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Abstract: Based on a laser diode, a 12 ˆ 6 photodiode array sensor, and machine learning techniques,
a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed.
To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the
two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the
identification result, a relevant void fraction measurement model which is developed by Support
Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction
measurement system for the two-phase flow is developed and experiments are carried out in four
different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified
flow and annular flow) are investigated. The experimental results show that the development
of the measurement system is successful. The proposed void fraction measurement method is
effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional
laser measurement systems using standard laser sources, the developed measurement system has
the advantages of low cost and simple structure. Compared with the conventional void fraction
measurement methods, the proposed method overcomes the influence of flow pattern on the void
fraction measurement. This work also provides a good example of using low-cost laser diode as a
competent replacement of the expensive standard laser source and hence implementing the parameter
measurement of gas-liquid two-phase flow. The research results can be a useful reference for other
researchers’ works.

Keywords: gas-liquid two-phase flow; small channel; void fraction; flow pattern; photodiode array
sensor; laser diode

1. Introduction

In the past decades, the studies and industrial applications of gas-liquid two-phase flow in
small-channel systems, such as chemical reactors, heat exchangers, refrigeration processes and
micro-evaporators etc., have become a significant area [1–3]. Void fraction is an important parameter
of the two-phase flow. Its on-line measurement is of great importance for the heat and mass transfer
efficiency, the estimation of pressure drop, the process control and the measurement of other parameters
of the two-phase flow [4–9]. However, with the decrease of the channel dimension, the measurement
of the void fraction becomes more and more difficult. The conventional measurement methods cannot
fulfill the growing requirements of the industrial applications and the mechanism studies of the
two-phase flow [1–9].
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Due to its advantages of high spatial and temporal resolution, the optical measurement technique
is a very attractive and useful approach to implement the parameter measurement of gas-liquid
two-phase flow in small channels [10–12]. The conventional optical measurement methods can be
mainly divided into three categories: optical probe method, visualization method, and laser-based
method [10–12]. Because the optical probe is directly in contact with the detected fluid, the optical
probe method will more or less disturb the practical flow of the fluid. In addition, the probes may
be contaminated and unpredictable measurement error will arise [13–15]. The visualization method
includes high-speed cameras, digital cameras, and optical tomography etc. [16–18]. Although the
measurement performance of the visualization method is satisfactory, the visualization method has
the disadvantages of high cost, complicated construction and higher requirement of the measurement
environment [16–18]. Many laser-based methods have been proposed and widely studied, including
laser Doppler velocimetry, laser induced fluorescence and particle image velocimetry, etc. However,
the conventional laser based methods need an expensive laser source (e.g., Nd–Yag laser source or
He-Ne laser source.) and a complicated measurement system (including seeding particle, fluorescent
particle and objective lens, etc.) [19–21]. These methods also have the disadvantages of high cost
and higher requirements of the measurement environment. Therefore, although significant technical
achievements and progresses have been obtained, due to the above mentioned disadvantages, more
research works should be undertaken to seek a more effective optical method to implement the
parameter measurement of gas-liquid two-phase flow in small channels with the advantages of lower
cost, simpler construction and better capability of the environment [10–12].

Currently, the techniques of information science and micro-electronics have been rapidly
developed. As a new photo-electric device, the performance of photodiode sensor has been significantly
improved. The dimension of photodiode sensing element has been greatly decreased and a photodiode
array sensor can be successfully developed with much lower cost/price [22,23]. As a new kind of
laser source, in some cases, the laser diode can be used as a low-cost alternative of the conventional
expensive laser source [24,25]. These technical progresses have laid a solid foundation of developing a
low-cost optical measurement system. Meanwhile, as a newly emerging signal processing technology,
machine learning, which aims to implement data mining, pattern recognition and modeling, etc., has
been widely applied and studied in many research fields. Machine learning technology can provide
useful approaches to make full use of the measurement information and hence to implement the
parameter measurement successfully [26–29]. However, up to date, our knowledge and experience
on the applications of the above new devices and machine learning technology to the parameter
measurement of gas-liquid two-phase flow in small channels are very limited [4–9].

Based on a photodiode array sensor and a laser diode, this work aims to develop a low-cost
void fraction measurement system and hence to propose a new optical measurement method for
the void fraction measurement of gas-liquid two-phase flow in small channels by using machine
learning technology.

