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Abstract: Fusarium oxysporum remains one of the leading causes of economic losses and poor crop
yields; its detection is strained due to its presentation in various morphological and physiological
forms. This research work sought to identify novel biomarkers for the detection of Fusarium oxys-
porum using in silico approaches. Experimentally validated anti-Fusarium oxysporum antimicrobial
peptides (AMPs) were used to construct a profile against Fusarium oxysporum. The performance and
physicochemical parameters of these peptides were predicted. The gene for the Fusarium oxysporum
receptor protein PR-1-like Protein, Fpr1, was identified and translated. The resulting protein model
from the translation was then validated. The anti-Fusarium oxysporum AMPs and Fusarium oxysporum
receptor protein 3-D structures were characterized, and their docking interaction analyses were car-
ried out. The HMMER in silico tool identified novel anti-Fusarium oxysporum antimicrobial peptides
with good performance in terms of accuracy, sensitivity, and specificity. These AMPs also displayed
good physicochemical properties and bound with greater affinity to Fusarium oxysporum protein
receptor PR-1-like Protein. The tendency of these AMPs to precisely detect Fusarium oxysporum
PR-1-like Protein, Fpr1, would justify their use for the identification of the fungus. This study would
enhance and facilitate the identification of Fusarium oxysporum to reduce problems associated with
poor crop yield, economic losses, and decreased nutritional values of plants to keep up with the
growing population.

Keywords: antimicrobial peptides; pesticides; resistance; algorithms; fungal; proteins; receptors

1. Introduction

Fusarium oxysporum is a significant threat to agricultural production. Due to its consid-
erable variation of morphological and physiological makeup resulting from an anamorphic
species complex, it tends to escape detection [1]. This fungal pathogen is common glob-
ally in soils with the tendency to grow saprophytically or colonize plants. Its economic
importance ranges from decreased crop yield, reduced nutritional and market value of
farm produce to plants’ reduced resistance to the harsh environmental conditions [2].
The pathogen achieves this by blocking the plant’s water-conducting xylem tissues and
subsequently producing germinating spores in the host [3]. The consequence of the afore-
mentioned challenges is a negative effect on storage to an off-season period, causing scarcity
for the ever-increasing population [4]. Hence, there is a need to prevent its menace for food
abundance and security to meet the demand of our growing population.

The pathogenic strains of Fusarium oxysporum may cause infection such as severe
vascular wilts and root rot diseases to not only Phaseolus vulgaris but also other plant hosts
such as tomato, banana, cotton and legumes [5]. It is also being reported as an emerging
human pathogen for immunocompromised patients [6]. Despite this tendency to infect
different plant hosts, isolated Fusarium oxysporum strains only infect very few plant species
during inoculation [6]. This inconsistency between field and laboratory conditions limits
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the fungal pathogen’s handling rate; hence, fast and dependable detection of this microbe
is imperative with the end goal of appropriate and timely infection management measures.

Several mechanisms have been described that allow Fusarium oxysporum to recognize
and penetrate a host and subdue the innate defenses and nutrient components of the host.
The overall effect of the virulence factors produced determines both the infectious potential
and severity of the disease caused [7]. Plants have the same innate immunity with the
tendency to recognize pathogen-associated molecular patterns (PAMPs) or the presence
of pathogenesis-related 1 (PR-1) proteins [8]. Of all the PR proteins, Fpr1 is the most
highly expressed class with at least 10% of total Protein in infected hosts [7]. A secreted
PR-1-like protein, Fpr1, in Fusarium oxysporum has been functionally characterized and
its function is required for full virulence [9]. Despite the widespread use of PR-1-like
Protein in Fusarium oxysporum as a virulence factor, its biochemical function and biological
importance remain elusive.

Several methods are available to detect Fusarium oxysporum strains that are less ac-
curate due to their similarity to other species. One detection method is based on the
characteristic shape and size of macro-and microconidia with the presence and absence of
chlamydospores [10]. There are also reports of observation of colony appearances, pigmen-
tation, and growth rates on agar media, giving false positive results [11]. These methods’
reliability is questionable in terms of specificity as they can give false positive results with
other Fusarium species [12]. Polymerase chain reaction with restriction fragment length
polymorphism (PCR-RFLP) of the intergenic spacer (IGS) region is a gold standard and
an emerging technique used for the identification of Fusarium oxysporum and has proven
to be highly dependable for the differentiation of strains at the intra-specific level [13].
However, the difficulty of the continuous use of this method lies in the fact that Fusarium
oxysporum has a cell wall that impedes its efficient lysis and liberation of DNA. However,
this can lead to false negative PCR results, creating demand for more sensitive and accurate
diagnostics [14].

Antimicrobial peptides (AMPs) are produced as part of the innate immune response,
and they exhibit a broad spectrum of activities against pathogens [13]. They have several
compensatory characteristics that make them unique, including cationic charge, hydropho-
bicity, and diverse structural forms [15]. They establish their activities by binding to
membranes and cell walls, causing a non-enzymatic disruption with selectivity owing to
the membrane composition of different microbes and cell types [16]. Application of AMPs
has been reported recently for the early diagnosis of HIV using bioinformatics [17] with its
molecular validation in a lateral flow device for Point-of-Care (POC) detection [18]. Thus,
due to the AMP compensatory mechanism of actions highlighted above, the false negative
results from existing methods such as PCR may be eliminated. Therefore, this present
research work aims to use novel AMPs for the accurate detection of Fusarium oxysporum in
Phaseolus vulgaris.

