic ML algorithm based on
Bayes’ theorem that calculates the probability of each class for a specified instance and
then returns the class with the highest probability. This algorithm, requiring little data for
training and little storage space, is suitable for the small size of the data sets at disposal.
The kNN algorithm is an instance-based statistical method that works on the idea that the
instances of a dataset are in proximity with other instances that have similar characteristics.
In this classification approach, a test example is classified by observing the class label of
its adjacent neighbors. The kNN algorithm finds out the k-nearest instances to the one to
be classified and identifies its class on the basis of the most common class label. In this
study, a k value was set equal to 3 and the Euclidean distance was used as the distance
metric to identify the closest neighbors. Another instance-based algorithm is the SVM,
which creates, in a binary classification, a hyperplane that separates data from two different
classes. The largest possible distance is established between the separating hyperplane by
maximizing the margin, thus creating the separation. The choice of kernel determines the
separation boundary of the classes. The radial basis function (RBF) or Gaussian kernels are
the most popular kernels used as default for any nonlinear model; polynomial kernels are
also popular. An SVM with an RBF kernel was considered in this study.

The feature importance of the best subset of the features was computed according to
the information gain for one of the best algorithms.

Leave-one-out cross-validation (LOOCV) was performed to evaluate the performance
of the predictive models [35]. In LOOCV, every instance is in turn used to test the model
induced from the other instances, ensuring the instance independence assumption, namely
every prediction in LOOCV is independent of the other. This technique uses for each
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train/test round the biggest-possible train set, thus reducing the errors and being the most
reliable validation method.

Standard evaluation metrics such as accuracy, sensitivity, and specificity, as well as
the area under the curve of the receiver operating characteristic (AUCROC) were used to
evaluate the models’ performance [36]. The AUCROC was computed by using as input a
column with the real class and a second one with the probabilities that a record is classified
as being from the selected class. The ML analysis was performed by means of the KNIME
analytics platform (version 4.1.3) [10,37–39].

3. Results
3.1. Patient Population

The study population consisted of 24 patients (15 male; median age = 9.25 years,
range = 5–25 years) according to inclusion and exclusion criteria. The median timing
between the birth and KP surgical intervention was 67.5 days (range = 38–119 days). At
initial evaluation, 15 patients had an ideal medical outcome, while the remaining 9 had
a non-ideal medical outcome after KP. The median follow-up timing at initial evaluation
after KP treatment was 9.7 years (range = 5–25 years) for all patients. At re-evaluation,
after additional 4 years of long-term follow-up, 12 (50%) patients were stable (group 1) in
their disease course, of which 9 had an ideal medical outcome and 3 a non-ideal medical
outcome (Table 1); the other 12 (50%) patients had a non-stable (group 2) disease course,
of which 6 patients changed from an ideal to a non-ideal medical outcome and 6 patients
showed clinical disease progression (Table 2).

Table 1. Clinical results of stable patients (group 1).

# Sex Age (years) Medical Status * Laboratory
Abnormalities ◦ CLD Complications

1 M 6 Ideal - -

2 M 13 Ideal - -

3 F 10 Ideal - -

4 M 9 Ideal - -

5 F 13 Ideal - -

6 M 6 Ideal - -

7 M 5 Ideal - -

8 F 9 Ideal - -

9 M 14 Ideal - -

10 M 11 Non-ideal AST, ALT, WBC, PLT Portal hypertension, cholangitis

11 M 9 Non-ideal AST, ALT, GGT, WBC, PLT Portal hypertension

12 M 25 Non-ideal TB, PLT Portal hypertension

* The medical status was established according to the criteria of Ng et al. [23] and Lee et al. [18]. ◦ Abnormal values out of the normal
range. - = not present.

3.2. Descriptive Analysis

The results of each diagnostic parameters, either by laboratory tests or imaging (US
and MR), are reported in Table 3; in particular, TB and DB, as laboratory parameters, and
US stiffness, as the imaging parameter, were the only statistically significant parameters
between groups 1 and 2. In detail, TB and DB were significantly higher in patients of
group 2 compared to those of group 1, even though the corresponding values in group 2
were still in the normal ranges. However, in patients of group 2, the mean values of TB
(1.23 ± 0.43 vs. 0.74 ± 0.25; p = 0.005) and DB (0.53 ± 0.18 vs 0.29 ± 0.12; p = 0.006) were
significantly increased at re-evaluation during the long-term follow-up; in particular, in the
majority (75%) of patients of group 2, a significant increase in TB and DB values beyond
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the high normal limit was observed. Finally, US liver stiffness by SWE was significantly
higher in patients of group 2 compared with those of group 1 (Figure 2).

