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The early electrophysiological phenomena linked to systemic inflammation are largely underexplored.
We developed here local field analyses to detect prodromal oscillatory abnormalities. We identified early
band-specific patterns in local field potential recorded from freely-moving rats injected intraperitoneally
with lipopolysaccharide (LPS, 1 mg/kg). Theta frequency was significantly reduced and this effect was not
related to the decreased locomotion of the animal. Furthermore, LPS-induced alterations show a region-
specific response when compared between the hippocampal region and medial prefrontal cortex. Delta
mean frequency increased in the hippocampal region but not in the prefrontal cortex. We explored also
Hippocampus the hypothesis that systemic inflammation increases the propensity of abnormally synchronized brain
Medial prefrontal cortex activity. Our data indicate that the LPS-evoked alteration of delta and theta frequency parameters reflects
Theta the formation of abnormal synchronization in similar frequency ranges. The onset of abnormal brain
Delta activity was indicated by spike-wave discharges in the range of 1-10 Hz with three main frequency
domains. Importantly, the occurrence of spike-wave discharges was observed in the hippocampus but
not in the cortex. In summary, the hippocampal theta rhythm is an accurate indicator of the oscillatory
changes evoked by LPS application. The findings offer clear patterns of altered brain function that will

facilitate mechanistic investigations of brain dysfunction and delirium occurring during sepsis.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction clinical presentation of sepsis-associated encephalopathy and its

states have been characterized with deceleration or loss of cortical

Sepsis is one of the leading causes of mortality in intensive care
units. The identification of brain dysfunction in the early stages in
sepsis is a significant challenge because there are no instant
biomarkers of neuronal injury. Furthermore, the evaluation of cog-
nitive performance does not reflect the degree of neuronal attenu-
ation in the onset of systemic inflammation (Zampieri et al., 2011).
Electroencephalogram (EEG) abnormalities occurring at the acute
stage of sepsis may correlate with severity of brain dysfunction.
Predictive value of early standard EEG abnormalities for mortality
in septic patients remains to be assessed. We know that general-
ized slowing on EEG is one of the main signs of septic encephalopa-
thy (Young et al., 1990). Delirium is a major component of the
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rhythms, global slowing and intermittent rhythmic delta activity
(Jacobson and Jerrier, 2000; Klass and Brenner, 1995). Delirium
evokes dissimilar effects on the frequency and power of the brain
rhythms. A decrease in alpha but an increase in delta power was
observed in delirium patients (Koponen et al., 1989). Delirium is
often measured in patients with coexisting neurodegenerative
pathophysiology. The EEG in dementia also reveals generalized
slowing of cortical oscillations, although this slowing is less consis-
tent as compared to that in delirium (Engel and Romano, 2004).
The investigation of other frequency ranges might increase the
specificity of oscillation profile in sepsis-affected patients. An acti-
vated high alpha and delta spectral power density, increased the
diagnostic correctness and specificity of detecting delirium pat-
terns in patients with dementia (Thomas et al., 2008). To assess
the ability of animal models to replicate key aspects of delirium
and to obtain more specific electrophysiological markers of
inflammation-triggered delirium we need intracortical recordings
from animal models of early systemic inflammation that will serve
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as a direct measure of prodromal brain dysfunction. There is a lim-
ited information on the effects of systemic inflammation on local
field potential (LFP) in behaving animals. In animals with
Biperiden-induced hypoactive delirium state delta and low theta
are significantly increased, while the high theta power values are
significantly decreased compared to controls (Tamura et al,
2006). A decrease in overall spectral frequency with suppression
of alpha and augmentation of delta power was shown in LPS-
induced delirium animal model (Semmler et al., 2008). Rats
injected with high dose of LPS also display epileptiform pathophys-
iology of brain oscillations. LPS-induced inflammatory response
increases the number of spike-wave discharges in rats in a dose
dependent manner (Kovacs et al., 2006). The medial temporal lobe
is the most typical area of seizure initiation and the hippocampal
region is a central to the generation of epileptiform discharges
(Avoli et al., 2002). Therefore, the LFP evaluation in acute LPS-
induced encephalopathy should be optimised by the measurement
of region-specific, frequency-specific and discharge-specific spec-
tral analysis. Running speed influences both the power and fre-
quency of theta oscillations seen in the hippocampal LFP (Geisler
et al.,, 2007; McFarland et al., 1975; Shin and Talnov, 2001). Simi-
larly, gamma oscillations shift to higher frequencies at faster
speeds (Ahmed and Mehta, 2012). Another study in behaving mice
found that both low and high gamma power were found to
increase as a function of running speed in mice (Chen et al.,
2011). However, up to now the studies investigating the effect of
systemic inflammation on EEG did not account for the whole-
body speed of the animals in of their inflammation-evoked LFP
evaluations. We investigated here the intracortical LFP changes in
hippocampal and prefrontal cortices of LPS-injected rats as a func-
tion of whole-body speed. We used a moderate dose of LPS to
determine whether the early stages of brain dysfunction after sys-
temic inflammation can be assessed by LFP parameters. To increase
diagnostic accuracy we performed time-dependent spectral analy-
sis of the hippocampal and prefrontal LFP that was evaluated 1.5, 3,
4, 6, 8 and 24 h after the LPS administration.