2. Materials and Methods
2.1. Data Collection

The anti-Fusarium oxysporum AMPs were retrieved from antimicrobial peptide databases
such as Antimicrobial Peptides Database (APD3) [19,20] and Collection of Antimicrobial
Peptides (CAMP) [21]. Thereafter, literature mining was carried out to confirm that all the
recovered AMPs were either experimentally validated or predicted. Duplicate experimen-
tally validated AMPs were then removed from the list using the Cluster Database at High
Identity with Tolerance (CD-HIT) [22].

2.2. Division of Data into Training and Testing Datasets

The screened, experimentally validated AMPs were randomly partitioned into two
subsets: 75% of the data were utilized as the training partition (to build each profile), while
the remaining 25% was used for testing (including optimization/calibration of profiles).
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2.3. Construction of AMPs Profiles

The Hidden Markov Models (HMMER) algorithm version 3.8 [23] was utilized to
build specific pathogen-targeted profiles using the constructed datasets. The task was
carried out on the terminal of the Ubuntu operating system version 12.04; (Canonical Ltd.,
London, UK) with the command line used for building the profile written in the flow chart
(i) (Figure 1):
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Figure 1. Flow chart of the HMMER command lines. The command line (i) in the flow chart above used “Clustalo” module
of the HMMER software for the multiple alignment and GCG postscript output for the graphical printing of the AMPs.
The command line hmmbuildin (ii) built the aligned sequences in (i) to enhance the construction of the profile by showing
common motifs/signatures within the profile. The command line hmmsearchin (iii) evaluated the performance of the
resulting constructed profile in (ii) by querying it on independent datasets. The command line (iv) allowed the identification
of the anti-Fusarium oxysporum AMPs.

For the initial step, the training datasets of each target class were arranged by utilizing
the Clustalo alignment tool [24].

2.4. Independent Profile Testing

The autonomous query of the profiles was performed in a step called “Query profiles”.
The testing data were queried against each target profile utilizing the command line as
stated above in the flow chart (iii) (Figure 1) with an E-value threshold of 0.05.

2.5. Performance Measurement of Each Profile

The statistical measures were carried out utilizing sensitivity, specificity, accuracy, and
Matthews Correlation Coefficient as parameters. The parameters utilized are as described
below where TP indicates true positive, TN indicates true negative, FP indicates false
positive, and FN indicates false negative:

Percentage sensitivity of the anti-Fusarium oxysporum AMPs against a specific pathogen
(testing sets) effectively predicted as anti-Fusarium oxysporum AMPs (positive). The equa-
tion of the sensitivity is written below as (1):

Sensitivity =

(
TP

TP + FN

)
× 100 (1)
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Percentage specificity of the non-anti-Fusarium oxysporum AMPs (negative sets) ef-
fectively predicted as non-anti-Fusarium oxysporum AMPs (negative). The equation of the
specificity is written below as (2):

Specificity =

(
TN

TN + FP

)
× 100 (2)

Percentage accuracy of the effectively predicted peptides (anti-Fusarium oxysporum
AMPs and non-anti-Fusarium oxysporum AMPs). The equation of the accuracy is written
below as (3):

Accuracy =

(
TP + TN

TP + FP + TN + FN

)
× 100 (3)

Matthew’s correlation coefficient (MCC) measures the sensitivity and specificity.
MCC = 0 is an indication of absolutely random prediction, while MCC = 1 means per-
fect prediction. See the Equation (4) as below:

MCC =

(
(TP × TN)− (FN × FP)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

)
(4)

2.6. Novel Putative Anti-Fusarium oxysporum AMPs Identification

Query of the proteome sequences were carried out by the respective profiles using
the list of all proteome sequences collected from the Ensembl database (http://www.
ensembl.org/index.html, accessed on 22 December 2019) [25] and the UniProt database
(http://www.uniprot.org/, accessed on 23 December 2019) [26]. An E-value cut-off was
set to 0.05 for the discovery of putative anti-Fusarium oxysporum AMPs. The accomplish-
ment of this task was done using “hmmsearch” module of the HMMER software with the
command line employed stated in the flow chart above (iv) (Figure 1).

Specific FOTrainings.hmm in the profile, target class query.txt representing the species
scanned against the profile and resultfile.txt is the output file acquired after testing the
species against the constructed Fusarium oxysporum (FO) profile.