Table 2. Clinical results of non-stable patients (group 2).

# Sex Age (years) Medical Status at
Initial Evaluation *

Laboratory Abnormalities
at Re-Evaluation

CLD Complications at
Re-Evaluation

Long-Term Medical
Outcome

1 M 13 Ideal TB - Non-ideal

2 M 10 Ideal TB - Non-ideal

3 M 12 Ideal TB Cholangitis Non-ideal

4 M 5 Ideal ALT, PLT - Non-ideal

5 F 14 Ideal TB Cholangitis Non-ideal

6 F 6 Ideal WBC - Non-ideal

7 M 6 Non-ideal a TB, PLT Portal hypertension Clinical progression

8 M 5 Non-ideal b WBC - Clinical progression

9 F 7 Non-ideal c AST, ALT, WBC, - Clinical progression

10 F 10 Non-ideal d TB - Clinical progression

11 M 7 Non-ideal e WBC - Clinical progression

12 F 7 Non-ideal f TB - Clinical progression

* The medical status was established according to the criteria of Ng et al. [23] and Lee et al. [18]. ◦ Abnormal values out of the normal
range. - = not present. a Increased values of AST and ALT associated with the presence of cholangitis; b decreased values of PLT associated
with the presence of portal hypertension; c decreased values of PLT associated with the presence of cholangitis and portal hypertension;
d abnormal values of PLT and INR associated with the presence of cholangitis, portal hypertension, and variceal bleeding; e abnormal
values of AST, ALT, GGT, and PLT associated with the presence of portal hypertension; f abnormal values of AST, ALT, INR, albumin, WBC,
and PLT associated with the presence of cholangitis and portal hypertension.

Table 3. Laboratory and imaging results in group 1 and group 2.

- Parameter Group 1
(Mean ± SD)

Group 2
(Mean ± SD) p-Value

Laboratory

AST (IU/L) 31 ± 11 40 ± 25 0.443

ALT (IU/L) 29 ± 21 33 ± 20 0.291

GGT (IU/L) 23 ± 19 25 ± 22 0.887

TB (mg/dL) 0.38 ± 0.34 0.74 ± 0.25 0.001

DB (mg/dL) 0.13 ± 0.09 0.29 ± 0.12 0.001

INR 1.06 ± 0.07 1.12 ± 0.11 0.198

Albumin (g/dL) 4.74 ± 0.24 4.44 ± 0.50 0.114

WBC (cells/mm3) 6567 ± 2293 6122 ± 1873 0.551

PLT (cells/mm3) 242083 ± 115800 188667 ± 93292 0.378

US

Portal vein (mm) 9.75 ± 1.60 9.08 ± 2.11 0.932

Liver diameter (mm) 129.17 ± 23.53 114.00 ± 21.56 0.078

Spleen diameter (mm) 118.00 ± 23.83 124.92 ± 25.65 0.443

Liver stiffness (kPa) 5.95 ± 1.28 10.47 ± 7.32 0.020

MR

Portal vein (mm) 9.92 ± 1.38 8.75 ± 2.05 0.198

Liver volume (cm3) 923.46 ± 250.47 823.97 ± 282.75 0.242

Spleen volume (cm3) 300.64 ± 199.82 356.17 ± 142.86 0.198

Note: the parameters statistically significant are marked in bold.
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ments using ROI analysis in a patient of group 1 ((A) #5; Table 1—liver stiffness = 3.6 kPa) and in a
patient of group 2 ((B) #11; Table 2—liver stiffness = 32.5 kPa).

