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Though the sequence of the genome within each eukaryotic cell is essentially fixed, it exists within a complex and changing

chromatin state. This state is determined, in part, by the dynamic binding of proteins to the DNA. These proteins—includ-

ing histones, transcription factors (TFs), and polymerases—interact with one another, the genome, and other molecules to

allow the chromatin to adopt one of exceedingly many possible configurations. Understanding how changing chromatin

configurations associate with transcription remains a fundamental research problem. We sought to characterize at high spa-

tiotemporal resolution the dynamic interplay between transcription and chromatin in response to cadmium stress. Whereas

gene regulatory responses to environmental stress in yeast havebeen studied, how the chromatin state changes andhow those

changes connect to gene regulation remain unexplored. By combining MNase-seq and RNA-seq data, we found chromatin

signatures of transcriptional activation and repression involving both nucleosomal and TF-sized DNA-binding factors. Using

these signatures, we identified associations between chromatin dynamics and transcriptional regulation, not only for known

cadmium response genes, but across the entire genome, including antisense transcripts. Those associations allowed us to

develop generalizable models that predict dynamic transcriptional responses on the basis of dynamic chromatin signatures.

[Supplemental material is available for this article.]

Organisms require transcription to produce the proteins necessary
for biological functions like growth, replication, repair, and re-
sponses to environmental changes. Transcription is tightly regu-
lated by the intricate interplay of myriad DNA-binding factors,
including transcription factors (TFs), polymerases, and the histone
octamers at the core of a nucleosome. The proteins and complexes
involved in transcription, alongwith themanyothers that interact
with DNA, determine the chromatin landscape. How these con-
stituents of the chromatin bind, unbind,move, and interact to reg-
ulate transcription remains an open area of research.

Numerous studies have made major strides in characterizing
the roles of protein complexes involved in transcription.
Chromatin immunoprecipitation (ChIP) has been used to assay
binding sites of hundreds of proteins on a genomic scale, includ-
ing factors involved in SAGA-dominated stress-related pathways
and TFIID-dominated housekeeping pathways (Venters et al.
2011). Likewise, studies have probed proteins involved in the for-
mation of the pre-initiation complex required for transcription ini-
tiation (Rhee and Pugh 2012). The role of numerous chromatin
remodelers and their interactions have been characterized in
detail through ChIP, proteomics, and gene expression analysis of
deletion mutants (Krogan et al. 2006; Mavrich et al. 2008;
Shivaswamy and Iyer 2008; Lenstra et al. 2011; Weiner et al.
2012, 2015). However, limitations in these methods, including
lack of antibodies for ChIP or viability of deletion strains, are often
constraining. Analysis can be complicated by the difficulty in dis-
entangling direct chromatin effects from the pleiotropic action of

themany factors and remodelers that impinge upon transcription,
often indirectly. These and other issues contribute to our still lim-
ited understanding of the dynamic interplay of the chromatin
landscape and transcription.

An alternative approach has been to profile chromatin occu-
pancy in a protein-agnostic manner using nuclease digestion.
Digestion by a nuclease, such as micrococcal nuclease (MNase),
provides a complementary perspective to understanding chroma-
tin occupancy by probing accessibility at base-pair precision.
Recent genome-wide mapping studies have used nucleosome-
sized MNase-seq fragments to characterize the dynamics of nucle-
osomes under various conditions, including the cell cycle (Nocetti
and Whitehouse 2016), DNA damage (Tripuraneni et al. 2021),
and heat shock (Teves and Henikoff 2011). Additionally, studies
have attempted to understand the roles of the smaller DNA-bound
factors that correspond to subnucleosomal MNase-seq fragments
(Henikoff et al. 2011; Teves and Henikoff 2011; Belsky et al.
2015; Chereji et al. 2017; Kubik et al. 2017; Ramachandran et al.
2017; Brahma and Henikoff 2019). These studies highlight the
challenge of characterizing the vast heterogeneity of—and interac-
tions among—proteins and complexes involved in DNA-mediated
processes, including transcription.

