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Probing ultrafast ππ*/nπ* internal conversion in
organic chromophores via K-edge resonant
absorption
T.J.A. Wolf 1, R.H. Myhre1,2, J.P. Cryan1, S. Coriani3,4, R.J. Squibb5, A. Battistoni1, N. Berrah6, C. Bostedt7,8,9,

P. Bucksbaum1,10, G. Coslovich7, R. Feifel5, K.J. Gaffney1,11, J. Grilj12, T.J. Martinez 1,13, S. Miyabe1,13,14,

S.P. Moeller7, M. Mucke15, A. Natan 1, R. Obaid6, T. Osipov7, O. Plekan16, S. Wang1, H. Koch1,2 & M. Gühr1,17

Many photoinduced processes including photosynthesis and human vision happen in organic

molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic

molecules with heteroatoms often possess an important excited-state relaxation channel

from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult

to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the

excited-state electronic structure. Here, we report achieving the required sensitivity by

exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy.

As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrum

at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept

using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ*

internal conversion takes place within (60± 30) fs. High-level-coupled cluster calculations

confirm the method’s impressive electronic structure sensitivity for excited-state

investigations.
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The efficient conversion of light into other forms of energy
has a key role in many processes such as photosynthesis or
human vision1, 2. It is well established that the efficiency of

these processes is facilitated by coupled ultrafast electronic and
nuclear dynamics that cannot be described using the
Born–Oppenheimer approximation (BOA). The breakdown of
the BOA makes the fundamental details of such mechanisms
notoriously difficult to understand: they proceed on ultrafast
timescales and occur mostly at positions where potential energy
surfaces come close or even intersect. From an experimental point
of view, it is highly desirable to access the nuclear geometry and
the electronic degrees of freedom separately, to compare them to
quantum simulations. The transient nuclear geometry can be best
studied by time-resolved diffraction techniques using short
X-ray3, 4 or electron pulses5.

X-ray absorption spectroscopy has been known for a long time
to be an element and site-specific probe for local electronic
structure of organic molecules and the charge states and local
environment of transition metal sites6. The element and site
specificity originates from excitation of inner electrons, which are
strongly confined around the specific nucleus, into empty valence
molecular orbitals. As the core electron energy levels often lie 10s
and 100s of eVs apart, a specific site in a molecule can be probed
by selection of the incident photon energy. Fueled by the devel-
opment of short X-ray pulse sources7 and the growing interest in
transition metal-based photocatalysts and photosensitizers, tran-
sient X-ray spectroscopy was very successfully applied to the
K- and L-edges of the active transition metal centers in those
compounds8–11. These studies showed an impressive sensitivity
to transiently populated electronic states involving the metal
center, e.g., metal-to-ligand charge transfer (MLCT) states.

Internal conversion between excited states of different elec-
tronic character is also a crucial path for photoenergy conversion
in organic molecules. Organic chromophores exhibit strongly
absorbing ππ* excited states, which can be described in a single

electron Hartree–Fock (HF) picture as an electron–hole pair in a
formerly occupied and an unoccupied molecular orbital (MO),
both with π symmetry. Many of these chromophores, like azo-
switches12, 13, nucleobases14–16, and amino acids17, also contain
heteroatoms with electron lone pairs. They therefore exhibit nπ*
excited states, with a hole in a heteroatom-centered lone pair (n)
orbital and an electron in a π* orbital. Unlike ππ* excited states,
nπ* states are usually not directly accessible because of low
absorption cross-sections from the ground state. It is therefore
crucial to directly monitor the ππ*/nπ* internal conversion as it
provides essential photochemical pathways for reactions like
cis–trans isomerization, and intersystem crossing to the triplet
manifold of electronic states governed by the El Sayed selection
rules18.

