Structural features differentiate the mechanisms between 2S (2 state) and 3S (3 state) folding of homodimers.

Lei Li ${ }^{1}$, Kannan Gunasekaran ${ }^{2}$, Jacob Gah-Kok Gan ${ }^{1}$, Cui Zhanhua ${ }^{1}$, Paul Shapshak ${ }^{3}$, Meena Kishore Sakharkar ${ }^{1}$, and Pandjassarame Kangueane ${ }^{1^{*}}$
${ }^{1}$ School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798; Basic Research Program, SAIC-Frederick, Inc., Laboratory of Experimental and Computational Biology, National Cancer Institute, Frederick, MD 21702, USA; ${ }^{3}$ Dementia/HIV Laboratory, Elliot Building Room 2013, Department of Psychiatry and Beh Sci, University of Miami Miller Medical School, 1800 NW 10th Avenue, Miami, Florida 33136;
Pandjassarame Kangueane* - Email: mpandjassarame@ntu.edu.sg; * Corresponding author received July 07, 2005; revised August 28, 2005; accepted September 2, 2005; published online September 2, 2005

Abstract

: The formation of homodimer complexes for interface stability, catalysis and regulation is intriguing. The mechanisms of homodimer complexations are even more interesting. Some homodimers form without intermediates (two-state (2S)) and others through the formation of stable intermediates (three-state (3S)). Here, we analyze 41 homodimer (25 `\(2 S^{\prime}\) and 16` 3 S') structures determined by X-ray crystallography to estimate structural differences between them. The analysis suggests that a combination of structural properties such as monomer length, subunit interface area, ratio of interface to interior hydrophobicity can predominately distinguish 2 S and 3 S homodimers. These findings are useful in the prediction of homodimer folding and binding mechanisms using structural data.

Keywords: homodimer; structural difference; 2 state; 3 state; stable intermediate; folding mechanism

Abbreviations:

2S	2 state homodimer
3S	3 state homodimer
3SMI	3 state homodimer with monomer intermediate
3SDI	3 state homodimer with dimer intermediate
ML	monomer length
$\mathrm{B} / 2$	subunit interface area
$\mathrm{F}_{\text {hp }}$	fraction of interface to interior hydrophobicity

Background:

Equilibrium denatruation experiments (using temperature and chemical agents) are employed to analyze the unfolding of proteins. These studies are useful in understanding monomeric protein folding. Recently, such techniques have been used to study the mechanism of homodimer formation. [1] Dimer folding involves both intra-molecular and inter-molecular interaction, unlike monomer folding that involves only intramolecular interaction. It is known that some dimers denature from native dimer to unfolded monomers with no thermodynamically stable intermediates, whereas others have folded intermediates during the process. [1, 2, 3] Based on the unfolding patterns, homodimers are known to exist in three different states. They are (1) twostate (2S), (2) three-state with dimeric intermediate (3SDI) and (3) three-state with monomeric intermediate (3SMI). 2S refers to $\mathrm{N}_{2} \leftrightarrow 2 \mathrm{U}$ mechanism, 3SDI refers to $\mathrm{N}_{2} \leftrightarrow \mathrm{I}_{2} \leftrightarrow 2 \mathrm{U}$ and 3SMI refers to $\mathrm{N}_{2} \leftrightarrow 2 \mathrm{I} \leftrightarrow 2 \mathrm{U}$,
where N_{2} is the native dimer state, I is the intermediate monomeric species, I_{2} is the intermediate dimeric species, and U is unfolded monomeric state. 3SDI and 3SMI are commonly considered as three-state (3S). It is found that 2 S interfaces are similar to protein cores and 3SMI interfaces resemble the monomer surfaces. [4] 2S and 3SMI dimerization were also studied by following the evolution of two identical 20 -letter residue chains within the framework of a lattice model, using Monte Carlo simulations. [5] It is found that folding of 2 S sequences depend on a significantly larger number of conserved amino acids than 3SMI sequences. The effects of the monomer and interface geometry on 2 S and 3 S association mechanism were also studied by the energetically minimally frustrated Gō model. [6] It is found that the native protein 3D structure is the major factor that governs the choice of binding mechanism.