Factor-agnostic chromatin occupancy profiles from MNase
provide an opportunity to link changes in chromatin at nucleotide
resolution with transcriptional regulation, especially regulation
induced by environmental perturbations. Here, we utilize a high-
resolution spatiotemporal stress response data set to elucidate
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the relationship between chromatin organization and gene
expression by developing general strategies and models to analyze
chromatin dynamics relative to changes in transcription, genome-
wide.

Results

Paired-end MNase-seq captures high-resolution chromatin

occupancy dynamics associated with transcription during

cadmium stress

We sought to precisely characterize the dynamics of chromatin or-
ganization in yeast cells responding to cadmium stress, while
simultaneously monitoring the large-scale changes to their tran-
scriptional program. A nucleotide-resolution view of chromatin
dynamics would allow us to associate and infer relationships be-
tween changes in transcription and in chromatin occupancy, at
two different levels: the occupancy and organizational structure
of nucleosomes, and the occupancy of smaller transcription-relat-
ed proteins.

Yeast cells were exposed to cadmium and sampleswere collec-
ted over a two-hour time course. Chromatin occupancy and
positioning dynamics were profiled using paired-end MNase-seq
to map DNA-binding factors at base-pair resolution (Fig. 1A; Sup-
plemental Method S1). Concurrently, transcripts were interrogat-
ed using strand-specific total RNA-seq (Fig. 1A; Supplemental
Method S1).

To evaluate our data and methods, we considered the well-
studied stress response gene HSP26, whose role is to facilitate the
disaggregation of misfolded proteins (Cashikar et al. 2005).
Hsp26 has been implicated in responses tomany stress conditions,
including heat shock (Franzmann et al. 2008; Benesch et al. 2010),
acidity (Kawahata et al. 2006), sulfur starvation (Pereira et al.
2008), and metal toxicity (Momose and Iwahashi 2001; Hosiner
et al. 2014). Furthermore, several transcription factors, including
Hsf1, Met4, and Met32, have been found to bind in the well-char-
acterized promoter of HSP26 (Susek and Lindquist 1990; Chen
and Pederson 1993; Treger et al. 1998; Boy-Marcotte et al. 1999;
Carrillo et al. 2012). Given this context, HSP26 serves as a useful
test case because we understand many aspects of its local chroma-
tin dynamics when it is activated under stress conditions.

We observed significant changes in the chromatin around
the transcription start site (TSS) of HSP26 (Fig. 1B), coinciding
with an increase in its transcript level. Upstream, in the promoter
of HSP26, nucleosome-sized fragments of length 144–174 bp are
replaced by small fragments of length <100 bp. In the gene body
ofHSP26, nucleosome-sized fragments become “fuzzy,” increasing
in positional and fragment-length variability. Nucleosomes up-
stream of HSP26 are known to be evicted (Lee et al. 2004) and re-
placed by smaller factors associated with transcription initiation,
pushing gene body nucleosomes downstream (Fig. 1C). As RNA
polymerases begin active transcription, they displace and evict nu-
cleosomes in their path (Lee et al. 2004; Schwabish and Struhl
2004; Kulaeva et al. 2010), a phenomenon apparent in our data
in the significant loss of nucleosomal fragments within the gene
body of HSP26.

To quantify these kinds of complex transcription-associated
chromatin dynamics genome-wide, we defined two scores for
each gene: “small fragment occupancy,” counting the number of
small fragments appearing in its promoter, and “nucleosome dis-
organization,” using information entropy to summarize the disor-
ganization of the first three nucleosomes within its gene body.

Additionally, to compensate for variations in RNA stability, we
used published mRNA decay rates (Miller et al. 2011; Geisberg
et al. 2014; Presnyak et al. 2015) to estimate transcription rates
from our measured transcript levels.

Using these measures, we were able to succinctly describe re-
lationships between chromatin dynamics and transcription in a
range of genes, from activated HSP26 (Fig. 1C), to repressed
RPS7A (Supplemental Fig. S1), to unchangingCKB1 (Supplemental
Fig. S2). Averaging these twomeasures of the chromatin across the
time course and then ranking all genes by the resulting “combined
chromatin” score, we observed large-scale coordination between
chromatin and transcription across a significant proportion of
the genome (Fig. 2A,B).