3.3. Machine Learning

The result of SMOTE assessment increased the dataset from 24 to 48 subjects. Then,
ML algorithms were implemented to classify the outcomes for all subjects using laboratory,
US, and MR parameters by performing LOOCV (Tables 4–6). Table 3 contains the list
of laboratory and imaging parameters that were given as input to the algorithms. For
laboratory algorithms (Table 4), the RF was the best according to accuracy, sensitivity,
and specificity values, even though the kNN algorithm achieved the highest AUCROC
value. For US algorithms (Table 5), the RF was the best according to accuracy, sensitivity,
and AUCROC, while NB and kNN algorithms obtained the highest specificity. For MR
algorithms (Table 6), the kNN and SVM were the best according to accuracy, sensitivity,
and specificity values, even though the kNN algorithm showed the highest AUCROC.
The comparison of the mean performance between laboratory and imaging algorithms
showed that the laboratory algorithms achieved the best results in terms of accuracy,
sensitivity, and specificity values, as well as the AUCROC. The comparison between the
first two best evaluation metrics (each best one is marked in bold for each methodology
in Tables 4–6) among all the methodologies (laboratory, US, and MR) showed that the
accuracy and sensitivity obtained through the RF applied on the laboratory data were
greater than the others in a statistically significant way (p-value = 0.046 for both). When
laboratory or imaging parameters were merged and analyzed as input to ML algorithms,
using the wrapper technique as the feature selection method, the best algorithm was the NB
algorithm using only laboratory parameters, such as TB and DB; however, the same result
was obtained with the RF and kNN algorithms but using either laboratory or imaging
parameters (Table 7). For the NB algorithm, the feature importance was also computed,
thus determining that the TB contributed to the prediction with 56%, while DB contributed
with 44%.

Table 4. Results using laboratory features after the SMOTE technique in predicting long-term
medical outcomes.

Algorithms Accuracy (%) Sensitivity (%) Specificity (%) AUCROC

RF 95.8 95.8 95.8 0.991

NB 72.9 62.5 83.3 0.866

kNN 93.8 91.7 95.8 0.997

SVM 89.6 87.5 91.7 0.896

Mean performance 88.0 84.4 91.7 0.937
Note: the best value for each evaluation metric is marked in bold.
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Table 5. Results using US imaging features after the SMOTE technique in predicting long-term
medical outcomes.

Algorithms Accuracy (%) Sensitivity (%) Specificity (%) AUCROC

RF 79.2 79.2 79.2 0.868

NB 64.6 41.7 87.5 0.642

kNN 79.2 70.8 87.5 0.818

SVM 75.0 70.8 79.2 0.750

Mean performance 74.5 65.6 83.4 0.769
Note: the best value for each evaluation metric is marked in bold.

Table 6. Results using MR imaging features after the SMOTE technique in predicting long-term
medical outcomes.

Algorithms Accuracy (%) Sensitivity (%) Specificity (%) AUCROC

RF 79.2 79.2 79.2 0.878

NB 60.4 41.7 79.2 0.677

kNN 83.3 83.3 83.3 0.908

SVM 83.3 83.3 83.3 0.833

Mean performance 76.6 71.9 81.3 0.824
Note: the best value for each evaluation metric is marked in bold.

Table 7. Results using merged laboratory and imaging features after the SMOTE technique in
predicting long-term medical outcomes.