Mei and colleagues investigated the importance of 2S and 3 S dimers using structural and folding data. [2] Apiyo and colleagues proposed (using 13 obligomers (multimers with permanent interfaces)) that small obligomers (molecular mass $<20 \mathrm{kDa}$) unfold through 2S. [7] On the other hand, large obligomers (molecular mass $>35 \mathrm{kDa}$) unfold through oligomeric intermediate (3SDI) and those with intermediate size unfold through monomeric intermediate (3SMI). Moreover, Levy and colleagues proposed (using 21 homodimers) that 2 S and 3SMI dimers can be effectively classified based on the ratio of intra-molecular/inter-molecular contacts and interface hydrophobicity. [6] Here, we created an extended dataset of 41 homodimers (2S: 25; 3SDI: 6; and 3SMI: 10) to design a methodology for the discrimination of 2S, 3SDI and 3SMI dimers using 3D structural properties.

Methods:

Dataset creation

We created a dataset consisting of 41 homodimer complex structures (2S: 25 ; 3SDI: 5 ; and 3SMI: 10) from Protein Databank (PDB). [8] The unfolding pathways for these dimers observed using thermodynamic experiments were obtained from literature (Table 1). The selected homodimers are at least 40 residues per monomer.

Analyses of 2S and 3S homodimers
 Interface area

The solvent accessible surface area (ASA) was computed using the program NACCESS. [9] The dimeric interface area (B) was calculated as $\triangle \mathrm{ASA}$ (change in ASA upon complex formation from monomer to dimer state). [10] We then calculated subunit interface area ($\mathrm{B} / 2$), due to the two-fold symmetry of homodimer complexes.

Interior, interface and exterior residues

Homodimer residues were classified into three categories (interior, interface and exterior) based on relative ASA. The percentage relative ASA was obtained by dividing the accessible surface area by the total surface area of a side-chain in an extended conformation in the tripeptide GXG. Exterior residues were defined as having a relative ASA $>5 \%$, interior residues were defined as having a relative ASA $<5 \%$ and interface residues were defined satisfying the conditions $\triangle \mathrm{ASA}>1 \AA^{2} \&$ relative ASA $<$ 5%. The 5% cut-off was optimized elsewhere by Miller et al., [11]

Fraction of interface to interior Hydrophobicity ($F_{h p}$) $\mathrm{F}_{\text {hp }}$ (Fraction of interface to interior hydrophobicity) was defined by the equation $\left(\mathrm{H}_{\text {int }}-\mathrm{H}_{\text {ext }}\right) /\left(\mathrm{H}_{\text {int }}-\mathrm{H}_{\text {ext }}\right.$), where $\mathrm{H}_{\text {int }}$ is interior hydrophobicity, $\mathrm{H}_{\text {inf }}$ is interface hydrophobicity and $\mathrm{H}_{\mathrm{ext}}$ is exterior hydrophobicity. The
individual hydrophobicity values were calculated using the equation $\Sigma n_{i} h_{i} / \Sigma n_{i}$, where n_{i} is the number of residue type i and h_{i} is hydrophobicity value (based on SES (solvent excluded surface) \& SAS (solvent accessible surface)) of type I, as described elsewhere. [12]

Small and large homodimers

By definition, small homodimers were defined as those with ML (monomer length) less than the dataset mean length (185 residues). By definition, large homodimers were defined as those with ML larger than the dataset mean length (185 residues).

Homodimers with small and large B/2

By definition, homodimers with small $B / 2$ were defined as those whose $B / 2$ is less than the dataset mean $B / 2$ (1424 \AA^{2}). By definition, homodimers with large $B / 2$ were defined as those whose $B / 2$ is larger than the dataset mean B/2 (1424 $\left.\AA^{2}\right)$.

Results:

Distribution of 2S and 3S in a Cartesian plane of monomer length and subunit interface area
Figure 1 shows the distribution of 2 S and 3 S in the Cartesian plane consisting of ML (monomer length) and $B / 2$ (subunit interface area). It shows that 76% of small proteins form 2 S and 60% of large proteins form 3 S homodimers. Figure 1 also shows that 68% of 2 S have large interface area and 45% of 3 S have small interface area. 2 S have ML in the range of 45-270 residues and 3 S have ML in the range of 70-850 residues. However, 3SMI lie within 90-380 residues and 3SDI lie within 70850 residues. 2 S and 3 S dimers have significantly different ML range ($p=0.05$ in F test). Nonetheless, 2 S and 3SMI have similar ML range ($\mathrm{p}=0.05$ in F test). The dataset mean ML is 185 residues. This lies between 2 S mean (125 residues) and 3 S mean (282 residues). Data also show that 2 S and 3 S ML means are different (p <0.05). The mean ML for 3SDI is 405 and this is much greater than the mean ML for 2S (125) and 3SMI (208).

