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ABSTRACT Carcass yield of meat-type quails is
strongly correlated with the weight of the birds at
slaughter (slaughter weight [SW]; body weight at 45 D
of age). Moreover, prediction of superior animals for
SW at the earlier stages of the rearing period is favor-
able for producers. Therefore, the aim of the present
study was to predict and optimize SW of Japanese
quails based on their early growth performances, sex,
and egg weight as predictors through artificial neural
network (ANN) modeling. To construct the ANN
model a feed-forward multilayer perceptron neural
network structure was used. Moreover, sensitivity
analysis was used to arrange the predictors in the ANN
model(s) according to their predictive importance too.
In addition, the optimization process was conducted to
determine the optimum values for the input variables to
yield maximum SW. The best-fitted network on input
data to predict SW in Japanese quails was determined
with 7 neurons in the input layer, 11 neurons in the
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hidden layer, and one neuron in the output layer. The
coefficient of determination (R2) was 0.9404, 0.9359,
and 0.9223 for training, validation, and testing phases,
respectively. For the corresponding phases, SEM were
also 51.8854, 52.2764, and 55.2572, respectively. Ac-
cording to sensitivity analysis, the most important
input variable for prediction of SW was body weight at
20 D of age (BW20), whereas the less important input
variables were weight of the birds at hatch and body
weight at 5 D of age. The results of the neural network
optimization indicated that all the input variables,
except for BW20, were very similar but slightly higher
than mean values (m for each input variable). The re-
sults of this study suggest that the ANN provides a
practical approach to predict the final body weight
(SW) of Japanese quails based on early performances.
Moreover, phenotypic selection for higher values of
early growth traits did not ensure the achievement of
maximum SW, except for BW20.
Key words: correlation, sensitivity analy
sis, Japanese quail, artificial intelligence
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INTRODUCTION

Body weight of quails (Coturnix coturnix) at slaughter
(slaughter weight [SW]), its carcass yield (CY), and
generally its global contribution to meat production
are not comparable with broilers and turkeys; neverthe-
less, quail rearing for meat production is rising globally
(Narinc et al., 2013; Silva et al., 2013; Barbieri et al.,
2015). In comparison with other commercial poultry
strains or breeds, quail production enterprises are at
earlier stages. Hence, appropriate information to
manage meat-type quail–producing farms is scarce.
Therefore, owing to a lack of information, quail pro-
ducers sometimes take management guidelines of other
poultry species into account, which might not be
completely profitable in improving meat-type quail pro-
duction systems (Anthony et al., 1991). Other diffi-
culties also are associated with the ineffectiveness of
management policies in quail production as a result of
nonuniformity and higher variation in egg weight
(EW), incubation period, hatch weight, body weights
at different ages (Anthony et al., 1991; Hyankova
et al., 2004), and CY. Thus, considering their highly
variable performances, giving an overview of the quail-
specific management system during the rearing period
and slaughter might be inadequate. However, ununi-
formed carcasses resulted from higher variation in SW
of the birds, which is not desirable. Although CY of
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meat-type quails has economic importance, direct selec-
tion to improve this trait is found to be challenging.
Therefore, SW or other body weight traits at higher
ages adjacent to SW were also included in the breeding
programs as correlated traits rather than CY
(Akbarnejad et al., 2015).

In common breeding programs, genetic correlations
between traits assume major importance to improve
correlated traits. However, the importance of phenotypic
correlations should not be neglected (Silva et al., 2013;
Barbieri et al., 2015; Mohammadi-Tighsiah et al.,
2018). Nevertheless, despite the importance of the
availability of records, pedigree information in
particular, reliable pedigree information is
indispensable to design a practical breeding program,
but reliable pedigree information is not commonly
available in quail production systems (Sari et al., 2011).