2.7. Identification of Receptors

The gene for the receptor, PR-1-like protein, Fpr1, was identified for Fusarium oxys-
porum (isolate 4287 PR-1-like protein) and collected from the National Center for Biotech-
nology Information (NCBI) (https://www.ncbi.nlm.nih.gov/, accessed on 26 December
2019) [27], through literature mining. Thereafter, curation was performed to verify that
the retrieved Fusarium oxysporum gene was complete. Thereafter, the translate tool of Ex-
PAsy (https://web.expasy.org/translate/, accessed on 27 December 2019) [28] was used
to translate the reading frame of the coding portion of the gene into protein. BLAST
analysis was then performed using the UniProt interface (https://www.uniprot.org/help/
uniprotkb, accessed on 23 January 2020) [26] for further assurance of specificity such that
the PR-1-like protein of interest was specific for Fusarium oxysporum.

2.8. Evaluation of the Protein Receptor Model

The quality of the receptor PR-1-like protein, Fpr1, was analyzed using BIOVIA
(https://www.3ds.com/products-services/biovia/, accessed on 27 January 2020) [29]
online software that incorporates modeler tool (https://salilab.org/modeller, accessed on
27 January 2020) [30] by computing the validation/authentication of its residue regions
during binding interaction.

2.9. Physicochemical Properties of the Putative Anti-Fusarium oxysporum AMPs and the
Fusarium oxysporum Fpr1 Protein

Physicochemical properties of the anti-Fusarium oxysporum AMPs were calculated using
the prediction interface of BACTIBASE (http://bactibase.pfba-lab-tun.org/physicochem,

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
http://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/
https://web.expasy.org/translate/
https://www.uniprot.org/help/uniprotkb
https://www.uniprot.org/help/uniprotkb
https://www.3ds.com/products-services/biovia/
https://salilab.org/modeller
http://bactibase.pfba-lab-tun.org/physicochem
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accessed on 31 January 2020) [31,32], DBAASP (https://dbaasp.org/, accessed on 31 Jan-
uary 2020) [33], and APD3 (https://wangapd3.com/main.php, accessed on 28 February
2020) [19,34] and the receptor PR-1-like protein, Fpr1, was carried out using ProtParam
tool (http://web.expasy.org/protparam/, accessed on 28 March 2020) from the ExPAsy
server [35] using the amino acid sequences of the PR-1-like protein, Fpr1, as input.

2.10. Structure Predictions of the Putative Anti-Fusarium oxysporum AMPs and Fusarium
oxysporum Proteins

The I-TASSER (Iterative Threading ASSembly Refinement) server, which is an example
of a de novo method of peptide or protein structure prediction, was used to generate the
putative anti-Fusarium oxysporum AMPs as well as the Fusarium oxysporum PR-1-like protein,
Fpr1, structures [36]. In brief, the prediction was performed by uploading each sequence
onto the I-TASSER website [37]. PyMOL (Version 1.3), (Schrödinger, Inc., New York,
NY, USA) was then used to visualize the 3-D structures of the AMPs and the protein
receptor [38].

2.11. Interaction Analysis of the Putative Anti-Fusarium oxysporum AMPs and Fusarium
oxysporum Protein

The PatchDock 1.3 web-server that enables the docking of the protein-small ligand
molecule, available at http://bioinfo3d.cs.tau.ac.il/PatchDock/ (accessed on 31 March
2020) was used for the docking of the anti-Fusarium oxysporum AMPs to the Fusarium
oxysporum PR-1-like protein, Fpr1 [39]. In brief, the PDB files generated from the I-TASSER
for the 3-D structures of the anti-Fusarium oxysporum putative AMPs and the Fusarium
oxysporum protein receptor were uploaded onto the PatchDock server. The complex for-
mation with the interaction analysis between the anti-Fusarium oxysporum putative AMPs
and the PR-1-like protein receptor was achieved using RasMol 2.7.5 Software (NextMove
Software Ltd., Cambridge Science Park, UK) [40]. Subsequently, binding energy scores of
the complex formed between the AMPs and the receptor protein were computed using
HDock server (http://hdock.phys.hust.edu.cn/, accessed on 3 March 2021) [41].

3. Results
3.1. Data Collection

Experimentally validated anti-Fusarium oxyporum AMPs were collected from different
databases—literature mining revealed that CAMP, APD3, DBAASP, and BACTIBASE had
2, 32, and 6 experimentally validated anti-Fusarium oxysporum antimicrobial peptides,
respectively. After duplicate removal, a final list of 32 anti-Fusarium oxysporum AMPs
was generated.

3.2. Profile Construction

The first step in the profile creation was the random partitioning of the experimentally
validated AMPs (Table 1). HMMER was then used to cluster, build and search new AMPs
with diagnostic relevance against Fusarium oxysporum.

Table 1. Profile creation by HMMER.

Profiles Training Datasets Testing Datasets Total

FO 24 8 32

3.3. Testing and Performance Measurement of the Profile

The profile was tested against a positive dataset which represented about a quarter
of the dataset, from which the training dataset used for the construction of the profile
was derived. In addition, the trained profile was scanned against a negative control
dataset, made up of random fragments of 17236 neuropeptides, which had no recorded
anti-Fusarium oxysporum activity (Table 2). The profile discriminated against the negative

https://dbaasp.org/
https://wangapd3.com/main.php
http://web.expasy.org/protparam/
http://bioinfo3d.cs.tau.ac.il/PatchDock/
http://hdock.phys.hust.edu.cn/
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dataset, with only six of its eight positive datasets being a true positive. Thus, the purpose
for dividing the AMPs into training and testing datasets was to ascertain the robustness
and discriminatory power of the profile built by HMMER [17]. The performance result
of the profile also showed that it was specific, accurate, and sensitive with a significant
Matthews correlation coefficient (MCC).