2. Void Fraction Measurement System and Measurement Scheme

Figure 1a shows the structure of the new void fraction optical measurement system, including
a laser diode, an extender lens, a slit, a photodiode array sensor, a data acquisition unit and a
microcomputer. The laser diode which is used to produce a beam of laser is YuanDa laser L63510P5
with a wavelength of 635 nm (the wavelength of the laser diode is chosen according to our experience
and previous experimental results) and an output power of 5 mW. The extender lens and the slit are
used to change the laser into a parallel laser sheet (The extender is used to extend the beam diameter
and decrease the laser’s divergence. In this work, the resulting laser through the extender lens has
a diameter of 40 mm). The laser sheet passes through the transparent channel perpendicularly, and
is absorbed, reflected or deflected by the gas-liquid two-phase flow inside the small channel. The
exit laser, which contains the characteristic information of the two-phase flow, is recorded by the
array sensor. The output signals of the array sensor are then transmitted to the microcomputer by the
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data acquisition unit. Figure 1b illustrates the layout of the photodiode array sensor. According to
the required sensing area, the cost and the size of the sensing element, the array sensor consists of
72 (12 ˆ 6) sensing elements. The outputs of the 72 sensing elements will be sent into the micropucter
simultaneously. The sensing element is Vishay Telefunken PIN photodiode BPW34, which has a
sensing area of 3.0 ˆ 3.0 mm2 (in this work, the Signal to Noise Ratio of the sensing element is about
30 dB). Meanwhile, it is necessary to indicate that the number of the sensing elements is determined by
our previous experimental results. It is not an optimal number. To look for an optimal element number
of the array sensor will be our further research.
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Figure 1. (a) The structure of the new void fraction optical measurement system; (b) The layout of the
photodiode array sensor.

Research works have verified that the flow patterns of gas-liquid two-phase flow have significant
influences on the measurement of the void fraction [1–6,30]. If we use one measurement model for
the void fraction measurment, the measurement accuracies will not be satisfactory. An effective
approach to solve this problem is to develop different measurement models for different flow patterns.
Thus, the real time flow pattern identification result is necessary and the identification result is
introduced to the void fraction measurment. In this work, the real-time flow pattern identification
result is introduced into the void fraction measurement process. Meanwhile, for each typical flow
pattern, a specific void fraction measurement model is developed. Figure 2 shows the scheme of the
void fraction measurement. With the obtained measurement signals (a total of 72 groups of optical
signals obtained by the array sensor), a feature vector is firstly extracted. According to the feature
vector, the real-time flow pattern identification is then implemented. Finally, according to the flow
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pattern identification result, a relevant void fraction measurement model is selected to calculate the
void fraction.
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To obtain the comprehensive information of the two-phase flow, the feature vector is extracted
from the 72 measurement signals obtained by the photodiode array sensor (each measurement signal
is obtained by one sensing element and contains a series of data points). The feature vector consists of
two groups of statistical features which contain useful information of the gas-liquid two-phase flow,
the mean values and the standard deviations of the 72 measurement signals.

The mean value represents the time-averaged characteristic of a measurement signal. The mean
value of the measurement signal obtained by the kth sensing element mk is

mk “
1
L

L
ÿ

i“1

uk piq (1)

where L is the data length of the measurement signal, uk is the measurement signal obtained by the kth
sensing element, and k = 1,2,3, . . . ,72.

The standard deviation represents the dispersion of a measurement signal. The standard deviation
of the measurement signal obtained by the kth sensing element dk is

dk “

g

f

f

e

1
L´ 1

L
ÿ

i“1

puk piq ´mkq
2 (2)

Thus, combining the two groups of statistical features, the feature vector x is obtained

x “ rm1, . . . , m72, d1, . . . , d72s
T (3)

The flow pattern identification is a pattern recognition problem. The development of a void
fraction measurement model is a modeling problem. As mentioned in Section 1, machine learning
technology can provide many useful approaches to solve pattern recognition problems or modeling
problems, such as k-nearest neighbor, linear discriminant analysis, and Bayes classifier, etc. can
implement the pattern recognition [26–29], while linear regression, artificial neural network and
Bayesian learning, etc. can implement the modeling [26–29].

Compared with the other pattern recognition techniques mentioned above, Fisher Discriminant
Analysis (FDA) is a dimensionality reduction technique and can provide a linear transformation that
maximizes the between-class scatter and minimizes the within-class scatter. FDA has been widely used
in the pattern identification field, and its effectiveness has been verified [26–29,31,32]. Thus, in this
work, FDA is adopted to implement the flow pattern identification. Compared with the other modeling
techniques mentioned above, Support Vector Machine (SVM) is a valid machine-learning technique
and is suitable for model developing in small sample conditions. SVM has good generalization ability
and has been widely used in many fields for model development [26–29,33]. Therefore, in this work,
SVM is selected to develop the void fraction measurement models.
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3. Flow Pattern Identification

Four typical flow patterns of gas-liquid two-phase flow in small channels are investigated in this
work, including bubble flow, slug flow, stratified flow, and annular flow. According to our experimental
results, the measurement signals of the bubble flow and the slug flow have some similarities, while the
measurement signals of the stratified flow and the annular flow have some similarities. Figure 3 shows
typical groups of the measurement signals and the images of the four flow patterns. The measurement
signals are obtained by a sensing element (i.e., the sixth BPW34 diode at the fourth column of the
photodiode array sensor). The images of the flow patterns are obtained by a high-speed camera
(Intergrated Design Tools, Inc. (IDT) Redlake MotionXtra N-4).