In most of the production systems, the slaughter age of
meat-type quails was considered between 40 and 45 D of
age (Sari et al., 2011; Silva et al., 2013). In addition,
sexual maturity in females and egg laying
simultaneously start at the same age. Moreover it
should be taken into account that in spite of
commercial broilers, 1-day-old chickens in meat-type
quails are not usually obtained from line breeding.
Therefore, in a quail population of the same age, some
of the birds were assigned as slaughter animals, and
the others remained as breeder birds in the production
system. Accordingly, egg production parameters
assumed major importance even in meat-type quails.
Although genetic or phenotypic correlations between
body weight and egg production traits are negative
(Kranis et al., 2006; Silva et al., 2013), greater impact
on body weights results in lower egg production and
vice versa. Therefore, partitioning of the birds into
egg- or meat-producing groups based on their capability
of producing egg or meat at the earlier stages would be
helpful for quail production enterprises. Nevertheless,
genetic or phenotypic correlations between early body
weights and SW are weak (Barbieri et al., 2015) may
be owing to sigmoid nature of growth pattern in quails
(Anthony et al., 1991; Ahmad, 2009). Therefore,
genetic or phenotypic selection of the birds based on
early growth performances (as correlated traits) does
not lead to improvement in SW. This may be due to
nonlinear nature of the growth pattern of the birds or
presence of maternal effects, which are not inherited at
older ages. Accordingly, to find superior animals at
slaughter, application of alternative methods rather
than selection based on correlated traits would be
profitable.

Artificial neural networks (ANN) were frequently
used in the poultry production sector. Powerful potential
and flexibility of ANN models have been used for solving
complex nonlinear problems, control problems, and pre-
diction of economically important traits such as param-
eters of egg production curve (Faridi et al., 2013),
growth curve parameters (Ahmad, 2009), reproductive
performance (Mehri, 2013), and nutrient requirements
(Ahmadi and Golian, 2010; Mehri, 2014). An ANN
refers to a mathematical model inspired by neural
networks of the human brain that provides a nonlinear
data mining computing scheme to model the complex
relationships between input variables (predictors) and
output variable(s). To the best of our knowledge, the
same report is not available with regard to final
economic weight (e.g., SW) based on early growth
performance of poultry species using modeling
approaches. Therefore, the aim of the present study
was to predict body weight at 45 D of age as SW of a
Japanese quail population based on early growth
performances, sex, and EW using the ANN. Sex of the
birds was also included in the ANN model owing to its
impact on EW and SW as well as its strong correlation
with the birds’ early growth performances.
MATERIALS AND METHODS

Birds and Data

Data included to train the ANN have been recorded
from a random bred population of Japanese quails reared
at the Research Center of Special Domestic Animals,
University of Zabol, Zabol, Iran. This population was
primarily reared for meat production, and eggs were
routinely delivered to the hatchery at the Research Cen-
ter of Special Domestic Animals for regeneration. The
study was conducted following the general ethical guide-
lines of the Animal Care and Use Committee of the
Department of Veterinary, University of Zabol.
To develop an ANN for the prediction of the SW in

this study, body weight records of 1,136 registered quails
of both sexes were considered, which were obtained from
a single hatch. In the present study, body weight at day
45 was considered SW. Generally, each chicken was iden-
tified using wing tags immediately after hatch. Traits
were body weight at hatch (HW) and body weight at 5
D of age (BW5), body weight at 10 D of age (BW10),
body weight at 15 D of age (BW15), and body weight
at 20 D of age (BW20) as early growth performances
in addition to the weight of eggs to incubation (EW).
In addition to quantitative traits, sex of the birds was
also considered as a discrete variable in neural network
modeling.
During the rearing period, the birds were fed a stan-

dard diet containing 21% CP and 2,700 kcal of ME/kg.
During the experiment, food and water were given ad
libitum. A light regimen from hatch to the third week
was 24 h/D, which decreased to 16 h/D from the fourth
week and was then kept constant until the end of the
experiment (day 45). Temperature of the birds’ rearing
house gradually decreased from 38�C in the first week
to 22�C in the third week. Afterward, it was maintained
between 18 and 20�C until the end of the rearing period.
All the chickens were kept in group cages with 40 birds in
each cage from 10 to 45 D of age. The chicks were not
vaccinated during the experimental period. Descriptive
statistics of data used in the present study are shown
in Table 1.



Table 1. Descriptive statistics of data used for modeling of
slaughter weight in Japanese quails (n 5 1,136).

Trait Variables Mean 6 SD Maximum Minimum

EW Input 12.76 6 1.23 21.10 8.95
HW Input 8.30 6 1.00 11.10 5.25
BW5 Input 15.70 6 2.85 24.60 8.20
BW10 Input 32.05 6 7.70 54.40 11.30
BW15 Input 55.60 6 14.20 97.45 18.90
BW20 Input 84.07 6 19.82 136.40 28.75
SW Output 211.08 6 30.44 293.71 86.20

Abbreviations: BW5, body weight at day 5; BW10, body weight at day
10; BW15, body weight at day 15; BW20, body weight at day 20; EW, egg
weight; HW, body weight at hatch; SW, body weight at day 45 as slaughter
weight.
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Artificial Neural Network