Globally, log fold-changes in transcription show a significant
positive Pearson’s correlation with changes in each of our chroma-
tinmeasures: 0.49 for small fragment occupancy (Fig. 2C); 0.61 for
nucleosome disorganization (Fig. 2D); and 0.68 for combined
chromatin (Supplemental Fig. S3A). The high correlation between
combined chromatin and transcription, along with a lower 0.33
correlation between small fragment occupancy and nucleosome
disorganization (Supplemental Fig. S3B), suggest that small frag-
ment occupancy and nucleosome disorganization provide non-
redundant information for statistically associating changes in
chromatin to changes in transcription.

Changes in nucleosome and small factor occupancy at TSSs

recapitulate genome-wide transcriptional response to cadmium

To determine whether we could recapitulate the known response
to cadmium exposure from chromatin dynamics alone, we per-
formedGeneOntology (GO) enrichment analysis of the 300 genes
with the highest and lowest values for each chromatin measure
(Supplemental Method S2; Supplemental Fig. S4 shows each repli-
cate separately), with significance expressed in terms of false
discovery rate (FDR). We identified regulation pathways known
to be involved in cadmium response and validated these chroma-
tin-identified pathways using the literature, as well as with a
separate GO enrichment analysis based only on changes in tran-
scription (Supplemental Tables S1, S2).

One of the established responses for cells undergoing stress
involves shutting down ribosomal and other translation-related
pathways (Hosiner et al. 2014; Reja et al. 2015; Vinayachandran
et al. 2018). Using our simple chromatin measures, ribosomal
and translation-related GO terms emerged as the most signifi-
cantly down-regulated, with FDR values often much lower than
10−10 (Supplemental Fig. S5A).

Likewise, pathways known to be activated under cadmium
exposure are recovered as the most significantly up-regulated
by our chromatin scores, albeit with FDR values above 10−4

(Supplemental Fig. S5B). Consistent with previous cadmium and
heavy metal stress response studies (Hartwig 2001; Fauchon et al.
2002; Faller et al. 2005) and our own transcriptional GO enrich-
ment analysis (Supplemental Table S2), two major cadmium-
response pathways were detected through changes in the chroma-
tin: those related to sulfur processing and to protein refolding.
Whereas small fragment occupancy identified sulfate assimilation
and stress response terms with the highest significance (FDR
10−3.9), nucleosome disorganization identified protein refolding
and sulfur amino acid metabolic process terms. In conclusion,
our different chromatin measures are sufficient to recover the
high-level stress response pathways induced and repressed by yeast
cells exposed to cadmium.
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Figure 1. Paired-end MNase-seq and stranded RNA-seq capture high-resolution chromatin occupancy and transcriptome state throughout a perturba-
tion time course. (A) Examples of MNase-seq and RNA-seq data. Top: Depiction of nucleosomes flanking a small (subnucleosomal) binding factor, and
fragments that result upon digestion by MNase. Paired-end MNase-seq fragments appear in the typhoon plot based on their center position and length.
Bottom: Strand-specific RNA-seq is plotted as the log of the pileup, the number of total RNA-seq reads at each genomic position, separately mapped to
Watson (blue) and Crick (red) strands. RNA-seq levels over the time course are plotted using progressive coloring for each strand. (B) Beneath time course
RNA-seq data, four typhoon plots show dynamics of MNase-seq data near HSP26 (gray shading highlights the [–200,+500] region around the TSS that we
analyze for all genes). Nucleosomes in the promoter region are replaced by small fragments, and gene body nucleosomes disorganize. Small fragments
appear aroundmotifs for known regulators Hsf1 (red triangle), Met4 (green triangle), andMet32 (obscured by green triangle). (C) Plots of processed chro-
matin metrics around HSP26 over time. Top: Heat map of differential cross-correlation values through the time course, summarizing how gene body nu-
cleosomes initially shift downstream and eventually disappear, and how promoter nucleosomes are rapidly displaced as small fragments accumulate.
Higher values (more red) indicate higher cross-correlation with subnucleosomal fragments; lower values (more blue) indicate a stronger signal for nucle-
osomal fragments. Bottom: Line plot summarizing the change in occupancy of promoter small fragments (orange), disorganization of gene body nucle-
osomes (turquoise), and transcription rate (purple) of HSP26 over the time course.
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High-resolution time course recovers cascading induction