The preferential localization of the n orbital at the heteroatom
has wide-reaching implications for resonant core level spectro-
scopy. In general, near edge X-ray absorption fine structure
(NEXAFS) spectra show isolated features from resonant states
below the core ionization edge of an element. Those features
are because of transitions from this element’s core orbital to
unoccupied valence orbitals, e.g., a π* orbital. The core-to-valence
absorption cross-section is strongly dependent on the spatial
overlap between the confined core and the empty valence
orbital6, 19, 20 (Fig. 1a). In the case of excited states, the electron
hole in a formerly occupied valence orbital enables an additional
NEXAFS resonance. The spatial overlap makes a 1s–n transition
from the strongly localized heteroatom 1s core level to the elec-
tron hole of an nπ* state more intense than the 1s–π transition to
the delocalized π hole of a ππ* state. The same effect is observable
in the strong sensitivity of time-resolved (TR) NEXAFS spec-
troscopy to MLCT states in transition metal complexes. The
TR-NEXAFS signature from a photoexcited ππ* state is therefore
expected to be weak and to transform into a strong nπ*-state
signature as the molecule undergoes ππ*/nπ* internal conversion,
largely independent of geometry changes during the dynamics.
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Fig. 1 Excited states of thymine and their electronic characters. a Isosurface representations (right) and electron density projections onto the molecular
plane for the three valence orbitals (Hartree–Fock/6-311 G) involved in the characters of the two lowest lying excited states of thymine and a core orbital
localized at oxygen(8). The electron density at the position of the core orbital differs strongly for the different valence orbitals. b Results from our coupled
cluster investigation of the excited-state topology along the two most relevant degrees of freedom for relaxation into the nπ* minimum. All states are
labeled with their electron configuration. Ultraviolet (UV) excitation of the ground state (GS) places a nuclear wavepacket (gray) on the ππ* excited state. It
relaxes through a conical intersection to a minimum in the nπ* excited state. According to our calculations, only one core-excited state (CE) characterized
by an excitation at O(8) is relevant for interpretation of our experimental results
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One benchmark molecule for the sensitivity of TR-NEXAFS
spectroscopy to the ππ*/nπ* transition is the chromophore thy-
mine, as there is a rich literature on its excited states (see14, 15, 21

and citations therein). Thymine exhibits two high-lying occupied
MOs, an oxygen-localized n-orbital and a delocalized
π-orbital (Fig. 1a). Its lowest unoccupied MO (π*) is similar to the
πMO in delocalization. The molecule can be excited at 267 nm to
a ππ* state; the lower-lying nπ* state is optically dark.

The ππ* relaxation in thymine has been experimentally
investigated using many methods available in ultrafast technol-
ogy14, 15, 21 including our own study, where we investigated
excited-state nonresonant Auger spectra at the oxygen K-edge22.
It is challenging to attribute the experimental signatures of
sub-100 fs thymine dynamics from ultrafast photoelectron16,
photoion23, absorption, or Auger electron spectroscopy22

unambiguously to a particular process, like internal conversion, as
changes in both the electronic structure and the nuclear geometry
influence the observables. Interpretations of past experimental
data involving valence electrons relied heavily on simulations.
However, theoretical investigations do not agree on a common
prediction of the excited-state dynamics14. Several wavepacket

simulations predict nuclear relaxation into a local minimum of
the ππ* state within 100 fs followed by slower ππ*/nπ*24, 25 or
even ππ*/ground state26 internal conversion over a barrier. Others
predict barrierless, sub-100 fs ππ*/nπ* relaxation27 or direct
ππ*/ground-state relaxation within few hundred fs28. It is there-
fore unclear, if and on which timescale the nπ* state is accessed
during the relaxation dynamics.

In this work, we demonstrate application of the well-
established state sensitivity of transition metal X-ray absorption
spectroscopy to time resolved spectroscopy of electronic relaxa-
tion in organic molecules, closing an important gap in the pho-
tochemistry that can be investigated. We demonstrate at the
example of thymine that our TR-NEXAFS technique is strongly
and selectively sensitive to the ultrafast ππ*/nπ* internal conver-
sion. We prove the existence of the relaxation channel into the
nπ* state, its ultrafast population and depopulation. Employing
computationally demanding, but quantitative high-level-coupled
cluster (CC) simulations29–31, which are still unavailable for
transition metal complexes, we confirm our spectroscopic attri-
bution based on orbital localization.