The $\mathrm{B} / 2$ range for $2 \mathrm{~S}\left(650-2500 \AA^{2}\right)$ and $3 \mathrm{~S}(300-2317$ \AA^{2}) are overlapping and are not significantly different (p $=0.21$). However, 3SMI and 3SDI are distinguished by the $\mathrm{B} / 2$ range ($\mathrm{p}<0.05$). 3SMI having small $\mathrm{B} / 2$ range ($300-1550 \AA^{2}$) and 3SDI having large $\mathrm{B} / 2$ range ($1350-$ $2317 \AA^{2}$) are distinguished from each other. The dataset mean for $B / 2$ is $1424 \AA^{2}$, which lies between $2 S$ mean $\left(1509 \AA^{2}\right)$ and $3 S$ mean $\left(1239 \AA^{2}\right)$. Interestingly, the 3SMI mean $\left(1068 \AA^{2}\right)$ is close to 3 S mean $B / 2(p=0.25)$ and 3 SDI mean $\left(1705 \AA^{2}\right)$ is close to 2 S mean $\mathrm{B} / 2(\mathrm{p}=$ $0.35)$.

Bioinformation

In Figure 1, the distribution of 2 S and 3 S were divided into four regions (G1 to G4) based on the dataset mean of ML and B/2. Entries in G1 are small proteins with large $B / 2$ and entries in G4 are large proteins with small $B / 2$ (refer to methodology section for definition of small and large proteins). However, entries in G2 are small proteins with small $\mathrm{B} / 2$ and those in G3 are large proteins with large $\mathrm{B} / 2$. This grouping shows 84% of homodimers in G1 are 2 S and 66% of homodimers in G4 are 3S. Nevertheless, homodimers in G3 there are 44\% 2 S and $56 \% 3 \mathrm{~S}$. Homodimers in G2 have 67% 2S and $33 \% 3 \mathrm{~S}$. It should be observed that 3 S in G2 are solely 3SMI. The results show that 2 S and 3 S are distinctly and prevalently distinguished in G1 and G4 but not as much in G2 and G3. The distribution of 2 S and 3 S in regions G1 to G4 provide insight to their structural preference in terms of ML and $\mathrm{B} / 2$.

Exterior, interior and interface hydrophobicity in $2 S$ and $3 S$

Table 1 gives the hydrophobicity of interior, interface and exterior residues for 2 S , 3 SDI and 3 SMI. It also gives the mean hydrophobicity of interior, interface and exterior residues for $2 \mathrm{~S}, 3$ SDI and 3 SMI in the dataset. Very small 2 S (≤ 90 residues) have greater interface hydrophobicity compared to interior hydrophobicity. However, this is not true with very large $2 \mathrm{~S}(>90$ residues). It is also interesting to observe that majority of 3SMI have less interface hydrophobicity compared to interior hydrophobicity. Nonetheless, this is not true with a majority of 3 SDI. Table 1 shows that the mean interface hydrophobicity values satisfy a condition ($2 \mathrm{~S}>$ 3SDI >3 SMI). However, the mean interior hydrophobicity satisfy a different condition (2S > (3SDI $==3 \mathrm{SMI})$). The ratio of interface to interior hydrophobicity is ~ 1 for 2 S and 3SDI, while it is <1 for 3SMI.