Table 2. Independent testing of the profile.

True Positive False Negative True Negative False Positive

6 2 17,236 0

Sensitivity (%) Specificity (%) Accuracy (%) MCC

75 100 99.99 0.87

3.4. Proteome Sequence Database Query and Discovery of Anti-Fusarium oxysporum AMPs

Scanning of the profile was carried out to identify novel anti-Fusarium oxysporum
AMP sequences that adhered to the 0.05 E-value cut-off. This yielded 12 AMPs across all
proteomes scanned that matched the profile (Table 3).

Table 3. Discovery of anti-Fusarium oxysporum AMPs.

Organism Name AMPs Number of Amino
Acid Residues Bit Scores E Values

Selaginella
moellendorffii BOMK-1

AlaTrpAlaGlyProGlyCysAsnAsnArgLeu———-
ValGlyAlaSerGlnHisGlyGlyTyrSerPheAlaTyrGlnGlyGlnThrAla
AlaAlaTyrAsnThrAlaAsnCysArgGlyValAlaHisThrArgPheSer
SerLysGlyGluCysLysSerGlySerValGlnAspCysSerGlyPheGlyTrp
ArgSerIlePheIleGlnCys

80 35.3 5 × 10−8

Selaginella
moellendorffii BOMK-2

TrpAlaGlyProGlyCysAsnAsnArgLeuGlu———-
GlyAlaSerGlnHisGlyGlyTyrSerPheAlaTyrGlnGlyGlnThrAlaAla
AlaTyrAsnThrAlaAsnCysGlnGlyValAlaHisThrArgPheSerArg
LysGlyGluCysLysSerGlySerValGlnAspCysSerGlyPheGly
TrpAsnSerPhePheIleGlnCys

80 32.8 3.3 × 10−7

Selaginella
moellendorffii BOMK-3

ThrTrpAlaGlyProGlyCysAsnAsnArgLeu———-
ValGlyAlaSerGlnHisGlyGlyTyrSerPheGlyTyrGlnGlyGlnThrAla
AlaAlaTyrAsnThrAlaAsnCysGlnGlyValAlaHisThrArgPheSer
ArgLysGlyGluCysLysSerGlySerValGlnAspCysSerGlyPheGly
TrpAsnSerPhePheIleGlnCys

80 32.7 3.6 × 10−7

Selaginella
moellendorffii BOMK-4

AlaTrpAlaGlyProGlyCysAsnAsnValLeu———-
ValArgAlaSerGlnHisGlyGlyTyrSerPheValTyrGlnGlyGlnThrAla
AlaAlaTyrAsnThrAlaAsnCysArgGlyValAlaHisThrArgPheSer
ArgLysGlyGluCysLysSerGlySerValGlnAspCysSerGlyPheGly
TrpAsnSerPhePheIleGlnCys

80 31.1 1.1 × 10−6

Selaginella
moellendorffii BOMK-5

ThrTrpAlaGlyProGlyCysAsnAsnGlnArg———-
ValGlyAlaSerGlnHisGlyGlyTyrSerPheGlyTyrGlnGlyGlnThrAla
AlaAlaTyrAsnThrAlaAsnCysGlnGlyValAlaGlnThrArgPheSer
AlaLysGlyGluCysLysSerGlySerValGlnAspCysSerGlyPheGly
TrpAsnSerPhePheIleGlnCys

80 27.6 1.4 × 10−5

Selaginella
moellendorffii BOMK-6

TrpAlaGlyProGlyCysAsnAsnTrpLeuGlu———-
AlaSerGlnHisGlyGlyTyrSerValAlaTyrLeuGlyHisAlaAlaAla
AlaTyrAsnThrAlaAsnCysGlnGlyValAlaGlnArgTrpPheArg
ArgLysGlyHisCysSerSerGlyCysAlaSerGluCysGluGlyPhe
ArgTrpAsnSerIlePheIleGlnCysSerSer

80 26.4 3.6 × 10−5

Selaginella
moellendorffii BOMK-7

TrpAlaGlyProGlyGlyAsnAsnArgLeuGlu———-
AlaSerGlnHisGlyGlyTyrSerValValTyrLeuGlyHisAlaAlaAla
AlaTyrAsnThrAlaAsnCysGlnGlyValAlaGlnArgTrpPheArg
ArgLysGlyHisCysSerSerGlyCysAlaSerGluCysGluGlyPhe
ArgTrpAsnSerIlePheIleGlnCysSerSer

80 25.0 0.00011

Setaria italic BOMK-8

ThrSerTrpAlaGlyProGlyCysSerGlyGln———-
AsnLeuGlnPheTyrAspGlyGlnGluLysSerTyrGlnGlyGlnThr
AlaArgLeuTyrThrGluThrGlyCysAlaGlyThrSerTyrLeuVal
PheGluAspThrGlnAlaCysGlySerGlyCysAlaSerGluCysGlu
AspPheGlyTrpArgSerIle

75 21.8 0.00073
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Table 3. Cont.