of sulfur pathways

Because of the significant involvement of sulfur assimilation in the
cell’s response to cadmium, we next sought to detail changes in
the chromatin related to the activation of sulfur pathways. The

heavy demand for sulfur arises because it is required for the biosyn-
thesis of the cadmium-chelating glutathione (Fauchon et al.
2002). Sulfur pathways are activated throughMet4 and its binding
complex, comprised of cis-binding factors Cbf1 andMet31/Met32,
and accessory factorMet28 (Kuras et al. 1996; Blaiseau andThomas
1998). Met4 is negatively regulated through ubiquitination by

A

C D

B

Figure 2. Cadmium induces genome-wide chromatin dynamics that correlate well with genome-wide transcriptional dynamics. (A) Heat maps of
changes in chromatin occupancy measures and transcription rate for all genes and all times, relative to 0 min (left: promoter small fragment occupancy;
middle: gene body nucleosome disorganization; right: transcription rate). Genes (rows) are sorted by combined chromatin score. (B) Detailed heat maps of
the 20 genes whose combined chromatin scores increase (top) or decrease (bottom) most. (C ) Scatterplot of relationship between change in small fragment
occupancy and log2 fold-change in transcription rate, each averaged over the time course. (D) Scatterplot of relationship between change in nucleosome
disorganization and log2 fold-change in transcription rate, each averaged over the full time course.
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SCFMet30 (Fig. 3A; Kaiser et al. 2000; Kuras et al. 2002; Barbey et al.
2005). In our study, we were able to identify novel features of the
chromatin during the cascade of events that regulate sulfur meta-
bolic pathways (Fig. 3B): (1) the activation of the Met4 complex
through its cofactors; (2) the activation of the sulfur pathways by

Met4; and (3) the subsequent down-regulation of Met4 activity
by SCFMet30, evident in diminished transcription of Met4-regulat-
ed genes.

Upon cadmium-induced deubiquitination of Met4 (Barbey
et al. 2005), Met4 becomes functionally active and induces its

A

C

D

B

Figure 3. Chromatin and transcription dynamics detail Met4 and Met32 functional activation, induction of sulfur genes, and subsequent regulation.
(A) The Met4 complex activates cascading sulfur pathways required for cadmium chelation and also activates its negative regulator SCFMet30. (B) Heat
map of changes in chromatin occupancy and transcription rate for the sulfur pathway genes. Cofactors of the Met4 complex exhibit chromatin changes
in small fragment occupancy (forMET28) and nucleosome disorganization (forMET32). Sulfur sparing isoforms occur as isoenzyme pairs; members of each
pair exhibit inverse chromatin dynamics (most pronounced between PDC6 and PDC1). Nearly all of the sulfur assimilation pathway members show an in-
crease in small fragment occupancy and nucleosome disorganization. (C) Scatterplot of average change in small fragment occupancy and average change
in nucleosome disorganization. Chromatin dynamics in sulfur-related genes may manifest primarily in a single measure of the chromatin, as with MET32
(blue triangle), MET30 (gray circle), and PDC6/PDC1 (violet crosses), or in both small fragment occupancy and nucleosome disorganization, such as with
the sulfur assimilation genes (orange diamonds). (D) Line plot of the change in nucleosome disorganization for the activator geneMET32, regulator gene
MET30, and sulfur assimilation genes (orange line represents mean and light orange region represents full range of values across all seven genes).
Nucleosome disorganization for Met4 complex cofactorMET32 peaks at 7.5 min whereas targets of theMet4 complex peak later: sulfur assimilation genes
within 15–30 min and the negative regulator MET30 more gradually.
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own cofactors (Barbey et al. 2005; McIsaac et al. 2012) and,
through feedforward regulation between Met4 and Met32, acti-
vates sulfur pathway genes (Carrillo et al. 2012; McIsaac et al.
2012).We observed this activation not only in increased transcrip-
tion within 7.5 min for MET32 and MET28 but also in increased
nucleosome disorganization for MET32 (Supplemental Fig. S6)
and increased small fragment occupancy for MET28.