Spectrum
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Fig. 2 Transient oxygen-edge absorption spectra of thymine. a Representative near-edge absorption fine structure (NEXAFS) spectra 2 ps after ultraviolet
(UV) excitation and without UV excitation. UV-induced increase in intensity is marked red, UV-induced decrease is light blue. UV excitation leads to the
appearance of a new spectral feature around 526.4 eV and a bleach of the ground state π* resonance at 531.4 eV. b False-color plot of time-dependent
NEXAFS difference spectra (see color bar in the upper right corner). The UV-induced features at 526.4 and 531.4 eV are clearly visible throughout the
positive pump-probe delays. c Time-dependence of the UV-induced features with fits based on a rate equation model. All error bars represent the standard
error of mean
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Results
Ground-state and excited-state NEXAFS spectra. The experi-
mental ground-state NEXAFS spectrum of thymine is shown
in black in Fig. 2a. It exhibits a double peak π* resonance. On
the basis of our CC calculations, and in agreement with earlier
studies32, we assign the lower energy peak at 531.4 eV to a linear
combination of HF single electron excitations from the O(8)
1s orbital to several unoccupied π* orbitals with significant
contributions from the aforementioned π* MO. The linear
combination is such that the core excited state possesses a
high degree of electron localization at O(8), thus the strong
absorption cross-section in the Mbarn regime (see a discussion in
Supplementary Note 1 and Supplementary Fig. 1). The higher
energy peak at 532.2 eV corresponds to an excitation from
the O(7) 1s orbital to a different linear combination of π* MOs32.
The increase in intensity at photon energies beyond the
π* resonances is predominantly because of a smooth feature of
K-edge ionization at 537 eV and additional weak resonant
transitions32.

The NEXAFS spectrum taken 2 ps after ultraviolet (UV)
excitation is shown in green in Fig. 2a. It is a superposition of the
excited-state spectrum and the ground-state spectrum, which is
weakened by transfer of an estimated 13% of the population
(Supplementary Notes 2–4) to the excited state. The excited-state
spectrum is redshifted to lower photon energies with respect to
the ground state, which is obvious by the background-free
signature at 526.4 eV. This signature must be a new core
excitation channel either to the n or π electron hole. An
additional signature of UV excitation, the intensity reduction in
the area of the π* resonances, is the result of a bleach of the
ground-state spectrum almost entirely compensated by the
redshift of the smooth K-edge ionization feature in the excited-
state spectrum. The effect is therefore only visible, where the
ground state exhibits the strongest intensity modulations, i.e., the
π* resonance. It is therefore a direct signature of the ground-state
depopulation and largely independent of any following excited-
state dynamics.

Signature of ultrafast ππ*/nπ* internal conversion. The time-
dependence of the difference signal (X-ray absorption with UV

minus X-ray absorption without UV) is shown in Fig. 2b. The
spectrally integrated time trends of the ground-state bleach and
excited-state feature are shown in Fig. 2c. The temporal onset of
the excited-state feature exhibits a delay ((60± 30) fs according to
a rate equation fit, see Supplementary Note 2) with respect to the
temporal overlap between UV and X-ray pulses, which is marked
by the bleach onset. To confirm the fit of the rather noisy bleach
feature, we defined a narrower integration region in the Auger
spectra based on best signal to noise for the bleach feature. The
resulting curves and fits are shown in Fig. 3. The intensity of the
526.4 eV feature is only because of 13% of the population in the
ground-state NEXAFS spectrum. Its absorption cross-section is,
thus, similar to the π* resonance. Therefore, it must be likewise
due to a localized transition, which is the signature of the nπ*
state, not the ππ* state. Accordingly, the delay of the nπ* signature
of (60± 30) fs directly reflects the nuclear wavepacket dynamics
to access the ππ*/nπ* conical intersection seam, in agreement with
a short ππ* lifetime observed in our earlier study22. Our intuitive
interpretation is supported by our CC investigations of the ππ*
and nπ*-state potential energy surfaces. Figure 1b shows a
reduced potential energy sketch from our simulations along the
two nuclear coordinates, which are expected to be most relevant
for the molecular dynamics. We could not observe any accessible
local minima in the ππ* state and instead found the ππ*/nπ*
conical intersection seam not to be isolated by a barrier from the
Franck–Condon (FC) point, but directly accessible. This suggests
that after photoexcitation, the nuclear wavepacket is driven out of
the FC region by a gradient along the C(5)–C(6) bond elongation
towards a saddle point. On its way, it encounters the ππ*/nπ*
conical intersection seam, which is in agreement with the
experimentally observed internal conversion on a sub-100 fs
timescale. In the nπ* excited state, a local minimum can be
reached from the ππ*/nπ* conical intersection by O(8)–C(4) bond
elongation33.