Organism Name AMPs Number of Amino
Acid Residues Bit Scores E Values

Oryza sativum BOMK-9
LysIleGlnValGluAlaLysSerCysCysProGly———-
TyrAsnSerCysArgPheAlaGlyGlySerArgAspThrCysAlaLys
LeuSerGlyCysLysIleValCysAspGlyAsnCysLysProProTyr

54 23.5 0.00079

Zea mays BOMK-10 GlyGlyHisProAspGlyAlaIleProCysGlyGlu———-
ValPheGlyCysArgGlyTrpGlyTyrCysGlu 33 19.8 0.0037

Solanum
lycopersicum BOMK-11

AlaGlnGlnCysGlyIleGlnAlaGlyGlyAla———-
PheGlyTyrCysGlyThrThrAlaThrAlaTyrCysGlyProGly
CysGlnSerGlnCys

41 16.0 0.026

Arabidopsis
thaliana BOMK-12 ValGlnGluTyrGlyCysProAsnCysLysArg———-

GlyGluLeuValMetGluCysAsnLys 30 17.7 0.034

BOMK1–12: Anti-Fusarium oxysporum AMPs, “-” means specific amino acid residues which will be made available on request.

3.5. Receptor Identification

Fusarium oxysporum PR-1-like protein, Fpr1, was used as a receptor to serve as tar-
gets for the novel antimicrobial peptides for its detection in a plant host. The PR-1-like
protein gene (Fpr1) was identified for Fusarium oxysporum from the National Centre for
Bioinformatics Institute (NCBI) database. It was translated using the ExPAsy translate tool
using the coding unit of the gene. It was projected that this PR-1-like protein is potentially
relevant in detecting Fusarium oxysporum because of its compensatory advantages ranging
from production in very high concentration to accessibility for detection [42].

3.6. 3-D Model Structure Validation

BIOVIA, an online tool for verification of structure using modeler Ramachandran
plot [29], was used to validate and evaluate the protein model’s quality (Figure 2). The
model structure of the PR-1-like protein has 91.8% residues in the most favored region, 7.6%
residues in an additional allowed region, 0.2% residues in a generously allowed region,
and 0.4% residues in the disallowed regions.

3.7. Physicochemical Analysis of the Anti-Fusarium oxysporum AMPs and Fusarium oxysporum
PR-1-Like Protein

Physicochemical features such as molecular weight amino acid composition, hy-
drophobicity, Boman index, net charge, isoelectric potential, and half-life were used to
evaluate the anti-Fusarium oxysporum AMPs. From Table 4, BOMK-1 to 9, including 11 and
12, had glycine as a common amino acid. BOMK-7 and 12 had, in addition to glycine,
alanine, and cysteine, respectively. BOMK-10 and 13 had cysteine. All the AMPs had
significant hydrophobicity values between 32 and 42, with the lowest value observed
for BOMK-9. The hydrophobicity result was the percentage of the total hydrophobic
amino acids in the peptides as calculated from APD3 and BACTIBASE. All the AMPs
had positive charges with the exception of BOMK-11, 12, and 13, which had negative and
neutral charges, respectively. The isoelectric point for the AMPs was between 3.75 and 8.70,
while the Boman Index was observed to be between 0.26 and 2.04. Lastly, the AMPs had
significant half-lives with the lowest value observed for BOMK-10 (1.3 h).

In Table 5, PR-1-like Protein, Fpr1, had common amino acid alanine, a molecular
weight of 95,472.44 Da, significant hydrophobicity, an isoelectric point of 10.00, and a half-
life of 1.1 h in mammals with aliphatic and instability indices of 82.72 and 71.04 respectively.
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Table 4. Physicochemical properties of the anti-Fusarium oxysporum AMPs.

AMP Mol. Mass
(Da)

Common
Amino
Acids

Hydrophobicity
(%)

Isoelectric
Point

Boman
Index

(Kcal/mol)
Charge Half-Life (h)

BOMK-1 8651.30 G 35 8.70 1.89 +5 4.4
BOMK-2 8531.35 G 35 8.28 1.69 +3 2.8
BOMK-3 8618.44 G 33 8.28 1.71 +3 7.2
BOMK-4 8700.36 G 37 8.49 1.70 +4 4.4
BOMK-5 8509.84 G 34 8.28 1.51 +3 7.2
BOMK-6 8900.35 GA 40 8.40 1.63 +4 2.8
BOMK-7 8852.32 G 37 8.70 1.81 +5 2.8
BOMK-8 8121.76 G 32 3.88 1.42 −5 7.2
BOMK-9 5796.17 C 35 8.70 1.72 +5 1.3
BOMK-10 3376.98 G 42 4.42 0.26 −2 30
BOMK-11 4042.34 GC 41 3.75 0.45 −1 4.4
BOMK-12 3537.55 C 40 7.08 2.04 0 100

BOMK1–12: Anti-Fusarium oxysporum AMPs.
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Table 5. Physicochemical of the PR-1-like protein, Fpr1, of Fusarium oxysporum.