Although Met31 shares a binding motif and largely overlaps
in functionwithMet32 (Blaiseau et al. 1997), it is not as prominent
as Met32 in the activation of sulfur pathways (Carrillo et al. 2012;
McIsaac et al. 2012; Petti et al. 2012). In response to cadmium, the
transcription ofMET31 is repressed, but the chromatin around the
gene exhibits an unexpected behavior in light of this: although
MET31 expression is repressed, its nucleosomes becomehighly dis-
organized. Leveraging our stranded RNA-seq data, we noticed sig-
nificantly increasing antisense transcription over the time course
(Supplemental Fig. S7). Additionally, downstream of the transcrip-
tion end site (TES) ofMET31, small fragments become enriched at
a Met31/Met32 binding motif. Taken together, our data suggest
that MET31 is being regulated by noncoding RNA (ncRNA) anti-
sense transcription.

Following activation of the Met4 complex (Carrillo et al.
2012;McIsaac et al. 2012), small fragment occupancy, nucleosome
disorganization, and transcription increase for the seven sulfur as-
similation genes and many downstream genes (Fig. 3B; average ef-
fect on the chromatin measures in Fig. 3C), most within 15 min.
Additionally, theMet4 complex induces a sulfur-sparing transcrip-
tional-switch between functionally similar isoenzymes to indirect-
ly contribute sulfur required for chelation. This switch includes
replacing sulfur-rich Pdc1 with sulfur-lacking Pdc6, Ald6 with
Ald4, and Eno2 with Eno1 (Fauchon et al. 2002). We see evidence
of these substitutions between isoenzyme pairs in our data, the
most evident between the small fragment occupancy of PDC6
(Supplemental Fig. S8) and PDC1.

Following induction of the sulfur pathways, the activating
roles of Met32 and Met4 diminish upon regulation by SCFMet30

(Patton et al. 2000; Ouni et al. 2010). This regulation is observed
in our data in the gradually increasing transcription and nucleo-
some disorganization of MET30 throughout the time course, as
well as in how the nucleosome disorganization scores of MET32
andmany of the sulfur assimilation genes gradually diminish after
an early peak (Fig. 3B,D).

Together, these results and analyses complement established
transcriptional and ChIP-based studies by detailing chromatin dy-
namics of the sulfur metabolic pathways and identifying a poten-
tially novel regulatory mechanism for MET31 through antisense
transcription.

Cadmium induces chromatin dynamics that exhibit distinct

temporal clusters, including ones linked to antisense transcription

We selected the 500 genes exhibiting the greatest average increase
in either small fragment occupancy or nucleosome disorganiza-
tion and performed hierarchical clustering on the resulting
832 genes (fewer than 1000 because 168 were in both sets)
(Supplemental Method S3). Clustering revealed distinct temporal
patterns in small fragment occupancy and nucleosome disorgani-
zation among the genes (Fig. 4A). GO enrichment analysis identi-
fied pathways relating to sulfur assimilation in cluster 1 and
protein refolding in cluster 2, suggesting that chromatin changes
in these pathways differ in their temporal pattern. Clusters 6–8 re-
veal unexpected anticorrelated relationships between chromatin

and transcription for genes in these clusters. For genes in cluster
6, some of the anticorrelation can be attributed to antisense tran-
scription (Fig. 4B), as previously highlighted in MET31. However,
in cluster 7, MCD4, which codes for an endoplasmic reticulum
membrane protein, counterintuitively exhibits chromatin with
nucleosomes that become more organized despite increased sense
and no evident antisense transcription (Supplemental Fig. S9).