Algorithms Accuracy Sensitivity Specificity AUCROC Features Selected

RF 100 100 100 1 TB, US liver diameter, MR
portal vein diameter

NB 100 100 100 1 TB, DB

kNN 100 100 100 1 TB, DB, WBC, US Stiffness,
MR portal vein diameter

SVM 93.3 100 87.5 0.938 TB, INR

4. Discussion

In BA patients surviving with native liver after KP, the evaluation of the disease course
and biliary cirrhosis occurrence is clinically relevant during follow-up [18,23]. For this
purpose, clinical evaluation as well as laboratory tests and imaging studies are conven-
tionally used. Imaging exams such as US and/or MR are able to depict liver and spleen
anatomic conditions, providing a series of specific imaging parameters to assess the disease
course [21]. Therefore, a wide spectrum of diagnostic parameters (clinical, laboratory, and
imaging) is available in this setting, even though it is not well established how to use them
and whether a complementary role may be hypothesized. In this study, the accuracy of
several diagnostic quantitative parameters extracted from different methodologies, such as
laboratory tests and imaging exams (US and MR), using ML algorithms was compared to
predict the long-term medical outcome for native liver survivor patients with BA who have
undergone KP. In detail, the patient population consisted of 24 patients, of which 50% were
stable (group 1) in their disease course as an ideal (n = 9) or anon-ideal (n = 3) long-term
medical outcome; conversely, the other 50% of the patients showed a long-term non-stable
(group 2) disease course, since 6 patients changed from the ideal to the non-ideal medical
status, while 6 patients had clinical disease progression. In this investigation, to predict
the long-term medical outcome, laboratory parameters such as WBC and PLT counts, TB,
DB, albumin, INR, ALT, AST, and GGT values were considered, as well as quantitative
imaging parameters of liver and spleen conditions by US (right hepatic lobe diameter,
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portal vein diameter, and liver stiffness) and MR (liver and spleen volumes and portal
vein diameter) imaging modalities. In this setting, laboratory data reflect mainly liver
function, while imaging parameters are an expression of liver and spleen morphological
changes, the liver parenchyma structure using the assessment of liver stiffness by US, and
portal hypertension by measuring the portal vein diameter by both imaging techniques.
ML algorithms with different operating principles were used to obtain a wider range of
investigation. The overall results of the ML analysis showed that TB and DB as laboratory
tests and US liver stiffness as the imaging parameter were the only significant parameters
that were able to distinguish stable from non-stable patients in predicting the long-term
medical outcome. These findings are reasonable since they reflect liver conditions, either
directly in terms of the liver structure by US stiffness or indirectly by TB and DB reflecting
liver function. These observations are concordant and confirm previous experiences in
which a predictive role of serum bilirubin levels and US liver stiffness has been suggested
in patients with BA treated with KP during early and long-term follow-up [19,40–44].
In particular, among the used ML algorithms, the RF algorithm was the best either for
laboratory or for US parameters, while SVM and kNN algorithms were the best according
to MR parameters. However, the evaluation of the mean performance of laboratory and
imaging algorithms showed that laboratory algorithms achieved the best results in terms
of accuracy, sensitivity, and specificity values, as well as the AUCROC. Furthermore, when
all the diagnostic parameters, either by laboratory tests or by imaging, were merged and
analyzed as input to ML algorithms, the best algorithm was the NB algorithm using only
TB and DB, even though the same result was obtained also with RF and kNN algorithms
using either laboratory or imaging parameters. Of course, the high evaluation metrics
achieved could make a reader think of overfitting, since a high number of computations on
a small sample of data through simple cross-validation provide an optimistic estimation of
the model, as reported by Tsamardinos et al. [45]. However, it is worth underlining that
the best results were obtained by using the combination of LOOCV and the RF, both of
which are used to reduce the chance of overfitting. Moreover, it should be emphasized
that the purpose of the article was not to obtain a perfect model, since the dataset had
obtained an injection of artificial data, but to understand the weight and importance of
the parameters extracted from US, MRI, and laboratory tests in predicting the long-term
outcome for native liver survivor patients with BA after KP. Indeed, ML has already been
used to compare different clinical methodologies to predict an outcome (both diagnostic
and prognostic) in cardiology or choose the best resolution for ultrasound [9,46,47].

Thus, this preliminary ML evaluation confirms that laboratory tests, specifically TB
and DB, represent powerful parameters to predict the long-term medical outcome in native
liver survivor patients with BA after KP, supporting previous observations that already
suggested a main role of serum bilirubin levels for this purpose [19]. These preliminary
results and those of previous investigations may have significant advantages in terms of
clinical patient management and cost-effectiveness, since TB and DB plasma measurements
as laboratory tests are easily performed, widely available, and not expensive [19,42]. How-
ever, even though the values of TB and DB were able to predict the long-term medical
outcome, they were still in the normal range but tended toward the upper limit; of note,
this trend was confirmed by increased values of TB and DB beyond the high normal limit
at re-evaluation in the majority of patients with non-stable disease.

To date, ML methods have been applied in clinical research with applications in several
medical fields, of which many are in pediatric diagnostic imaging [48–50]. In particular,
the ML methodology has been applied to assess skeletal maturity on hand X-rays [51], to
diagnose and classify acute appendicitis using laboratory tests and US [52], to identify
MR biomarkers of the autistic spectrum [53], and to evaluate CLD using clinical data and
MR [54]. Furthermore, recent studies have suggested a role of ML methodologies also in
patients with BA, focusing on disease diagnosis. In detail, Hoshino et al., using an ML
algorithm, realized an iPhone application (Baby-Poop) able to capture subtle differences in
stool color that may be undetectable by a layperson to get early diagnosis of BA [55]. A
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similar ML application with the same purpose was made by Angelico et al., who created
PopòApp [56]. Moreover, Zhou et al. developed an ensembled deep learning model to
facilitate the diagnosis of BA for non-expert radiologists using DB values and US images
as well as videos of the gallbladder [57]. In this setting, this pilot experience is the first
that reports an ML evaluation using laboratory and imaging parameters with long-term
predictive purposes in patients with BA after KP, supporting the main role of laboratory
tests in the follow-up of such patients. A future development could be the use of deep
learning algorithms on the images to further test their feasibility to predict the outcome.