$F_{h p}$ (Factor of interface to interior hydrophobicity) value in $2 S$ and $3 S$

Figure 1, shows that 92% of entries in G 1 have high $\mathrm{F}_{\text {hp }}$ value (>0.5) and 83% of entries in G4 have low $\mathrm{F}_{\text {hp }}$ value (<0.5). It also shows that 3 S in G 1 have high F_{hp}
value and 2 S in G 4 have low F_{hp} value. Interestingly, 75% of entries in G 2 have high $\mathrm{F}_{\text {hp }}$ value and 78% of entries in G3 have high F_{hp} value. Moreover, Figure 1 show that $91 \% 2 \mathrm{~S}$ in G1 have high F_{hp} value and $75 \% 3 \mathrm{~S}$ in G 4 have low $\mathrm{F}_{\text {hp }}$ value. However, $100 \% 3 \mathrm{~S}$ (2 entries) in G1 have high F_{hp} value and 100% 2S (2 entries) in G4 have low F_{hp} value. In $\mathrm{G} 2,75 \%$ of 2 S have high $F_{h p}$ value and 67% of 3 S have high $F_{h p}$ value. Nonetheless, 100% 3 S have high $F_{h p}$ value and 50% of 2 S have high $F_{h p}$ value in G3. The mean $F_{\text {hp }}$ value for 2 S and 3 SDI is 1 , while it is 0.5 for 3SMI. Thus, the distribution of 2 S and 3S in the G1 to G4 regions is described.

Discussion:

The mechanism of homodimer folding and binding has been investigated using denaturation experiments. [1452] 3 dimensional structures are also available for many of these homodimers with known folding and binding mechanisms (Table 1). The folding and binding homodimer data collected from the literature is classified into three $2 \mathrm{~S}, 3 \mathrm{SMI}$ and 3SDI. The study of homodimer folding and binding using energy models is computational intensive and time consuming. Alternatively, study on their folding and binding using structural data is found useful. [2] Recently, Mei and colleagues documented the differences between 2 S , 3SMI and 3SDI homodimers using 3S structure data. [2] The study provided structural insight to the mechanism of 2 S and 3 S folding. However, the analysis did not document parameters to differentiate 2 S , 3SMI and 3SDI homodimers using structural data. In this study, we study an extended dataset of homodimer complexes to distinguish 2 S and 3 S homodimers using structural features. Results show that 76% of small proteins are 2 S homodimers and 60% of large proteins are 3 S homodimers. Thus, protein size plays an important role in determining the pathways of homodimer folding and binding. The result also shows that 68% of 2 S have large subunit interface area and 45% of 3 S have small subunit interface area. These observations suggest the importance of protein size and subunit interface area in determining the mechanism of homodimer formation.

Figure 1: Correlation between monomer length (ML) and subunit interface area ($\mathrm{B} / 2$) for three groups of homodimers. 2S: two-state; 3SDI: three-state with dimeric intermediate; 3SMI: three-state with monomeric intermediate. The two dash lines through 185 aa and $1424 \AA^{2}$ represent mean monomer length and mean $\mathrm{B} / 2$ for all homodimers, respectively. They classify the dimers into four regions (G1, G2, G3 and G4). The distributions of 2S, 3SDI and 3SMI dimers are given for each region. The value within parentheses is hydrophobicity factor $\left(\mathrm{F}_{\text {hp }}\right)$, calculated by the equation $\left(\mathrm{H}_{\text {inf }}-\mathrm{H}_{\text {surf }}\right) /\left(\mathrm{H}_{\text {int }}-\mathrm{H}_{\text {surf }}\right)$, where $\mathrm{H}_{\text {inf }}$ is interface hydrophobicity, $\mathrm{H}_{\text {int }}$ is interior hydrophobicity and $\mathrm{H}_{\text {surf }}$ is surface hydrophobicity.

The distribution of 2 S and 3 S in the G1 and G4 regions of Figure 1 show difference between them based on protein size, subunit interface area and $F_{\text {hp }}$. In G1, 84\% dimers are 2 S and 92% of dimers have high $\mathrm{F}_{\mathrm{hp}}(>0.5)$. Thus, entries with high $F_{h p}$ are grouped in G1 and this region represents small proteins with large subunit interface area. Moreover, 91% of 2 S in G 1 have high F_{hp}. This implies that a majority of small proteins with large subunit interface area and high $F_{h p}$ are $2 S .3 S$ in G1 have high F_{hp} and this explains the presence of exceptional 3 S entries in G1. Similarly, 66% of dimers are 3 S and 83% of dimers have low $\mathrm{F}_{\mathrm{hp}}(<0.5)$ in G4. Thus, entries with low F_{hp} are grouped into G 4 and this region represents large proteins with small subunit interface area.