We, furthermore, performed CC simulations of NEXAFS
spectra of the ground state, and of the excited states at the
minimum and saddle point geometries identified in Fig. 1b.
Figure 4 shows a comparison of calculated to experimental
spectra of the ground state and 2 ps after UV excitation. All three
simulated excited-state spectra exhibit their lowest-energy
resonance around 526.4 eV. In all cases, the final state is the
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same O(8)-centered core-excited state (CE). As expected, the
oscillator strength in the nπ* state beats the ππ* state by a factor
of 40, almost independent of the molecular geometry (Supple-
mentary Tables 1–3). We scaled the simulated excited-state
spectra to the estimated ratio of 13% excited molecules. Only the
simulated nπ*-state spectrum shows a comparable intensity at the
526.4 eV position.

Discussion
With the TR-NEXAFS method presented here, we can confirm
population of the nπ* state through a directly accessible conical
intersection within 60 fs. Comparison of experimentally observed
and calculated NEXAFS absorption intensities suggests that
internal conversion into the nπ* state is a major channel in the
relaxation dynamics of thymine (Supplementary Note 3).

An alternative method to explore the electronic relaxation,
however less selectively sensitive to electronic structure changes,
is time-resolved photoelectron spectroscopy using extreme
ultraviolet pulses34. Here one relies on spectrally resolving ionic
continua that single out certain valence states35, thus exhibiting
nonadiabatic transitions by kinetic energy or angular distribution
changes36, 37. An assignment is, however, only possible by high-
level simulations of excited-state ionization cross-sections,
whereas we confirm the validity of our intuitive orbital-based
assignment of core excitations by quantitative CC simulations.

The nπ* signature in our TR-NEXAFS spectra shows a
biexponential decay with time constants of (1.9± 0.1) ps and
(10.5± 0.2) ps. This supports a consecutive relaxation process via
a level with nπ* character to a final level of non-nπ* character, to
which our method is insensitive. The nπ* level is most probably
another minimum in the singlet nπ* state, as intersystem crossing
to a triplet nπ* state is forbidden by the El Sayed selection rule.
The transition to the final state can be either intersystem crossing
to a nearby triplet ππ* state with strong spin orbit coupling38 or
internal conversion to the ground state39, which is supported by

the recovery of the ground-state bleach in our data. Recent
simulations on ethylene40 suggest that 1s–π absorption lines
exhibit geometry-dependent line shifts. We predicted those fea-
tures to be relatively weak in the case of thymine, especially at the
oxygen K-edge. It would be exciting to explore this opportunity in
a future experiment with sufficient signal to noise. In a similar
way, a recent study on time resolved absorption spectroscopy at
the carbon K-edge uses symmetry effects on the X-ray absorption
spectrum to probe strong field induced dissociation of SF641. This
is particularly exciting taking into account that a high harmonic
source was used to accomplish this.

In conclusion, we demonstrate with this work the application
of time-resolved X-ray absorption spectroscopy to organic
molecules containing heteroatoms with lone pairs to selectively
investigate ultrafast ππ*/nπ* internal conversion, a crucial
mechanistic step in this large class of molecules. We use the
dominating absorption strength of the heteroatom 1s–n reso-
nance to directly monitor this nonadiabatic process. Our results
prove that the method already works reliably under the current,
still challenging conditions of X-ray free-electron laser experi-
ments with low repetition rates and high temporal and spectral
jitter. Application of the method is in principle not confined to
the gas phase. A soft X-ray study of molecular desorption using
similar technical constraints but different molecular processes has
been already performed at surfaces42. In addition, recently
developed liquid sheets allow for time-resolved solution studies in
the water window43. Our approach has the potential to become a
standard tool for ultrafast investigations at the upcoming second
generation of ultrafast X-ray sources, which provide the oppor-
tunity to extend the TR-NEXAFS technique towards multi-
dimensional spectroscopy approaches in the soft X-ray regime44.