2. Results
2.1. LPS robustly decreases hippocampal theta frequency

Baseline recordings with saline injection estimated the spectral
power of the local filed potential (LFP) recorded from Lister Hooded
rats. 24 h later we injected the same rats with LPS i.p. (1 mg/kg)
and measured the local filed potential (LFP) in the CA1 region of
hippocampus (n = 6) and medial prefrontal cortex (n = 6). We eval-
uated the changes of the power spectral density 1.5h,3 h,4 h, 6 h,
8 h and 24 h after the LPS injection. The power spectral density of
theta range (5-12 Hz) in hippocampus (Fig. 1A and D) showed fre-
quency decrease after the LPS injection, which recovered gradually
in the next 24 h. The peak theta frequency (Fig. 1B) decreased
significantly for 6 h after the LPS injection from 8.07 Hz in the
baseline recording to 6.89 Hz 1,5 h, 6.65Hz 3 h, 6.78 Hz 4 h and
7.15Hz 6 h post-LPS (one-way ANOVA with Bonferroni post hoc
test, between groups, n =6, Fg41)=7.204, P <.001). The frequency
of theta rhythm is positively correlated with the speed (Shin and
Talnov, 2001) thus, the decrease of theta frequency could be
related to the reduced locomotor activity of the animals after the
LPS injection. LPS induced significant suppression in locomotor
activity from 52.02+82m per 12 min recording session to
26.71 £10.2 m at 1.5 h after the injection (one-way ANOVA with
Bonferroni post hoc test, between groups, n=6, F41)=9.978,
P<.001) and 24 h later recovered to 47.1 + 9.9 m (Fig. 1C). There-
fore, the observed reduction in the oscillatory rate (Fig. 1D) cannot
be evaluated independently from the speed of the animals.

To test the hypothesis that the reduced theta frequency is not
simply a result from the decreased locomotion of the animal we
have analysed theta oscillations for five low speed ranges:
0-2 cm/s, 2-4 cm/s, 4-6 cm/s, 6-8 cm/s and 8-10 cm/s. The post-
injection decrease of theta frequency was significant for all speed
sub-ranges (two-way ANOVA with Bonferroni post hoc test,
between groups, n =6, F209)=19.620, P<.001) with consistent
effect in the first 8 h after the LPS injection (Fig. 2A and C). Concur-
rently, we observed no significant change in the amplitude of theta
rhythm and this was evident in the comparison between the base-
line and LPS-recordings for the low speed ranges (Fig. 2B and D,
two-way ANOVA with Bonferroni post hoc test, between groups,
n=06, F(G‘zog) =1.235P= 290)