As shown in Figure 3, in the bubble flow, when a gas bubble passes through the measurement
cross-section, the measurement signal has a clear voltage decrease and stays steady when the channel
is full of water. In the slug flow, the measurement signal also has clear voltage decrease when a gas
slug approaches and leaves, while at the central part of the gas slug, the measurement signal remains
invariable. The measurement signals of the bubble flow and the slug flow have some similarities,
but the voltage decrease amplitudes of the signals are different. In the annular flow or the stratified
flow, the measurement signals both display fluctuations. However, the amplitude of the measurement
signal fluctuation in the annular flow is different from that in the stratified flow. Therefore, based on
the above characteristics of the measurement signals in different flow patterns, in this work, the bubble
flow and the slug flow are initially classified as one group (Group 1), and the stratified flow and the
annular flow are initially classified as the other group (Group 2). Figure 4 shows the flowchart of the
flow pattern identification. The process of the flow pattern identification has two key steps. The first
step is to determine that the real-time flow pattern belongs to Group 1 or Group 2 by Classifier A. The
second step is to determine the specific real-time flow pattern by Classifier B or C.
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The three classifiers (Classifier A, B, and C) are developed by FDA and each classifier is aimed to
solve a binary classification problem. The decision function of the binary classifier can be expressed as:

y pxq “ sign
”

ωTx`ω0

ı

(4)

where y is the class label (y = ´1 or 1), x is the feature vector, ω is the Fisher vector and ω0 is the
threshold. ω can be determined by solving the following problem:

J pωq “ max
ωTSbω

ωTSwω
(5)

where Sw is the within-class-scatter matrix and Sb is the between-class-scatter matrix. Once the classifier
is developed, by inputting the feature vector x into the decision function, the identification result
can be obtained according to the class label y. The detailed description concerning FDA is available
in [26–29].

4. Void Fraction Measurement Model Development

Figure 5 shows the flowchart of the void fraction measurement model development. For
each typical flow pattern, a specific void fraction measurement model is developed. According
to experimental results, a training data set is constructed. The training data set includes the sample
feature vectors extracted from the experimental measurement signals and the reference void fraction
values. With the training data set, the void fraction measurement models of the four flow patterns
(totally four models) are developed by SVM.
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According to the principle of SVM, the void fraction measurement model can be expressed as:
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(7)

where ε is the slack variable and C is the penalty factor. The detailed description concerning the SVM
is available in [27–29].

5. Practical Process of the Void Fraction Measurement

The practical process of the void fraction measurement is illustrated in Figure 6. Firstly,
the 72 measurement signals of the gas-liquid two-phase flow are obtained by the array sensor, and
the feature vector x of the signals is extracted. Secondly, the real-time flow pattern is identified. Then,
according to the identification result, a relevant void fraction measurement model is selected. Finally,
with the selected measurement model and the obtained feature vector x, the void fraction measurement
α is obtained.
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6. Experimental Setup

Figure 7 shows the experimental setup of the void fraction measurement system for gas-liquid
two-phase flow in small channels. The gas and the liquid phase are driven into the small channel by
syringe pumps or a nitrogen tank (if either the gas flowrate or the liquid flowrate is less than 3.6 L/h,
the corresponding syringe pump is used; otherwise, the nitrogen tank is used). Nitrogen is used as
the gas phase and its flowrate ranges from 0 to 1300 L/h. Tap water is used as the liquid phase, and
its flowrate ranges from 0 to 20 L/h. The two phases mix at the mixer, and then the two-phase flow
flows through a horizontal channel with a length of 0.95 m. The distance between the channel inlet
and the photodiode array sensor is 0.25 m. The optical measurement signals of the two-phase flow are
obtained by the photodiode array sensor and then sent to the microcomputer by the data acquisition
unit. Meanwhile, an IDT Redlake MotionXtra N-4 high-speed camera (maximum fps (frames per
second) @ full resolution: 3000 fps @ 1024 ˆ 1024) is used to obtain the images of the flow patterns.