Some limitations of this study should be addressed. Mainly, the small sample size
and the retrospective type of the investigation might be not optimal, but the low incidence
of BA, a rare pediatric disease, should be considered; therefore, additional experiences in
a larger patient population are required. The data used in ML analysis to establish the
long-term medical outcome consisted of laboratory and quantitative imaging parameters
as continuous variables requested by ML algorithms; therefore, the presence or absence
of CLD medical complications was not included in the analysis for the lack of continu-
ous quantification; similarly, patients with asplenia or poly-splenia, possible findings in
children with BA, may be not included. Moreover, technical ML limitations were also
present, particularly due to the implementation of SMOTE for augmenting data; never-
theless, predicting the outcome was not the main purpose of the research, since the aim
was to compare the accuracy of several diagnostic parameters extracted from different
methodologies. Therefore, the use of SMOTE, which was used to augment the dataset with
artificial data, as already done in a previous study, rather than to balance a minority class,
as is usually employed [58], might have a limited impact on the analysis; in comparison
with traditional logistic regression, ML has the advantage of not requiring the assessment
of assumptions to be performed, such as the detection of outliers or a strict limit between
subjects and variables. Moreover, ML algorithms have demonstrated empirically their
powerfulness in several fields. The main disadvantage of ML algorithms is the black-box
style, since the input and output of the algorithms are known but a numerical model is not
provided; nevertheless, ML algorithms may be used as clinical support decision-making
systems since they provide users with a probability for each subject of being part of a
fixed class.

In conclusion, the results of this preliminary ML investigational study of native liver
survivor patients with BA who have undergone KP, integrating laboratory and imaging
quantitative diagnostic data, showed that TB and DB represent the fundamental parameters
to predict the long-term medical outcome after treatment, confirming the results of previous
studies that demonstrated a main predictive role of serum bilirubin levels in such patients
during early follow-up. In particular, the values of TB and DB may be within the normal
range but with a slight increase; therefore, clinicians should be alert when the values of
these laboratory parameters show subtle changes. Furthermore, US liver stiffness, reflecting
liver parenchyma changes, is the best imaging parameter for this purpose.
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24. Konuş, O.L.; Ozdemir, A.; Akkaya, A.; Erbaş, G.; Celik, H.; Işik, S. Normal liver, spleen, and kidney dimensions in neonates,
infants, and children: Evaluation with sonography. Am. J. Roentgenol. 1998, 171, 1693–1698. [CrossRef]

http://doi.org/10.1007/s00247-019-04360-1
http://www.ncbi.nlm.nih.gov/pubmed/31620840
http://doi.org/10.1186/s41747-019-0139-9
http://doi.org/10.1167/tvst.9.2.5
http://www.ncbi.nlm.nih.gov/pubmed/32704411
http://doi.org/10.1177/1460458219899210
http://www.ncbi.nlm.nih.gov/pubmed/31969043
http://doi.org/10.1007/s12350-020-02187-0
http://www.ncbi.nlm.nih.gov/pubmed/32424676
http://doi.org/10.1038/s41598-020-77243-3
http://www.ncbi.nlm.nih.gov/pubmed/33208913
http://doi.org/10.1016/S0140-6736(09)60946-6
http://doi.org/10.1159/000480708
http://doi.org/10.4254/wjh.v8.i36.1593
http://doi.org/10.1097/MPG.0000000000000755
http://www.ncbi.nlm.nih.gov/pubmed/25658057
http://doi.org/10.1016/j.clinre.2012.03.017
http://www.ncbi.nlm.nih.gov/pubmed/22609296
http://doi.org/10.1016/j.jpedsurg.2012.09.003
http://www.ncbi.nlm.nih.gov/pubmed/23217872
http://doi.org/10.3748/wjg.v23.i43.7776
http://doi.org/10.1016/j.crad.2012.12.004
http://doi.org/10.1111/j.1442-200X.2008.02657.x
http://doi.org/10.1177/0284185120902379
http://doi.org/10.1007/s00261-021-02958-4
http://doi.org/10.1016/j.jpeds.2014.05.038
http://doi.org/10.2214/ajr.171.6.9843315