2.2. LPS diminishes mean frequency and amplitude of prefrontal theta
rhythm

In another group of animals we evaluated the effect of LPS injec-
tion on theta rhythm in medial prefrontal cortex (mPFC). The con-
trol power spectral density of theta range (5-12 Hz) expressed
different profile from the hippocampus where there was a clear
peak around 8 Hz. In the prefrontal cortex theta rhythm shows sim-
ilar power density in the range of 5-9 Hz (Fig. 3A). LPS application
reduced the spectral power of the upper theta and reduced the peak
of theta frequency (Fig. 3B) from 7.23 Hz in the baseline recording
to 6.48 Hz at 1,5 h after the LPS injection. This effect was not signif-
icant (one-way ANOVA with Bonferroni post hoc test, between
groups, n =6, Fga1)=1.032, P =.421), showing that LPS injection
had much smaller effect on prefrontal theta peak frequency
(Fig. 3C) compared to hippocampus. However, the LPS effect on pre-
frontal mean theta frequency for the low speed ranges
(Fig. 3D and E) showed significant differences in the first 4 h after
the injection (two-way ANOVA with Bonferroni post hoc test,
between groups, n = 6, Fg209) = 4.228, P <.001). We next evaluated
the amplitude change of mPFC theta oscillations. We evaluated the
relative amplitude ratio measured as the ratio of the absolute
amplitude from the baseline recording over the absolute amplitude
from the injection recording. The LPS injection significantly reduced
theta amplitude up to 8 h after the injection (expressed by an
increase of the relative theta amplitude ratio, Fig. 3F and G), adding
another difference to the hippocampal response. The relative theta
amplitude ratio significantly increased 1.5 h after the injection to 1.
20 £0.14 for 0-2 cm/s; 1.20 £ 0.12 for 2-4 cm/s; 1.28 + 0.22 for 4~
6 cm/s; 1.30 £0.21 for 6-8 cm/s; 1.29 £ 0.25 for 8-10 cm/s (two-
way ANOVA with Bonferroni post hoc test, between groups, n = 6,
F6200)=12.314, P<.001). The relative theta amplitude ratio
returned to was back to baseline levels 24 h later (Fig. 3F).

The alterations of theta rhythm are often paralleled by concur-
rent changes of high frequency oscillations (gamma range, 40-100
Hz) particularly in the hippocampal formation (Colgin, 2015). Here,
we found no significant change of gamma peak (Fig. 4A) and mean
(Fig. 4B) frequency as well as gamma amplitude (Fig. 4C) in hip-
pocampus. Similarly, the LPS injection had no effect on mPFC
gamma peak frequency (Fig. 4D), mean frequency (Fig. 4E) and
amplitude (Fig. 4F). These findings show that low frequencies are
more accurate indicator of the oscillatory changes evoked by LPS
application compared to high frequencies. Furthermore, hip-
pocampal and prefrontal LPS-induced alterations have differential
profile, showing a region specific and frequency-specific response
to systemic inflammation induced by E. coli LPS.

2.3. LPS evokes significant changes only to the mean delta frequency in
hippocampus

We examined the effect of LPS injection on another low fre-
quency range, i.e. delta (1-4 Hz). Slower oscillations are distinctive
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Fig. 1. LPS administration decreases theta oscillations in hippocampus and whole-body speed of behaving rats. (A) Theta power spectral density visualized for control saline
injection (light blue) 24 h prior the LPS injection, 1.5 h after injection of lipopolysaccharide (LPS, 1 mg/kg) (orange), 3 h (grey), 4 h (yellow), 6 h (blue), 8 h (green) and 24 h
(dark blue). (B) Peak hippocampal theta frequency (Hz) for controls and LPS injected animals. Bonferroni post hoc test ~'P<.001, “"P<.01. (C) Covered path (meters) per
recording session for controls and LPS injected animals. Bonferroni post hoc test “'P<.001, "P<.01. Error bars, mean +s.e.m. (D) 10 s epochs of color-coded power
spectrogram (left panels) and two LFP traces (right panels) recorded from hippocampus in control (top) and LPS-injected animals (below) 1.5, 3, 4, 6, 8 and 24 h after the