Receptor M. wt (Da) Common
Amino Acid

Hydrophobicity
(%)

Isoelectric
Point

Instability
Index

Aliphatic
Index

Half-Life
(Hours)

PR-1-like
protein 95,472.44 SLP 40 10.00 71.04 82.72 1.1

3.8. Structure Prediction and Docking

The structure of the anti-Fusarium oxysporum AMPs was predicted using certain
parameters such as C score, TM score, and RSMD as indicators (Table 6). All AMPs had
significant C score values, TM scores, and RSMD, where the C score between −5 and
2 indicates structural prediction with high confidence. All the protein and AMP structures
were predicted with high confidence because they had existing templates for their database
validation. The TM scores for the AMPs and the receptor protein were >0.5, indicating
correct topology for the anti-Fusarium oxysporum AMPs and Fusarium oxysporum protein,
while the RSMD for these AMPs and receptor protein were between 2 and 4 Å indicating
good prediction except for BOMK-4 and BOMK-11, indicating ideal predictions.

Table 6. Structure prediction of the anti-Fusarium oxysporum AMPs and PR-1-like protein, Fpr1, from
I-TASSER.

AMPs C Score TM Score RSMD (Å)

BOMK-1 0.84 0.83 ± 0.08 2.0 ± 1.6
BOMK-2 0.49 0.78 ± 0.10 2.6 ± 1.9
BOMK-3 0.83 0.83 ± 0.08 2.0 ± 1.6
BOMK-4 0.88 0.83 ± 0.08 1.9 ± 1.6
BOMK-5 0.74 0.81 ± 0.09 2.2 ± 1.7
BOMK-6 0.77 0.82 ± 0.09 2.1 ± 1.7
BOMK-7 0.73 0.81 ± 0.09 2.3 ± 1.8
BOMK-8 0.67 0.80 ± 0.09 2.2 ± 1.7
BOMK-9 0.42 0.66 ± 0.13 3.6 ± 2.5

BOMK-10 0.86 0.61 ± 0.14 3.5 ± 2.4
BOMK-11 0.58 0.79 ± 0.09 1.4 ± 1.3
BOMK-12 −0.75 0.62 ± 0.14 3.3 ± 2.3

PR-1-like protein −1.44 0.54 ± 0.15 9.1 ± 4.6

Representative output images from the I-TASSER server after predicting the 3-D
structures of the anti-Fusarium oxysporum AMPs (ligands) and the protein receptors are
indicated in Figure 3.

3.9. Protein-Peptide Interaction between Anti-Fusarium oxysporum and Fusarium
oxysporum Fpr1

The docking results of the complex between the putative AMPs and PR-1-like protein,
Fpr1, is displayed in Table 7. All the AMPs showed good binding affinity to PR-1-like
protein, Fpr1, greater than 8741 [43]. It was observed that BOMK-10, 12, 6, and 8 had the
highest binding scores with the lowest observed for BOMK-11 and 9, respectively, using
PatchDock. These binding geometry scores are indicators of high detection of the Fusarium
oxysporum Frp1. Using binding energy scores from the HDock server, it was observed that
all the anti-Fusarium oxysporum displayed high binding energy with BOMK-7 having the
highest binding energy, followed by BOMK-3 and -5. The complex formation occurred at
the Fusarium oxysporum PR-1-like protein, Fpr1, the most favored regions.
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Figure 3. 3D structures of the anti-Fusarium oxysporum AMPs and Fusarium oxysporum PR-1-like protein, Fpr1, as deter-
mined by I-TASSER. 3D structures of anti-Fusarium oxysporum AMPs (a–l) represented in red and Fusarium oxysporum
Fpr1 (m) represented in blue.

Table 7. PATCHDOCK results for each AMPs and PR-1-like protein with the geometry binding affinity.

AMPs Pathdock Geometry Binding
Affinity Scores

HDock Binding Energy
Scores (Kcal/mol)

BOMK−1 12,828 −254.09
BOMK−2 12,976 −238.30
BOMK−3 13,776 −263.43
BOMK−4 12,652 −244.88
BOMK−5 13,688 −263.63
BOMK−6 14,334 −242.95
BOMK−7 12,776 −273.34
BOMK−8 14,016 −213.09
BOMK−9 11,468 −239.40

BOMK−10 14,806 −230.06
BOMK−11 9958 −220.11
BOMK−12 14,420 −236.68
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The structural complex of the docking results between the PR-1-like protein, Fpr1,
of Fusarium oxysporum, and anti-Fusarium oxysporum AMPs downloaded as PDB files and
visualized using RasMol software is shown in Figure 4 in which the blue represents Fpr1
and the anti-Fusarium oxysporum AMPs are shown in red. BOMK-1 and -2 bound at the
same position, BOMK-3 and -9 bound at the same position, BOMK-4 and -7 bound at the
same position, BOMK-5 and -8 bound at the same position, while BOMK-6 bound at the
different orientation of the PR-1-like protein from others.
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4. Discussion
4.1. Data Retrieval and Profile Construction of the Anti-Fusarium oxysporum AMPs

Anti-Fusarium oxysporum AMPs that have been experimentally approved were re-
covered from different databases since they have been demonstrated to possess activities
against Fusarium oxysporum by utilizing the agar dilution or broth microdilution tech-
niques with the minimum inhibitory concentration (MIC) assay [44]. The rundown of
anti-Fusarium oxysporum AMPs from the databases was recovered after eliminating dupli-
cates to take into account specific species/pathogen profile creation.