Bioengineering 2021, 8, 152 12 of 13

25. Serai, S.D.; Trout, A.T.; Sirlin, C.B. Elastography to assess the stage of liver fibrosis in children: Concepts, opportunities, and
challenges. Clin. Liver Dis. 2017, 9, 5–10. [CrossRef]

26. Dillman, J.R.; Heider, A.; Bilhartz, J.L.; Smith, E.A.; Keshavarzi, N.; Rubin, J.M.; Lopez, M.J. Ultrasound shear wave speed
measurements correlate with liver fibrosis in children. Pediatr. Radiol. 2015, 45, 1480–1488. [CrossRef]

27. Lurie, Y.; Webb, M.; Cytter-Kuint, R.; Shteingart, S.; Lederkremer, G.Z. Non-invasive diagnosis of liver fibrosis and cirrhosis.
World J. Gastroenterol. 2015, 21, 11567–11583. [CrossRef]

28. Tang, A.; Cloutier, G.; Szeverenyi, N.M.; Sirlin, C.B. Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis:
Part 2, Diagnostic Performance, Confounders, and Future Directions. Am. J. Roentgenol. 2015, 205, 33–40. [CrossRef] [PubMed]

29. Van Der Vorst, J.R.; Van Dam, R.M.; Van Stiphout, R.S.A.; Van Den Broek, M.A.; Hollander, I.H.; Kessels, A.G.H.; Dejong, C.H.C.
Virtual Liver Resection and Volumetric Analysis of the Future Liver Remnant using Open Source Image Processing Software.
World J. Surg. 2010, 34, 2426–2433. [CrossRef] [PubMed]

30. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

31. Wong, S.C.; Gatt, A.; Stamatescu, V.; McDonnell, M.D. Understanding Data Augmentation for Classification: When to Warp? In
Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold
Coast, QLD, Australia, 30 November–2 December 2016.

32. Witten, I.H.; Hall, M.A. Practical Machine Learning, 3rd ed.; Packt Publishing Ltd.: Birmingham, UK, 2016.
33. Al-Aidaroos, K.M.; Abu Bakar, A.; Othman, Z. Naïve Bayes variants in classification learning. In Proceedings of the 2010

International Conference on Information Retrieval & Knowledge Management (CAMP), Shah Alam, Malaysia, 17–18 March 2010;
pp. 276–281.

34. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef] [PubMed]
35. Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit.

2015, 48, 2839–2846. [CrossRef]
36. Hossin, M.; Sulaiman, M.N. A Review on Evaluation Metrics for Data Classification Evaluations. Int. J. Data Min. Knowl. Manag.

Process. 2015, 5, 01–11. [CrossRef]
37. Tougui, I.; Jilbab, A.; El Mhamdi, J. Heart disease classification using data mining tools and machine learning techniques. Health

Technol. 2020, 10, 1137–1144. [CrossRef]
38. Ricciardi, C.; Donisi, L.; Cesarelli, G.; Pagano, G.; Coccia, A.; D’addio, G. Feasibility of Machine Learning applied to Poincaré Plot

Analysis on Patients with CHF. In Proceedings of the 2020 11th Conference of the European Study Group on Cardiovascular
Oscillations (ESGCO), Pisa, Italy, 27–29 April 2020; pp. 16–17.

39. Donisi, L.; Ricciardi, C.; Cesarelli, G.; Pagano, G.; Amitrano, F.; D’addio, G. Machine Learning applied on Poincaré Analyisis to
discriminate different cardiac issues. In Proceedings of the 2020 11th Conference of the European Study Group on Cardiovascular
Oscillations (ESGCO), Pisa, Italy, 27–29 April 2020; pp. 17–18.

40. Hahn, S.M.; Kim, S.; Park, K.I.; Han, S.J.; Koh, H. Clinical benefit of liver stiffness measurement at 3 months after Kasai
hepatoportoenterostomy to predict the liver related events in biliary atresia. PLoS ONE 2013, 8, e80652. [CrossRef]

41. Jain, V.; Burford, C.; Alexander, E.C.; Sutton, H.; Dhawan, A.; Joshi, D.; Davenport, M.; Heaton, N.; Hadzic, N.; Samyn, M.
Prognostic markers at adolescence in patients requiring liver transplantation for biliary atresia in adulthood. J. Hepatol. 2019, 71,
71–77. [CrossRef] [PubMed]