injection of LPS.
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Fig. 2. LPS-induced decrease of hippocampal frequency but not amplitude. (A) Hippocampal theta frequency visualized for control saline injection (light blue), 1.5 h after LPS
injection (orange), 3 h (grey), 4 h (yellow), 6 h (blue), 8 h (green) and 24 h (dark blue). The results are grouped in speed-bands of 2 cm/s: 0-2 cm/s, 2-4 cm/s, 4-6 cm/s, 6-8

cm/s, 8-10 cm/s. Bonferroni post hoc test P <.001,

P < .01. Error bars, mean * s.e.m. (B) Relative hippocampal theta amplitude measured with the ratio of baseline over

injection recording for different speed ranges. (C) Color-coded spectrograms of the probability of theta frequency at different speeds. Left panel shows representative
probability spectrogram from the baseline recording, while the right probability spectrogram - from recording 3 h after the LPS administration. (D) Color-coded spectrograms
of the probability of theta amplitude at different speeds. Left probability spectrogram: baseline recording; right — 3 h post LPS injection recording.

feature of the thalamic-cortical networks during quiet waking
(Steriade et al., 1993). Thus, we evaluated delta power and fre-
quency during immobility (quite waking) for the control and
LPS-injected animals. Again, we compared the delta parameters
for hippocampus and mPFC. Hippocampal low filtered power spec-
tral density showed increase of the upper delta range (Fig. 5A). The
peak frequency showed only a non-significant tendency for
increase (Fig. 5B) with shift from 2.01 £ 0.23 Hz to 2.45+0.51 at
1.5 h post-LPS, 2.41 £0.53 at 3 h post-LPS and 2.41+0.57 at 4h
post-LPS (one-way ANOVA with Bonferroni post hoc test, between
groups, n = 6, Fg 41y = 0.946, P = .474). Concurrently, the mean delta
frequency significantly increased 1.5 h after the LPS injection from
2.58 £0.08 to 2.84 +£0.13 (one-way ANOVA with Bonferroni post
hoc test, between groups, n =6, Fg41)=2.828, P=.024). The ten-
dency for increase continued for the next two subsequent record-
ings: 2.82 +0.11 Hz 3 h post-LPS and 2.77 + 0.15 Hz 4 h post-LPS
(Fig. 5C). The amplitude of hippocampal delta slightly decreased
up to 8 h after the injection, expressed by increase of the relative
amplitude ratio (1.28 £0.26 at 1.5 h post-LPS; for 1.28 £ 0.18 at
3 h post-LPS; 1.33 £0.24 at 4 h post-LPS; 1.38 £ 0.25 at 6 h post-
LPS and 1.36 £ 0.21 at 8 h post-LPS). The changes of the amplitude
values, however, were not statistically significant (Fig. 5D, one-way
ANOVA with Bonferroni post hoc test, between groups, n = 6, F 41)
=1.515, P=.202).

We found no shift of the peak delta frequency in the mPFC
recordings (Fig. 6A and B; one-way ANOVA with Bonferroni post
hoc test, between groups, n=6, Fg41)= 0455, P=.837). While
the mean hippocampal delta frequency increased, we found no
slow frequency change in the mPFC recordings. The mean delta
mPFC frequency ranged from 2.70 + 0.08 in the baseline recording
to 2.68 £0.07 at 1.5 h post-LPS (Fig. 6C, one-way ANOVA with
Bonferroni post hoc test, between groups, n=6, Fg41)=0.142,
P=.990). The amplitude of mPFC delta decreased slightly (with
increased relative amplitude ratio) but this change was not signif-
icant (Fig. 6D, one-way ANOVA with Bonferroni post hoc test,
between groups, n =6, Fg41)=1.054, P = .408).