Furthermore, $75 \% 3 \mathrm{~S}$ in G 4 have low F_{hp}. 2 S in G 4 have low F_{hp} and this explains the presence of unusual 2 S entries in G4. Entries in G2 and G3 have a mixture of 2S and 3 S with low and high F_{hp} values. This is different to the distribution in G1 and G4. $100 \% 3 \mathrm{~S}$ and $50 \% 2 \mathrm{~S}$ in G3 have high $F_{\text {hp }}$ and thus dimers in G3 are not distinguished by their folding mechanisms using structural parameters. The mean F_{hp} for 2 S and 3 SDI is 1 , while it is 0.5 for 3SMI. The similarity between 2 S and 3SDI in $\mathrm{F}_{\text {hp }}$ is interesting. It implies that binding after folding displayed by 3SMI resembles the association of protein-protein complexes. [13] However, the cooperative folding-binding displayed by 2 S and 3SDI resembles a single-chain folding.

Bioinformation
by Biomedical Informatics Publishing Group
www.bioinformation.net
open access

Hypothesis

Table 1: Dataset of homodimeric proteins divided into three groups according to their unfolding pathways

Bioinformation

www.bioinformation.net

Hypothesis

 number of residue type i and h_{i} is ASA hydrophobicity factor (based on SES (solvent excluded surface) \& SAS (solvent accessible surface)) of residue type i from Pacios. [12]

Bioinformation

Thus, we show that small homodimers with large interface area and high F_{hp} are prevalently 2 S . Similarly, large homodimers with small interface area and low F_{hp} are prevalently 3 S . Hence, it is possible to distinguish 2 S and 3 S dimers using 3D structural data. However, small homodimers with small interface area and large homodimers with large interface area are not significantly distinguished into 2 S and 3 S using structural parameters $\mathrm{ML}, \mathrm{B} / 2$ and F_{hp}. It should be noted that the conclusion made in the report are based on a limited set of homodimers given in Table 1.

Conclusion:

The mechanisms of homodimer complexations have implications in drug discovery. However, elucidation of homodimer mechanism using unfolding experiments is difficult. Prediction of homodimer folding and binding using structural data has application in target validation. Here, we show that small proteins with large interface area and high F_{hp} form 2 S . We also show that large proteins with small interface area and low F_{hp} form 3 S . Therefore, it is feasible to differentiate 2 S and 3 S homodimers using structural data.

Acknowledgement:

Lei Li acknowledges Nanyang Technological University, Singapore for support.

References:

[1] K. E. Neet et al., Protein Sci. 3:2167 (1994) [PMID: 7756976]
[2] G. Mei, et al., Febs J 272:16 (2005) [PMID: 15634328]
[3] A. Mazzini, et al., Biochim Biophys Acta 1599:90 (2002) [PMID: 12479409]
[4] C. J. Tsai, et al., Protein Sci 6:1793 (1997) [PMID: 9300480]
[5] G. Tiana, et al., Proteins 49:82 (2002) [PMID: 12211018]
[6] Y. Levy, et al., Proc Natl Acad Sci U S A 101:511 (2004) [PMID: 14694192]
[7] D. Apiyo, et al., Biochemistry 40:4940 (2001) [PMID: 11305909]
[8] H. M. Berman, et al., Nucleic Acids Res 28:235 (2000) [PMID: 12037327]
[9] Hubbard, (1993). NACCESS, computer program, Department of Biochemistry and Molecular Biology, University College London, UK.
[10] S. Jones, et al., Proc Natl Acad Sci U S A 93:13 (1996) [PMID: 8552589]
[11] S. Miller, et al., Nature 328:834 (1987) [PMID: 3627230]
[12] L. F. Pacios, J Chem Inf Comput Sci 41:1427 (2001) [PMID: 11604044]