The training dataset was made up of 3
4 of the retrieved peptides required to prepare

the algorithm to test whether the functionally critical amino acid consensus is preserved.
After this, multiple alignments were created utilizing HMMER, which keeps the profile
from being sensitive to little misalignments and report significant E-values. This allows the
tendency to capture sequence diversity since the AMPs were obtained from various life
forms [45]. Clusters by HMMER likewise permit a minimum measure of closeness between
all peptides.

4.2. Testing of the Profiles

The profile constructed utilizing the training dataset was applied against the held out,
positive testing dataset to assess the trained model’s ability to recognize and distinguish
this subset of AMPs. Since experimentally confirmed AMPs were utilized, the assumption
will be that the profiles developed should have the ability to identify different sequences
with similar action and reject those that have no anti-Fusarium oxysporum activity. The
utilization of a negative dataset (neuropeptides) was done to affirm whether the prepared
profiles would discriminate non-anti-Fusarium oxysporum peptides. The utilization of
random sequences as a negative dataset is a regularly utilized method [46].

The assessment of the autonomous profile testing was accomplished utilizing the
TP, FP, TN, and FN measures as inputs to the sensitivity, specificity, accuracy, and MCC
descriptive statistics. The HMMER E-value cut-off was set to 0.05 to improve the discovery
capacity of the profile between the true positive anti-Fusarium oxysporum AMP and false
negative anti-Fusarium oxysporum AMPs. The FO (against Fusarium oxysporum) profile
had six of its eight positive datasets as true positive, bringing about high sensitivity. The
MCC is considered to give the best performance estimation of profiles since it provides
the best connection between sensitivity, specificity, and accuracy [47]. The high specificity
implies the profile had no comparable capacity with different profiles. The accuracy result
was exceptionally high for all the profiles demonstrating the elimination of errors by
invalidating misclassified AMPs from both positive and negative datasets. The MCC value
“0.5 to 1” relates to correct prediction, while “0” focuses on an irregular forecast. MCC is
considered the most robust estimation for assessing the prediction of profile performance.
Along these lines, the FO profile shows the right prediction.

HMMER utilized a default E-value of 0.05 for each hit viewed as a true positive. The
anti-Fusarium oxysporum profile yielded true positives with E-values lower than 0.05 show-
ing that there was just a 5% possibility that the hit was false or arbitrary. This outcome
concurs with the work of Bhadra, Yan [48] where performance was analyzed in terms of
accuracy, specificity, sensitivity, and Matthews Correlation Coefficient (MCC) utilizing
benchmark datasets as information sources.

4.3. Proteome Sequence Database Query and Discovery of Anti-Fusarium oxysporum AMPs

The discovery stage was to identify novel AMPs with the ability to detect anti-Fusarium
oxysporum in infected plant tissues. This was carried out to discover the AMPs with the
same signature/motif as the input sequences. A final list of twelve AMPs was identified,
and the AMPs were categorized according to their E-values, with those having the smallest
E-values considered the most probable putative anti-Fusarium oxysporum AMPs. There was
a very small likelihood that these peptides were incorrectly predicted to be anti-Fusarium
oxysporum AMPs.
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4.4. Receptor Identification

PR-1-like protein, Fpr1, is a protein of Fusarium oxysporum used for proteolytic pro-
cessing and activation of secreted effectors by fungal and plant host proteases (Avr4). It
is a well-characterized type of PR-1 like protein in humans that has been associated with
rudimentary biological processes such as cancer, reproduction, and immune response,
which are inferred indirectly based on gene expression, localization in specific cell types
(glioma or sperm cells), or in response to certain stimuli (pathogen attack) rather than
by firm genetic evidence [49]. The highly specific role of PR-1-like protein, Fpr1, during
fungus-host interaction makes it a promising target for Fusarium oxysporum detection.

From Table 4, PR-1-like protein, Fpr1, of Fusarium oxysporum is a moderately stable
protein. The 3-D model structure validation using BIOVIA also supports its use because of
its high quality in terms of the distribution of amino acid residues (Table 1), and thus, this
justifies its use for the detection of this fungus [50,51].