In brief, in the present study, the ANN structure de-
termines the arrangement of neurons in 3 separate layers
(input, hidden, and output layers). Hence, the input
layer allocates data into the network, the hidden layer
processes the data, and results are extracted in the
output layer. To construct the ANN model in the pre-
sent study, a feed-forward multilayer perceptron
(MLP) neural network structure was used. The MLP
neural network is very common for classification and
prediction. This type of ANN is found to be effective
for complex problems, which can be made use for super-
vised training (Haykin, 1999). The MLP ANN model
consists of at least 3 layers of nodes (vectors), which
include the input, hidden, and output layers. The input
and output layers include predictors and predictive vari-
able(s), respectively. To predict the SW of Japanese
quails, the neural network was trained using the back-
propagation algorithm. Backpropagation is a method
to calculate the weight assigned to each neuron, which
is used in the network (Bryson and Ho, 1969; Erb,
1993). The input vector included 7 variables: sex as a
discrete variable and the other 6 continuous variables
EW, early HW, BW5, BW10, BW15, and BW20,
respectively. The input variables were assigned to the
neural network to predict the output variable, which
was SW in this study. There were no null fields in the
data set for all the birds (n 5 1,136). Therefore, the
data set included was an 1,136 ! 8 matrix with 9,088
elements. To train the neural network, randomly 70%
(796 rows; 6,368 elements) of the input variables (for
learning stage), 15% of the input variables (for
validation phase) and 15% of the input variables (each
170 rows; 1,360 elements) (for testing stage) were
assigned. Totally 5,000 different architectures (ANN
models) with different neurons in the hidden layer (7
to 14 neurons) and different activation functions for
the hidden and output layers (including each of
identity, logistic, hyperbolic tangent, and exponential
and sine functions) were assigned to the Automated
Network Search (ANS) module of Statistica software
version 8.0 (StatSoft Inc., Tulsa, OK, 2009). In fact,
the main duty of the ANN is to find the most
appropriate functions connecting the input and output
layers. Therefore, the ANS module is used to
automatically find the best-fitted ANNmodels including
the most appropriate connecting functions between 3
layers of MLP and the best number of hidden neurons,
given that ANS provides a range of complexity to find
the best-fitted model. Therefore, neurons’ weighting
function and their optimum network architecture were
run automatically.
Accuracy of the ANN

Accuracy of the ANN model prediction was evaluated
using the coefficient of determination (R2). The R2

between actual and predicted values (obtained from
the ANN) was separately calculated for the training,
validation, and testing phases. Moreover, mean SE
(MSE) was compared for the training, validation, and
testing phases.
Sensitivity Analysis

Owing to the nature of variables and/or the relation-
ships between the input and output variables, a model
may become very complex, and as a result, the relation-
ships between inputs and output(s) may not be clear. In
data mining and statistical model building or fitting, the
sensitivity analysis ordinarily refers to the evaluation of
the arrangement or importance of predictors in the ANN
model(s) (Mehri, 2013, 2014). In Statistica Automated
Neural Networks, the program will compute the
residual sum of squares or misclassification rates for
the model when the respective predictor is eliminated
from the neural network. Moreover, ratios of the
reduced model vs. the full model are reported, and the
predictors can be arranged in terms of their
importance to predict the output layer in a particular
ANN. In the present study, the higher values reported
as variable sensitivity ratio (VSR) indicate the more
important predictor in relation to the prediction of SW
in meat-type quails.
Optimization of the ANN

In Statistica, optimization process refers to a search
for the optimal values of input variables that will achieve
a particular desired effect such as minimized or maxi-
mized values for output variables. In the present study,
maximizing the SWwas desired; therefore, the optimiza-
tion process will determine the optimum values for input
variables to yield maximum SW (293.71 g; Table 1). For
this purpose, the “random search” optimization algo-
rithm provided in the “response optimization” section
of Statistica software was used (StatSoft Inc.).
RESULTS

Artificial Neural Network

Comparing results through running 5,000 different
neural network structures using ANS and based on R2

and mean standard error (MSE) of the networks at
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training, validation, and testing phases, the best-fitted
network on input data to predict SW in meat-type quails
was determined, with 7 neurons in the input layer, 11
neurons in the hidden layer, and one neuron in the
output layer (SW). The connecting function between
the input and hidden layer was hyperbolic tangent
(tanh) and between the hidden and output layer was
identity function. The topology of the network is shown
in Figure 1.