2.4. LPS triggers epileptiform discharges in hippocampus

We also investigated the effect of low dose (1 mg/kg) LPS injec-
tion on the spike-wave discharges (SWD) in the local field oscilla-
tions. For the hippocampal recordings we observed the occurrence
of pathological synchronization in 4 out of 5 animals. We identified
the abnormal oscillatory patterns and analysed these oscillatory
episodes separately from the rest of the recorded signal. The fre-
quency profile of the spike-wave discharges showed three main
types. 1) A slow SWD pattern in the range of 1-6 Hz, characterized
with no clear peak (Fig. 7A); 2) an intermediate SWD pattern with
peak of 5-7 Hz (Fig. 7B); and 3) a fast SWD peak rate in the range of
7-10 Hz (Fig. 7C). Both intermediate and fast SWDs showed har-
monic oscillations. The SWD were predominantly expressed 1.5 h
after the injection where the duration of the synchronization pat-
terns was on average 11.39% of the local filed recordings
(Fig. 7D). Thereafter, the occurrence of the epileptiform oscillations
was strongly reduced to 1.05% at 3 h post-LPS and 0.55% at 4 h post
LPS. We detected no SWD in the subsequent recordings. Unlike the
hippocampal response to LPS injection the medial prefrontal
recordings showed no epileptiform activity. We found no evidence
of SWD in the mPFC after the LPS injection for 24 h. These data
indicate that LPS evokes abnormal synchronization with frequen-
cies within the delta and theta ranges. Our findings demonstrate
the differential effects induced by systemic administration of bac-
terial lipopolysaccharides in hippocampal and prefrontal regions
(Table 1).

3. Discussion

There are few data on electrophysiological alternations during
systemic inflammation and its early effect on brain activity. Here,
we examined the field oscillatory correlates that underlie brain
dysfunction during acute systemic inflammation. We used
peripheral injection of the bacterial endotoxin component
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Fig. 3. LPS-induced decrease of prefrontal frequency and amplitude. (A) Theta power spectral density recorded from the medial prefrontal cortex (mPFC) visualized for
control saline injection (light blue), 1.5 h after LPS injection (orange), 3 h (grey), 4 h (yellow), 6 h (blue), 8 h (green) and 24 h (dark blue). (B) Peak prefrontal theta frequency
(Hz) for controls and LPS injected animals. (C) 10 s epochs of two LFP traces recorded from mPFC in control (top) and LPS-injected animals (below) 1.5, 3, 4, 6, 8 and 24 h after
the injection of LPS. (D) mPFC theta frequency visualized for control saline injection (light blue), 1.5 h after LPS injection (orange), 3 h (grey), 4 h (yellow), 6 h (blue), 8 h
(green) and 24 h (dark blue). The results are grouped in speed-bands of 2 cm/s: 0-2 cm/s, 2-4 cm/s, 4-6 cm/s, 6-8 cm/s, 8—10 cm/s. Bonferroni post hoc test “P < .01, P < .05,
(E) Color-coded spectrograms of the probability of theta frequency at different speeds. Left panel shows representative probability spectrogram from the baseline recording,
while the right probability spectrogram - from recording 3 h after the LPS administration. (F) Relative mPFC theta amplitude measured with the ratio of baseline over
injection recording for different speed ranges. Bonferroni post hoc test P <.001, “P < .01. Error bars, mean # s.e.m. (G) Color-coded spectrograms of the probability of theta
amplitude at different speeds. Left probability spectrogram: baseline recording; right — 3 h post LPS injection recording.
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Fig. 4. Systemic inflammation does not evoke significant effect on gamma oscillations. (A) Peak hippocampal gamma frequency (Hz) for controls and LPS injected animals. (B)
Mean hippocampal gamma frequency for controls and LPS injected animals. (C) Relative hippocampal gamma amplitude measured with the ratio of baseline over injection
recording. Peak (D) and mean (E) prefrontal gamma frequency for controls and LPS injected animals. (F) Relative mPFC gamma amplitude.