Methods
Experimental methods. The experiment was performed at the Linac Coherent
Light Source (LCLS) free electron laser (FEL) facility, SLAC National Accelerator
Laboratory, at the soft X-ray (SXR) instrument7, 45. A schematic representation of
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the experimental setup is shown in Supplementary Fig. 2. Thymine was purchased
from Sigma Aldrich and evaporated by an effusive oven into an ultra high vacuum
chamber at a temperature of 160°C leading to a sample density of 1012 cm−3 in the
overlap region of optical and X-ray laser22, 46. Molecules were excited by 267 nm
pulses with 70 fs duration and a focus diameter of 100 μm full width at half
maximum (FWHM). Soft X-ray pulses with 70 fs duration and a focus diameter of
70 μm FWHM were used to probe the sample in the oxygen K-edge spectral region
from 520 to 550 eV by simultaneously tuning the FEL and the monochromator of
the SXR instrument with an energy resolution of <0.5 eV47. The intensity of the
essentially background-free transient feature at 526.4 eV was measured for a wide
range of UV pump intensities, to make sure the experiment took place in the linear
absorption regime well below saturation (Supplementary Fig. 3). Temporal and
spatial overlap of UV and SXR pulses was optimized to bleach the Auger spectra of
thymine which is induced by photofragmentation at high UV intensities. Oxygen
1s Auger spectra were recorded with the 2 m long LCLS-FELCO (LCLS-FEL
correlation) magnetic bottle spectrometer48. The photon energy-dependent
absorption cross-section of the sample is proportional to the integrated Auger
electron yield. SXR pulses were delayed with respect to UV pulses between −200 fs
and 20 ps. To achieve NEXAFS difference spectra, UV laser pulses were blocked on
a shot-by-shot basis. LCLS pulses are strongly fluctuating in intensity and relative
arrival time. Therefore, both parameters were recorded on a shot-by-shot basis by
an optical X-ray cross-correlator49 and a gas detector after the monochromator,
respectively. The data set was resorted into ≥50 fs delay bins and several X-ray
intensity bins. Difference spectra from different X-ray intensity bins were averaged.

Theoretical methods. The thymine ground-state geometry (Supplementary
Table 4) was optimized with CCSD(T)/aug-cc-pVDZ using CFOUR50. Excited-
state geometries (Supplementary Tables 5 and 6) were optimized at the EOM-
CCSD/aug-cc-pVDZ level employing Q-Chem51. No symmetry restrictions were
applied for geometry optimizations. Valence excitation energies were obtained with
CC3 using the aug-cc-pCVDZ basis on the oxygen atoms and the aug-cc-pVDZ
basis on the other atoms (Supplementary Table 7). We employed a newly devel-
oped implementation in Dalton29, 52–54. Oxygen 1s to valence excitation energies
and oscillator strengths were computed at the CCSD level of theory with the same
basis as for the valence excitations using a newly developed linear response code
employing the core-valence separation (CVS) approximation and implemented in
Dalton31, 55–57 (Supplementary Tables 1–3). This procedure has previously been
shown to be highly accurate within the coupled cluster hierarchy of methods. In the
CVS approximation, we excluded the pure valence excitations and require the
excitation operators to include at least one core orbital—in this way the excitation
energies for core-excited states become the lowest eigenvalues of the coupled
cluster response matrix. Transition moments are calculated using coupled cluster
response theory for transitions between excited states. The core to valence
excitation energies was offset-corrected by benchmark calculations of the lowest
core to valence excitation energies at the CC3/aug-cc-pCVTZ/aug-cc-pVDZ level
(Supplementary Table 8). With this correction, we achieve quantitative agreement
with the NEXAFS transition energies within the experimental error bars on a
purely ab initio basis. The theoretical core excitation energies are not corrected for
relativistic effects and we estimate the effect to increase excitation energies by
0.1–0.3 eV.

Thymine exhibits Cs symmetry in the ground state. The two lowest-lying
excited states have different representations, A″(nπ*) and A′(ππ*), and the ππ*/nπ*
conical intersection is symmetry allowed. We note that no complex eigenvalues of
the Jacobian matrix were encountered in the vicinity of the conical intersection
seam58. In contrast to earlier studies24–26, we could not identify a minimum in the
ππ* state. Instead, we found a saddle point geometry with Cs symmetry, which is
directly accessible from the Franck–Condon region. The energy lowering degrees of
freedom of the saddle point are out of plane bending, as confirmed by frequency
calculations, which were performed for all observed stationary points59, 60

(Supplementary Tables 9–11). The nπ* minimum geometry is distorted from Cs

symmetry with O(8) out of the plane. We encountered the ππ*/nπ* conical
intersection seam in between the Franck–Condon point and the ππ* saddle point in
close proximity to the latter (energy difference < 0.03 eV). On the basis of
calculated core excitation energies and oscillator strengths, NEXAFS spectra were
simulated by convoluting theoretical stick spectra with Gaussians to account for
peak broadening and the experimental energy resolution.

Data availability. The data sets generated during and/or analyzed during the
current study are available from the corresponding authors on reasonable request.
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