The R2 values were 0.9404, 0.9359, and 0.9223 for the
training, validation, and testing phases, respectively.
Moreover, the MSE for the corresponding phases were
51.8854, 52.2764, and 55.2572, respectively. In other
words, based on the R2 values, the ANN model was
appropriately able to predict SW of meat-type quails
based on EW, sex, HW, BW5, BW10, BW15, and
BW20 (Figure 2).
Figure 2. Correlation between actual and predicted SW at training
(A), validation (B), and testing (C) phases. SW, body weight at day
45 as slaughter weight.
Sensitivity Analysis

In this study, the importance of EW, sex, and early
growth performances of meat-type quails to SW predic-
tion was analyzed through sensitivity analysis (Table 2).
According to VSR, the most important input variable in
the prediction of SW was BW20 (VSR 5 4.73). Howev-
er, the less important input variables were HW and
BW5, with VSR equal to 1.52 and 1.53, respectively.
Considering only early body weights as the predictor of
SW, the adjacent body weights to SW were BW20
(less interval between BW20 and SW), which resulted
in higher VSR for BW20. Accordingly, the body weights
from the highest VSR to the lowest were as follows:
BW15, BW10, BW5, and HW, as expected. Indeed,
with the increase of the interval between SW and early
body weights (predictors), the importance of those pre-
dictors decreased.

Sex of the birds as a discontinuous variable was the
second important predictor of SW (VSR 5 2.04). How-
ever, between 7 input variables to predict SW in the
Figure 1. Artificial neural network topology (input layer sorted
based on VSR). BW5, body weight at day 5; BW10, body weight at
day 10; BW15, body weight at day 15; BW20, body weight at day 20;
EW, egg weight; HW, body weight at hatch; SW, body weight at day
45 as slaughter weight; VSR, variable sensitivity ratio.
present study, EW was the fifth important predictor.
Egg weight was more important than HW and BW5.
Correlation between EW and HW is high. Moreover,
EW could be a marker for chicken healthfulness and
survivability, at least at earlier stages of life.
Optimization of the ANN

To obtain the maximum value for SW in the present
study (271.93 g), input variables were assigned to the
“random search” optimization algorithm of Statistica
software. The optimized values for input variables
compared with mean and maximum values (derived
from descriptive statistics, Table 1) are shown in
Table 3.
The results of the neural network optimization showed

that all the input variables, except for BW20, were very
similar but slightly higher than mean values. However,



Table 2. Sensitivity of input variables (predictors) for prediction of
slaughter weight (SW) in Japanese quails.

Input variable BW20 Sex BW15 BW10 EW BW5 HW

Variable sensitivity ratio 4.73 2.04 1.79 1.73 1.71 1.52 1.53
Importance of input
variables to predict SW

1 2 3 4 5 6 7

Abbreviations: BW5, body weight at day 5; BW10, body weight at day
10; BW15, body weight at day 15; BW20, body weight at day 20; EW, egg
weight; HW, body weight at hatch; SW, body weight at day 45 as slaughter
weight.
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differences between optimal values and mean values for
EW, HW, BW5, BW10, and BW15 were 1.10, 4.94,
6.37, 1.84, and 4.10%, respectively. However, the differ-
ence between the optimal value of BW20 and the mean
value was higher than other differences (22.28%). The
higher difference of BW20 with the optimal value refers
to higher importance of this input variable to the predic-
tion of SW as was suggested by sensitivity analysis.
However, the differences between optimal and maximum
values were 38.89, 21.74, 32.20, 40.01, 40.63, and 24.63%
for EW, HW, BW5, BW10, BW15, and BW20 input var-
iables, respectively, which indicate 20–40% differences
between optimal values and maximum values for all
the input variables.
DISCUSSION

Breeding programs have been made to enhance meat
production in quails (Lotfi et al., 2011; Narinc et al.,
2013; Barbieri et al., 2015). However, selecting birds
for SW based on early growth performance is not
common owing to weak correlation between early and
late body weights. Several studies have confirmed
positive and high estimates of phenotypic or genetic
correlation for body weights at adjacent ages, while
there was a significant decrease of estimates as the
interval between ages has increased (Silva et al., 2013;
Barbieri et al., 2015; Mohammadi-Tighsiah et al.,
2018). In the present study, the importance of later
body weight traits to prediction of SW was explained
with higher VSR value of BW20, whereas the earlier
body weight traits are weak predictors for SW, as
suggested in other studies. In the study of body
weights in a meat-type quail, phenotypic correlation
for BW28–BW42 (with less interval between 2 traits)
was 0.67, whereas phenotypic correlation for BW0–
BW42 (with high interval between 2 traits) was 0.17
Table 3. Optimal values of input variables (predictors) in com-
parison with mean and maximum values (from Table 1).