42. Hanquinet, S.; Courvoisier, D.S.; Rougemont, A.L.; Wildhaber, B.E.; Merlini, L.; McLin, V.A.; Anooshiravani, M. Acoustic radiation
force impulse sonography in assessing children with biliary atresia for liver transplantation. Pediatr. Radiol. 2016, 46, 1011–1016.
[CrossRef] [PubMed]

43. Yan, H.; Du, L.; Zhou, J.; Li, Y.; Lei, J.; Liu, J.; Luo, Y. Diagnostic performance and prognostic value of elastography in patients
with biliary atresia and after hepatic portoenterostomy: Protocol for a systematic review and meta-analysis. BMJ Open 2021, 11,
e042129. [CrossRef] [PubMed]

44. Liu, Y.; Peng, C.; Wang, K.; Wu, D.; Yan, J.; Tu, W.; Chen, Y. The utility of shear wave elastography and serum biomarkers for
diagnosing biliary atresia and predicting clinical outcomes. Eur. J. Pediatr. 2021. [CrossRef]

45. Tsamardinos, I.; Rakhshani, A.; Lagani, V. Performance-Estimation Properties of Cross-Validation-Based Protocols with Simulta-
neous Hyper-Parameter Optimization. Int. J. Artif. Intell. Tools 2015, 24, 1540023. [CrossRef]

46. Mannarino, T.; Assante, R.; Ricciardi, C.; Zampella, E.; Nappi, C.; Gaudieri, V.; Mainolfi, C.G.; Di Vaia, E.; Petretta, M.; Cesarelli,
M.; et al. Head-to-head comparison of diagnostic accuracy of stress-only myocardial perfusion imaging with conventional and
cadmium-zinc telluride single-photon emission computed tomography in women with suspected coronary artery disease. J. Nucl.
Cardiol. 2021, 28, 888–897. [CrossRef]

47. Ricciardi, C.; Cuocolo, R.; Verde, F.; Improta, G.; Stanzione, A.; Romeo, V.; Maurea, S.; D’Armiento, M.; Sarno, L.; Guida, M.;
et al. Resolution Resampling of Ultrasound Images in Placenta Previa Patients: Influence on Radiomics Data Reliability and
Usefulness for Machine Learning. In Proceedings of the European Medical and Biological Engineering Conference, Portorož,
Slovenia, 29 November–3 December 2020; Springer: Cham, Switzerland; 2020; pp. 1011–1018.

48. Davendralingam, N.; Sebire, N.J.; Arthurs, O.J.; Shelmerdine, S.C. Artificial intelligence in paediatric radiology: Future opportu-
nities. Br. J. Radiol. 2021, 94, 20200975. [CrossRef]

http://doi.org/10.1002/cld.607
http://doi.org/10.1007/s00247-015-3345-5
http://doi.org/10.3748/wjg.v21.i41.11567
http://doi.org/10.2214/AJR.15.14553
http://www.ncbi.nlm.nih.gov/pubmed/25905762
http://doi.org/10.1007/s00268-010-0663-5
http://www.ncbi.nlm.nih.gov/pubmed/20652701
http://doi.org/10.1613/jair.953
http://doi.org/10.1109/72.788640
http://www.ncbi.nlm.nih.gov/pubmed/18252602
http://doi.org/10.1016/j.patcog.2015.03.009
http://doi.org/10.5121/ijdkp.2015.5201
http://doi.org/10.1007/s12553-020-00438-1
http://doi.org/10.1371/journal.pone.0080652
http://doi.org/10.1016/j.jhep.2019.03.005
http://www.ncbi.nlm.nih.gov/pubmed/30876944
http://doi.org/10.1007/s00247-016-3565-3
http://www.ncbi.nlm.nih.gov/pubmed/26939975
http://doi.org/10.1136/bmjopen-2020-042129
http://www.ncbi.nlm.nih.gov/pubmed/33574147
http://doi.org/10.1007/s00431-021-04176-y
http://doi.org/10.1142/S0218213015400230
http://doi.org/10.1007/s12350-019-01789-7
http://doi.org/10.1259/bjr.20200975


Bioengineering 2021, 8, 152 13 of 13

49. Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Ball, R.L.; Langlotz, C.; et al. CheXNet:
Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv 2017, arXiv:1711.05225.

50. Cherukuri, V.; Ssenyonga, P.; Warf, B.C.; Kulkarni, A.V.; Monga, V.; Schiff, S.J. Learning Based Segmentation of CT Brain Images:
Application to Postoperative Hydrocephalic Scans. IEEE Trans. Biomed. Eng. 2018, 65, 1871–1884.