ISSN 0973-2063
Bioinformation 1(2): 42-49 (2005)
[13] L. Lo Conte, et al., J Mol Biol 285:2177 (1999) [PMID: 9925793]
[14] T. E. Wales, et al., Protein Sci 13:1918 (2004) [PMID: 15169951]
[15] M. E. Milla, et al., Biochemistry 33:1125 (1994) [PMID: 8110744]
[16] C. Steif, et al., Biochemistry 32:3867 (1993) [PMID: 8471599]
[17] R. Jana, et al., J Mol Biol 273:402 (1997) [PMID: 9344748]
[18] T. B. Topping, et al., J Mol Biol 342:247 (2004) [PMID: 15313621]
[19] Y. K. Mok, et al., Protein Sci 5:310 (1996) [PMID: 8745409]
[20] H. Liang, et al., Biochemistry 30:2772 (1991) [PMID: 2007116]
[21] J. Ruiz-Sanz, et al., Eur J Biochem 271:1497 (2004) [PMID: 15066175]
[22] T. B. Topping, et al., J Mol Biol 335:1065 (2004) [PMID: 14698300]
[23] J. R. Stone, et al., J Biol Chem 277:5448 (2002) [PMID: 11741982]
[24] S. K. Grant, et al., Biochemistry 31:9491 (1992) [PMID: 1390732]
[25] K. Bajaj, et al, Biochem J 380:409 (2004) [PMID: 14763902]
[26] C. M. Johnson, et al., Biochemistry 31:9717 (1992) [PMID: 1390748]
[27] A. Tamura, et al., J Mol Biol 249:636 (1995) [PMID: 7783216]
[28] L. M. Gloss, et al., J Mol Biol 312:1121 (2001) [PMID: 11580254]
[29] D. E. Timm, et al., Biochemistry 33:4667 (1994) [PMID: 8161524]
[30] X. Li, J Biol Chem 272:27324 (1997) [PMID: 9341182]
[31] D. H. Kim, et al., Protein Sci 10:741 (2001) [PMID: 11274465]
[32] H. W. Dirr, et al., Biochem Biophys Res Commun 180 :294 (1991) [PMID: 1930226]
[33] L. A. Wallace, et al., Biochemistry 37:5320 (1998) [PMID: 9548764]
[34] W. Kaplan, et al., Protein Sci 6:399 (1997) [PMID: 9041642]
[35] N. Ahmad, et al., Biochemistry 37:16765 (1998) [PMID: 9843447]
[36] V. Mainfroid, et al.,J Mol Biol 257:441 (1996) [PMID: 8609635]
[37] Z. W. Yang, et al., Protein Sci 13:830 (2004) [PMID: 14978314]
[38] J. Ramstein, et al., J Mol Biol 331:101 (2003) [PMID: 12875839]
[39] L. Zhu, et al., J Mol Biol 328:235 (2003) [PMID: 12684011]
[40] J. K. Grimsley, et al., Biochemistry 36:14366 (1997) [PMID: 9398154]

Bioinformation
www.bioinformation.net
open access
[41] C. Motono, et al., Biochemistry 38:1332 (1999) [PMID: 9930995]
[42] G. Mei, et al., Biochemistry 36:10917 (1997) [PMID: 9283082]
[43] S. M. Doyle, et al., Biochemistry 39:11667 (2000) [PMID: 10995234]
[44] M. G. Mateu, J Mol Biol 318:519 (2002) [PMID: 12051856]
[45] R. Ruller, et al., Arch Biochem Biophys 411:112 (2003) [PMID: 12590929]
[46] F. Malvezzi-Campeggi, et al., Arch Biochem Biophys 370:201 (1999) [PMID: 10510278]
[47] M. E. Stroppolo, et al., Arch Biochem Biophys 377: 215 (2000) [PMID: 10845696]
[48] J. Malecki, et al., Eur J Biochem 243: 660 (1997) [PMID: 9057829]
[49] A. Aceto, et al., Biochem J 285:241 (1992) [PMID: 1637306]
[50] Y. C. Park, et al., J Biol Chem 273:18052 (1998) [PMID: 9660761]
[51] P. Wojciak, et al., Int J Biol Macromol 32:43 (2003) [PMID: 12719131]
[52] Y. Liang, et al., J Biol Chem 278:30098 (2003) [PMID: 12771138]
[53] K. Henrick, et al., Trends Biochem Sci 23:358 (1998) [PMID: 9787643].

Edited by SANDEEP Kumar Citation: Li et al., Bioinformation 1(2): 42-49 (2005) License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.