lipopolysaccharide (LPS) to mimic moderate acute sepsis. We
found that the hippocampal theta frequency, but not amplitude,
was significantly reduced and this effect was not related to the
decreased locomotion of the animal. Concurrently, both theta fre-
quency and amplitude diminished in the medial prefrontal cortex
(mPFC). No significant changes were observed in the gamma fre-
quency range for hippocampal and prefrontal recordings. Delta fre-
quency showed short-term hippocampus-specific increase, while
the amplitude was not affected for both hippocampus and mPFC.
Finally, we detected spike-wave discharges in the hippocampus
but not in the prefrontal cortex.

3.1. EEG in delirium/septic encephalopathy

Severe systemic inflammation can evoke delirium in healthy
individuals, while milder inflammation is sufficient to trigger delir-
ium in patients with existing brain vulnerability. Preceding neu-
rodegenerative pathology, such as synaptic loss and microglial

priming (Cunningham et al., 2009; Davis et al., 2015), enhances
the susceptibility to the effect of LPS-triggered systemic inflamma-
tion and augments the working memory deficits of mice (Murray
et al., 2012). The LPS application protocol has been widely used
to evoke systemic inflammation with resulting neuroinflammation
in rodents and this has been adapted to developing animal models
of delirium (Culley et al., 2014; Davis et al., 2015). A deterioration
of brain metabolic function during delirium is clinically expressed
with a characteristic cognitive disturbance in humans (Folstein
et al, 1975). For reliable identification of early systemic
inflammation-induced encephalopathy, correct differential diagno-
sis and prodromal features detection of brain oscillations essential
we need region-specific intracortical local field measurements.
Here, using electrodes implanted in hippocampal formation and
mPFC we found that theta amplitude was reduced in both
hippocampus and mPFC. This is consistent with the established
finding that delirium episodes attenuate low-frequency oscilla-
tions in the frontal cortex (Jacobson and Jerrier, 2000; Klass and
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Table 1

Changes in delta (8), theta (0) and spike-wave discharges (SWD) in the hippocampus (HP) and medial prefrontal cortex (mPFC) after systemic administration of

lipopolysaccharide.
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Brenner, 1995). Theta frequency in our experiments was signifi-
cantly reduced and this effect was not related to the decreased
locomotion of the animal. We further, detected region-specific
increase of mean delta frequency in hippocampus but not mPFC.
Delirium-related features of human EEG are generalized theta or
delta slow-wave activity with reduced ratio of fast-to-slow band
power, reduced mean frequency, and reduced occipital peak
frequency (Azabou et al.,, 2015; van der Kooi et al.,, 2015). It’s

noteworthy to specify here that theta frequency band is investi-
gated differently for humans and rodents. Theta range for humans
is 4-7 Hz, while for rodents extends to 5-12 Hz, which overlaps
with humans fast alpha rhythm. Similarly, delirium patients
expressed a decrease in alpha- and an increase in delta relative
power in delirium (Koponen et al., 1989). Low-frequency theta
waves are more common in the mild forms of encephalopathy in
humans (Young et al., 1992). Our experimental protocol with
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moderate dose LPS mimics moderate infection-induced
encephalopathy. Theta profile in our experiments differed between
the hippocampal region and medial prefrontal cortex. While theta
frequency was substantially suppressed in hippocampus, there
was only temporal mild decrease in mPFC.