Four small channels with inner diameters (i.d.) of 4.22, 3.04, 2.16 and 1.08 mm, respectively, are
used in the experiments. Four typical flow patterns including bubble flow, slug flow, stratified flow
and annular flow are investigated. The sampling frequency of the photodiode array sensor is set to
1 kHz. The National Instruments cDAQ-9172 is selected as the data acquisition unit. The reference
data of the void fraction is determined by the quick-closing valve method [4–6].
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7. Experimental Results and Discussions

7.1. Experimental Results

Figures 8–11 show the experimental results of the void fraction measurement in the four
small channels. Compared with the reference void fractions obtained by the quick-closing valve
method, the maximum absolute errors of the void fraction measurement in the four small channels are
all less than 7%.

The experimental results indicate that the development of the void fraction measurement system
is successful and the proposed void fraction measurement method is effective.
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7.2. Discussion

In this work, a photodiode array sensor is used to obtain the signals of the exit laser. With 72
sensing elements, the array sensor has enough sensing area to obtain sufficient signals of the exit laser.
Then, comprehensive information of the two-phase flow can be acquired from the obtained signals,
and the void fraction measurement can be implemented. Meanwhile, in the proposed measurement
method, a low-cost laser diode is used as the laser source. According to the current technique level, the
performance indexes (such as output power, laser coherence and divergence, etc.) of the conventional
standard laser sources (e.g., Nd: YAG laser source, He-Ne laser source, etc.) are comprehensively better
than that of the laser diode. The only comparable performance index of the laser diode is the power
stability (Power stability is the maximum drift with respect to mean power over eight hours. In this
work, the laser diode has a power stability of 2%, while the standard laser sources such as THORLABS
HNL050L He-Ne laser source have a power stability of 2.5% [34]). The proposed measurement method
is mainly on the basis of the power changes and distribution of the exit laser. The power stability is
the key performance index of the laser source. Thus, in this work, the advantage of the laser diode
in power stability is fully utilized. Furthermore, with the supports of suitable machine learning
techniques and the developed photodiode array sensor, the low-cost laser diode successfully acts as a
competent replacement of the expensive standard laser source. Sufficient information concerning the
characteristic of the two-phase flow is obtained and processed. Finally, the void fraction measurement
is implemented.

To implement the void fraction measurement with a satisfactory accuracy, the influence of the
flow pattern should be condersided. Compared with the normal scale channel, the flow characteristics
of the two-phase flow in small channels have significant differences. As the dimension of the channel
decreases, some flow patterns become common and the others are difficult to observe [2–5]. According
to the experimental results, bubble flow is observed in the 4.22-mm and 3.04-mm i.d. channels but not
in the 2.16-mm and 1.08-mm i.d. channels, while the slug flow, stratified flow and annular flow are all
observed and investigated in the four small channels. These experimental results may provide useful
reference for others’ research work.

To overcome the influence of the flow pattern on the void fraction measurement, a void fraction
measurement method is proposed. In this method, a specific void fraction measurement model is
developed for each typical flow pattern. In practical measurement, the parameters of the models vary
with the flow patterns, which means that the flow pattern indeed has significant influence on the void
fraction measurment. To overcome the influence of the flow pattern, the flow pattern of the two-phase
flow is identified at first, and then, according to the identification result, a relevant void fraction
measurement model is selected to implement the void fraction measurement. The experimental results
show that, with the introduction of the real-time flow pattern identification result, the influence of the
flow pattern on the void fraction measurement has been significantly reduced.

8. Conclusions

In this work, based on a photodiode array sensor and a laser diode, a low-cost and simple-structure
void fraction measurement system for gas-liquid two-phase flow in small channels is developed.
A low-cost laser diode is adopted as the laser source and a 12 ˆ 6 photodiode array sensor is used to
obtain the information concerning the two-phase flow. Meanwhile, a new void fraction measurement
method is proposed. The machine learning techniques (FDA and SVM) are adopted to implement
the flow pattern identification and the development of the void fraction models. To overcome the
influence of flow pattern on the void fraction measurement, the identification result is introduced to
the void fraction measurement. Then, according to the identification result, a relevant void fraction
measurement model is selected to implement the void fraction measurement.

Experiments are carried out in four small channels with different inner diameters of 4.22, 3.04,
2.16 and 1.08-mm, respectively. Four typical flow patterns including bubble flow, slug flow, stratified
flow and annular flow are investigated. The maximum absolute error of the void fraction measurement
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is less than 7%. The experimental results show that the proposed void fraction measurement method
is effective and the development of the measurement system is successful. The experimental results
also show that the introduction of the flow pattern information can overcome the influence of the flow
pattern on the void fraction measurement.

The research results also verify that the low-cost laser diode can act as a competent replacement of
the expensive standard laser source if suitable signal processing techniques and information acquisition
techniques are used. That can significantly reduce the cost of the laser based measurement system.
This research work can provide a good reference for other researchers’ works.
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