4.5. Physicochemical Analysis

The physicochemical properties of the putative AMPs were resolved by utilizing APD
and BACTIBASE to guarantee that the distinguished sequences adjust to other AMPs
dependent on the qualities estimated. The hydrophobicity result, which was lower than
30% is not an ideal physicochemical parameter [52]. Peptides with higher hydrophobicity
would penetrate further into the cell’s hydrophobic center to exert their antimicrobial
effects through several mechanisms exhibited by the peptides [53]. All the anti-Fusarium
oxysporum AMPs which were positively charged demonstrated congruity of ideal AMPs
with improved antimicrobial activity. Notwithstanding, the absence of the positive charge
in the net charge of BOMK-10, 11, and 12 does not imply a lack of antimicrobial activity
since some negatively charged AMPs have quite recently been accounted for. For example,
the surfactant-related anionic peptide in the APD3 database (AP00528) with a net charge of
−5 has an anti-bacterial action, and maximin H5 with a charge between −1 and −7 has a
bacterial growth restraint action against Listeria monocytogenes [54]. The range of isoelectric
values of the AMPs between 3.75 and 8.70 shows characteristic solubility properties for
the AMPs in acid and alkaline media despite the variability of charges [55]. The isoelectric
point (pI) of peptides is a component of individual amino acids in both original structures.
A negative Boman index is said to be related to a more hydrophobic peptide, demonstrating
a high protein binding potential, while a more hydrophilic peptide will, in general, have a
more positive index [56]. In any case, the propensity of certain peptides to be positive in
their Boman index values has been associated with the capacity to identify HIV in a lateral
flow device [17].

The physicochemical parameters of the PR-1-like protein, Fpr1 (Table 5) indicate that
it is an ideal candidate for the identification of Fusarium oxysporum in terms of stability
(as indicated by the instability index), with alanine, valine, isoleucine, and leucine being
the most abundant contributors to the aliphatic side chains resulting in an increased
thermo-stability (with alanine being the most abundant).

4.6. Structure Prediction and Docking Interaction Analysis of the Putative Anti-Fusarium
oxysporum and Fusarium oxysporum PR-1-Like Protein

The structure prediction of the AMPs and the Fusarium oxysporum protein receptor was
analyzed in Table 6. The C-score is a certainty score for assessing the nature of anticipated
models by I-TASSER. Its assessment depends on the significance of threading template
arrangements and the combination parameters of the structure assembly simulations,
which are regularly in the scope of −5 to 2. A C-score inside this scope of values connotes a
model with high certainty [57]. The prediction of the models of the anti-Fusarium oxysporum
AMPs and the Fusarium oxysporum Fpr1 had high confidence in terms of the templates used
for their prediction.

On the other hand, TM-score is a proposed scale for estimating the basic conver-
gence/similarity between two structures [58]. A TM-score of >0.5 indicates a correct



BioTech 2021, 10, 8 14 of 17

topology model, and a TM-score of <0.17 means a random similarity. All the AMPs, in-
cluding the receptor protein, had the correct topology without arbitrary similarity to any
other models.

Even though there is certifiably not a characterized RMSD value for 3-D structure
prediction, an RMSD estimation of 2–4 Å is viewed as acceptable, and an RMSD of ≤1 Å
is considered to be ideal. All models had ideal qualities for RMSD. The results similarly
showed that all the AMPs different secondary structures, including α-helices, parallel
β-sheet, anti-parallel β-sheet, extended, and loop conformational structures. The outcomes
observed associate with the various structural conformations displayed by known AMPs.
Examples of known AMPs and their structures include tachyplesin from horseshoe crabs
and bovine lactoferricin, which have beta-sheet structures [59]; magainin analog and melit-
tin having alpha-helical conformations [60]. Consequently, the peptides can be considered
bona fide AMPs. In any case, the AMPs identified in this study are thought to be putative
anti-Fusarium oxysporum peptides because of the absence of experimental proof for these
molecules at present.

Utilizing the binding geometry scores in Table 7, all the putative AMPs indicated
a huge binding affinity to the PR-1-like protein of Fusarium oxysporum. The AMPs also
displayed high binding energy scores with PR-1-like protein, Fpr1, with the AMPs having
the most noteworthy inclination to identify the fungus. PatchDock and HDock servers use
the scoring function as provided in this research to sample ligands’ conformations on the
protein receptor [39,41]. The HDock server, for instance, uses a flexible receptor molecular
docking approach to estimate and assess the non-bonded (electrostatic and van der Waals)
interactions utilizing the classical force-field-based scoring function [41]. The utilization
of HMMER for the discovery of putative AMPs in this research can be used to identify
Fusarium oxysporum in plants by utilizing PR-1-like protein, Fpr1, as a target under high
sensitivity, specificity, and accuracy.

5. Conclusions

This research identified novel AMPs for the potential diagnosis of Fusarium oxysporum
using HMMER in silico technology, where 12 anti-Fusarium oxysporum AMPs were gen-
erated. The putative anti-Fusarium oxysporum AMPs showed conformity to other known
AMPs in terms of their physicochemical characteristics. This diagnostic system’s primary
goal is to ease the search and identify a standard reference for a biomarker for early detec-
tion of the fungus to solve the current problem, which leads to the reduction of crop yield,
market value, and nutritional value of crop plants, including Phaseolus vulgaris. AMPs
have demonstrated incredible promise in evading the downsides related to the current
diagnostic systems of this fungus. This research work could be pursued for molecular
validation through the binding of these AMPs with the PR-1-like protein, Fpr1, using an
“on/off” binding experiment in an LFD setting to develop a prototype with these specific
AMPs conjugated to gold nanoparticles (AuNPs) to accurately and sensitively detect the
fungal pathogen within plant samples.
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