3.2. Abnormal synchronization

We found also that the LPS-evoked alteration of delta and theta
frequency parameters is followed by abnormal synchronization in
low frequency ranges. Repetitive, daily, administration of high
doses of LPS increases the number of cortical spike-wave dis-
charges in an epileptic strain of rats (Kovacs et al,, 2006). The
LPS-induced increase in epileptiform activity was not directly cor-
related with the elevation of the core body temperature, as it is in
febrile seizures (Gyorffy et al., 2014; Kovacs et al., 2006). LPS injec-
tion triggers synthesis of inflammatory cytokines in the central
nervous system that include interleukin (IL)-18, IL-6, and tumor
necrosis factor (TNF)-a (Gatti and Bartfai, 1993; Laye et al., 1994;
Pitossi et al., 1997). The acute release of inflammatory cytokines
mediates the generation of behavioural responses to LPS known
as sickness behaviour (Dantzer, 2001). IL-18 is linked to hyperex-
citability underlying febrile seizures (Dube et al., 2005; Heida
and Pittman, 2005). IL-1B is strongly pro-convulsive while the
endogenous antagonist of IL-1B, IL-1Ra, has robust anticonvulsive
effects in bicuculline and kainate-induced epileptic activity
(Vezzani et al., 2000, 2002), suggesting that IL-1B/IL-1RA balance
is important in control of seizure genesis. Despite the extensive
studies on the interaction of inflammatory cytokines and epilepsy,
the prodromal signs of neuroinflammatory processes in the patho-
physiology of epileptic seizures remained underexplored (Curia
et al., 2014). A key methodological goal is to identify the early
oscillatory features of epileptiform brain activity triggered by
systemic inflammation in behaving rats. We showed here that
the epileptiform oscillations evoked with LPS application are paral-
leled by specific theta/delta oscillatory features during the pre-ictal
and inter-ictal local field oscillations. Importantly, we observed
LPS-generated spike-wave discharges in the hippocampus but not
in the cortex. Although EEG can successfully identify and quantify
epileptic seizures, there is scarce information about prodromal
brain oscillations that precede temporal lobe epilepsy. Here, we
explored the subthreshold hyperexcitability features of the local
field potentials in the pre-ictal and inter-ictal intracerebral record-
ings in freely moving rats. We focused our investigation on delta
and theta rhythms, which share the same frequency ranges with
the epileptiform discharges (Gyorffy et al., 2014). We hypothesize
that before brain oscillations enter into abnormal synchronization
mode, their frequencies are already altered and resonating in the
subsequent epileptiform rates. Therefore, based on the observed
prodromal oscillatory profile we can successfully predict the
occurrence, severity, amplitude and frequency of the LPS-evoked
spike-wave discharges.

4. Conclusion

Understanding the interplay between region-specific slow and
fast oscillations and brain inflammation could lead to new inter-
ventions to minimise the significant impact of acute medical ill-
ness on the aging and degenerating brain. The findings described
here will allow us to increase the diagnostic accuracy of absence
states using reliable electrophysiological features from hippocam-
pal and prefrontal brain regions. We highlight the role of local field
oscillations in detecting and evaluating delirium episodes. These
data will allow us to elucidate the electrophysiological substrate

of accurate delirium diagnosis as well as differential diagnosis with
other neurological conditions.

5. Experimental procedure
5.1. Ethics statement

We conducted our experiments in accordance with directive
2010/63/EU of the European Parliament and of the council of 22
September 2010 on the protection of animals used for scientific
purposes and the S.I. No. 543 of 2012, and followed Bioresources
Ethics Committee, Trinity College Dublin, Ireland (individual
authorization number AE19136/I037; Procedure Numbers
230113-1001, 230113-1002, 230113-1003, 230,113-1004 and
230113-1005), and international guidelines of good practice, under
the supervision of Marian Tsanov, who is licensed by the Irish Med-
ical Board (project authorization number: AE19136/P003).