51. Larson, D.B.; Chen, M.C.; Lungren, M.P.; Halabi, S.S.; Stence, N.V.; Langlotz, C.P. Performance of a Deep-learning neural network
Model in assessing skeletal Maturity on Pediatric hand radiographs 1 PEDIATRIC IMAGING: Neural Network to Assess Skeletal
Maturity on Pediatric Hand Radiographs Larson et al. Materials and Methods Data Acquisit. Radiology 2018, 287, 313–322.
[CrossRef] [PubMed]

52. Reismann, J.; Romualdi, A.; Kiss, N.; Minderjahn, M.I.; Kallarackal, J.; Schad, M.; Reismann, M. Diagnosis and classification
of pediatric acute appendicitis by artificial intelligence methods: An investigator-independent approach. PLoS ONE 2019, 14,
e0222030. [CrossRef] [PubMed]

53. Chen, T.; Chen, Y.; Yuan, M.; Gerstein, M.; Li, T.; Liang, H.; Froehlich, T.; Lu, L. The development of a practical artificial intelligence
tool for diagnosing and evaluating autism spectrum disorder: Multicenter study. JMIR Med. Inform. 2020, 8, e15767. [CrossRef]
[PubMed]

54. He, L.; Li, H.; Dudley, J.A.; Maloney, T.C.; Brady, S.L.; Somasundaram, E.; Trout, A.T.; Dillman, J.R. Machine learning prediction
of liver stiffness using clinical and T2-Weighted MRI radiomic data. Am. J. Roentgenol. 2019, 213, 592–601. [CrossRef] [PubMed]

55. Hoshino, E.; Hayashi, K.; Suzuki, M.; Obatake, M.; Urayama, K.Y.; Nakano, S.; Taura, Y.; Nio, M.; Takahashi, O. An iPhone
application using a novel stool color detection algorithm for biliary atresia screening. Pediatr. Surg. Int. 2017, 33, 1115–1121.
[CrossRef] [PubMed]

56. Angelico, R.; Liccardo, D.; Paoletti, M.; Pietrobattista, A.; Basso, M.S.; Mosca, A.; Safarikia, S.; Grimaldi, C.; Saffioti, M.C.;
Candusso, M.; et al. A novel mobile phone application for infant stool color recognition: An easy and effective tool to identify
acholic stools in newborns. J. Med. Screen. 2020, 28, 230–237. [CrossRef] [PubMed]

57. Zhou, W.; Yang, Y.; Yu, C.; Liu, J.; Duan, X.; Weng, Z.; Chen, D.; Liang, Q.; Qing, F.; Zhou, J.; et al. An ensembled deep learning
model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images. medRxiv 2020, 12, 1259.

58. Stanzione, A.; Ricciardi, C.; Cuocolo, R.; Romeo, V.; Petrone, J.; Sarnataro, M.; Mainenti, P.P.; Improta, G.; De Rosa, F.; Insabato, L.;
et al. MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: A Machine Learning Exploratory
Study. J. Digit. Imaging 2020, 33, 879–887. [CrossRef] [PubMed]

http://doi.org/10.1148/radiol.2017170236
http://www.ncbi.nlm.nih.gov/pubmed/29095675
http://doi.org/10.1371/journal.pone.0222030
http://www.ncbi.nlm.nih.gov/pubmed/31553729
http://doi.org/10.2196/15767
http://www.ncbi.nlm.nih.gov/pubmed/32041690
http://doi.org/10.2214/AJR.19.21082
http://www.ncbi.nlm.nih.gov/pubmed/31120779
http://doi.org/10.1007/s00383-017-4146-8
http://www.ncbi.nlm.nih.gov/pubmed/28819683
http://doi.org/10.1177/0969141320974413
http://www.ncbi.nlm.nih.gov/pubmed/33241758
http://doi.org/10.1007/s10278-020-00336-y
http://www.ncbi.nlm.nih.gov/pubmed/32314070

	Introduction 
	Materials and Methods 
	Patient Population 
	Laboratory Tests 
	US and MR Imaging Acquisition and Processing 
	Statistical Analysis 
	Machine Learning: Tools and Algorithms 

	Results 
	Patient Population 
	Descriptive Analysis 
	Machine Learning 

	Discussion 
	References