Input variable Sex EW HW BW5 BW10 BW15 BW20

Optimal Female 12.90 8.71 16.70 32.64 57.88 102.80
Mean - 12.76 8.30 15.70 32.05 55.60 84.07
Maximum - 21.11 11.13 24.63 54.41 97.49 136.40

Abbreviations: BW5, body weight at day 5; BW10, body weight at day
10; BW15, body weight at day 15; BW20, body weight at day 20; EW, egg
weight; HW, body weight at hatch; SW, body weight at day 45 as slaughter
weight.
(Barbieri et al., 2015). Early growth traits assumed
less importance in prediction of final body weights in
quail. This may be due to the S-shaped pattern of the
growth curve in this bird. In fact, the growth rate of
the birds at early stages is very slow, and after 15–
20 D of age, the growth rate accelerates to the inflection
point (Hyankova et al., 2001; Faraji-Arough et al.,
2018). Selection for body weight at week 4 (28 D) was
recommended in the study of Barbieri et al. (2015) to
maximize body weight at week 6 (42 D) as a correlated
trait (phenotypic correlation for BW28–
BW45 5 0.67). However, selection for body weight at
28 D of age may adversely lead to increase in the abdom-
inal fat (Murata et al., 2013).

Sex of birds has been found to have a significant fixed
effect on body weights of quails in different statistical an-
alyses (Silva et al., 2013; Mohammadi-Tighsiah et al.,
2018). Although the effect of sex on initial body
weights has assumed a lower importance, it should be
taken into account at higher rates as suggested by the
sensitivity analysis of this study. In our study, the
importance of sex to the prediction of SW was lower
than BW20 but higher than other predictors (EW,
HW, BW5, BW10, and BW15). In Japanese quails,
bird sexing becomes possible at 3 wk of age based on
the plumage pattern. Differences between male and
female body weights usually refer to their differentially
expressed sex-specific genes and reproductive activities
(Caetano-Anolles et al., 2015). In quails, before sexual
maturity, females become heavier than males. Aggrey
et al. (2003) reported that body weight of female quails
at 28 D was higher than males but was not statistically
significant; however, after 28 D of age, body weights of
all females became significantly higher than males. In
dual-purpose and even in the meat-type quails despite
higher body weight of females at the end of the produc-
tion period, they were not slaughtered. Rather, they
were transferred to the laying phase. Moreover, in the
breeder rearing system, each male quail is usually
assigned to 2 to 3 females. Therefore, at the end of the
growing period, at least half of the males would be
slaughtered. Consequently, although higher body weight
of female quails is inevitable (as shown in this study), it
is not desirable from an economical point of view.

Several reports have demonstrated that maternal
effects at the earlier stages of the birds’ life should be
considered to study the early body weight traits
(Hartmann et al., 2003; Ghorbani et al., 2013; Barbieri
et al., 2015). In fact, maternal effects were transmitted
to the chicken through egg composition, and for later
body weights, the influence of maternal effects
decreased. Being highly correlated with early growth
performance, the egg size and composition directly
reflected the maternal ability. However, the results of
our study suggest that the importance of EW is less
than BW20, BW15, BW10, and sex of the birds for the
prediction of SW. In fact, assigning higher EW to
incubation necessarily did not result in higher SW.

To confirm the sensitivity analysis output, the ANN
optimization revealed that higher values of EW or early
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body weights (especially HW and BW5) of quails would
not lead to higher SW. Karami et al. (2017) studied
weekly bodyweights of Japanese quails using the random
regression model. They suggest that earlier body weights
of quails (especially HW) are naturally different from
body weights at older ages. Therefore, they imply that
to improve SW, HW could not be used as a selection cri-
terion. This finding was in agreement with our results.

In conclusion, lack of pedigree information makes the
selection for correlated traits difficult. However, the
ANN provides a powerful approach to predict the
response variable only based on phenotypic records.
We developed a practical approach to predict SW in
meat-type quails based on early body weights, sex, and
EW. However, owing to the lower importance of HW
and BW5, these 2 traits may be ignored in the commer-
cial scale to predict SW. Moreover, considering higher
values of early body weights and EW (except for
BW20) did not ensure to improve SW.
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