5.2. Surgical implantation of recording electrodes

Male, 3-6 months old, Lister-Hooded rats (Envigo, UK) were
individually housed for at least 7 days before all experiments,
under a 12-h light-dark cycle, provided with water ad libitum.
Experiments were performed during the light phase. The recording
sessions are conducted in a room deprived from external noise and
with reduced light (luminosity of 10-15 lux). For our electrophys-
iological recordings we implanted platinum-iridium electrodes in
hippocampus (—3.8 AP, 2.3 ML and 2.4 mm dorsoventral to dura)
and medial prefrontal cortex (3.0 AP, 0.5 ML, 3.8 DV). The local field
potential (LFP) is sampled at 250 Hz and analysed for the frequency
ranges: delta (1-4 Hz), theta (5-12 Hz) and gamma (30-100 Hz).
LFP signal frequency analysis is calculated using the short-time
Fourier transform of the signal and interpolated into color-coded
power spectrograms. After at least one week recovery, subjects
were connected, via a 32 channel headstage (Axona Ltd.), to a
recording system, which also allowed for animal position tracking.
The electrodes was fixed with dental acrylic (Associated Dental,
Swindon UK) applied to the anchor screws inserted in the skull.
The anchor screw located on the left frontal bone was used as a
grounding point.

5.3. LPS administration and recording sessions

Bacterial endotoxin (lipopolysaccharide, LPS, Escherichia coli
O111:B4, Sigma L2630) or sterile saline were administered
intraperitoneally (1 mg/kg) by a single injection to 9 Hooded Lister
rats. The recordings took place in a square arena (64 x 64 x 25 cm
high) situated in the centre of a room with multiple background
cues available (surrounding curtains were open). Rats were placed
in the open field and 20 mg food pellets (TestDiet, Formula 5TUL)
were thrown in every 20 s to random locations within the open
field; in this way, animals locomoted continuously, allowing for
complete sampling of the environment. Each experimental session
was 12 min. A recording session was considered as inactive ses-
sions if the animal locomoted <14 m per 12 min (with average
velocity of <2 cm/s) and active if the animal locomoted more than
72 m per 12 min (average velocity of >10 cm/s).

5.4. Measurement of local field activity

The field potential (FP) recordings were performed as previ-
ously described (Tsanov et al., 2011). The local field potential
(LFP) was sampled at 250 Hz and stored for further off-line analy-
sis. LFP signal frequency analysis was done using MATLAB’s Signal
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Processing Toolbox (MATLAB, Natick, MA) where the power was
calculated using the short-time Fourier transform of the signal
(hanning window of 2 s, with overlap of 1 s), and interpolated into
color-coded power spectrograms. Information was displayed as the
magnitude of the time-dependent Fourier transform versus time in
a color gradient graph with the maximum corresponding to 0 Db.

5.5. Probability of theta frequency and amplitude at different speeds

The LFP instant frequency and amplitude were calculated from
Hilbert transform for each frequency band. The data from each
band were measured as function of the video sampling frequency.
A bivariate distribution of the frequency versus the speed was cal-
culated, where the samples of particular speed value were plotted
against the values of particular frequency in the probability color-
coded map.

5.6. Post-mortem verification of electrode site

At the end of the study, brains were removed for histological
verification of electrode localization. The animals underwent tran-
scardial perfusion with 0.1 M PBS followed by 10% formol-saline.
The brains were postfixed in 10% formol-saline and then trans-
ferred to 25% sucrose overnight. Brain sections (16 pm) were
stained according to the Nissl method using 1% toluidine blue,
and then examined using a light microscope. Data from brains in
which incorrect electrode localization was found (e.g., anterodorsal
thalamic nucleus or ventral anterior thalamic nucleus) were
excluded.

5.7. Statistical analyses

All data were analysed using Prism software (GraphPad
Software, Inc, La Jolla, CA). Statistical significance was estimated
by repeated measures with one-way and two-way analysis of vari-
ance (ANOVA) paired with post hoc Bonferroni test. The probability
level interpreted as significant was p <.05. All data points are plot
ted + sem.
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