Genome-wide, we observed that antisense transcriptionman-
ifests itself with minimal apparent connection to sense transcrip-
tion (Fig. 4C). Nevertheless, we did detect two general
phenomena, each consistent with prior studies. First, as also seen
in other environmental conditions (Wilhelm et al. 2008; Kim
et al. 2010; Till et al. 2018), yeast cells undergoing cadmium stress
induce pervasive antisense transcription. As the time course pro-
gresses, more and more genes exhibit increased levels of antisense
transcription (Fig. 4D). Even among the 3199 genes withminimal-
ly changing sense transcription, 542 exhibit at least a fourfold in-
crease in antisense transcription (Fig. 4E). Second, previous studies
have found antisense transcription can be associated with either
repression or activation of target genes (Kornienko et al. 2013;
Swamy et al. 2014; Vance and Ponting 2014; Till et al. 2018),
and we observed the same phenomenon. Under cadmium stress,
we identified 200 genes with a greater than fourfold increase in an-
tisense transcripts and a fourfold change in sense transcripts.
Among those, 104 had repressed sense transcription—for exam-
ple, MET31 and UTR2, which has been linked with endoplasmic
reticulum stress (Supplemental Fig. S10; Miller et al. 2010)—but
96 had activated sense transcription, including the gene
YBR241C (Supplemental Fig. S11), coding for a vacuole localiza-
tion protein (Wiederhold et al. 2009).

Motif analysis identifies transcription factors with largest changes

in binding

To explore small fragment occupancy more closely, we identified
peaks in the signal and quantified the change in binding at each
peak over 60min (Supplemental Fig. S12A).We ran themotif find-
er FIMO (Grant et al. 2011) near peak locations to associate peaks
with TFs and then computed the average change in binding occu-
pancy for each TF (Supplemental Fig. S12B). TFs exhibiting the
greatest average increase in occupancy include not only the sulfur
pathway activators Met4 and Met32, general stress regulators
Msn2 and Msn4, and glycolytic activators Gcr1 and Gcr2, but
also the iron homeostasis regulators Aft1 and Aft2. Genes with
the greatest increase in both Aft1 and Aft2 binding include
SER33, LEE1, and ENB1.

For SER33, a gene involved in Ser andGly biosynthesis (Albers
et al. 2003), we see evidence of Aft1/Aft2 binding near Gcr2 in the
promoter (Supplemental Fig. S12C). Whereas Gcr2 is known to in-
teractwithGcr1, an established regulator of SER33 (Hu et al. 2007),
Aft1 and Aft2 have yet to be identified as regulators for SER33
(Supplemental Fig. S12D). Additionally, we see enrichment of
small fragments near the motifs for known regulators Met32 and
Met4, previously identified through ChIP (Carrillo et al. 2012).
Similarly strong evidence of Aft1/Aft2 binding is found in the pro-
moters of LEE1 (Supplemental Fig. S13A), a zinc-finger of un-
known function, and ENB1 (Supplemental Fig. S13B), a ferric
enterobactin transmembrane transporter (Heymann et al. 2000).
ENB1 has only been identified to be regulated by Aft1 throughmi-
croarrays (Hu et al. 2007). Whereas the iron homeostasis pathways
have been previously implicated in heavy metal stress conditions
(Hosiner et al. 2014; Halimaa et al. 2019), our analysis further
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elucidates the binding dynamics of regulators Aft1 and Aft2 under
cadmium stress and, more generally, demonstrates the richness of
small fragment signals in MNase-seq data.

Chromatin occupancy changes are predictive of changes in gene

expression

Finally, we sought to develop a model to quantify the relationship
between our measures of chromatin dynamics and changes in
transcription. We used Gaussian process regression to predict the
transcription at each time point based solely on chromatin dy-
namics and initial transcript levels (at 0 min, before cadmium
treatment). We constructed four models to evaluate the inclusion
of variousmeasures of the chromatin, culminating in a “full”mod-
el that incorporates additional occupancy measures, nucleosome
positional shifts (Supplemental Fig. S14; Supplemental Method
S4), and chromatin measures relative to called antisense tran-
scripts (Supplemental Fig. S15).

Under 10-fold cross-validation, we evaluated each model us-
ing the coefficient of determination (R2), reflecting the proportion
of variance eachmodel is able to explain. For each feature-contain-
ingmodel, prediction performance gradually worsens through the
time course as genes’ transcript levels increasingly diverge from
their initial values (Fig. 5A). However, models that include chro-
matin features consistently outperform a model that just uses ini-
tial transcript levels (“RNA-only”), with the gap growing over time.
Nucleosome disorganization is more informative than small frag-

ment occupancy, especially at intermediate time points; consis-
tent with our other results, combining both measures provides
more predictive power than either alone. The full model does
not add much to this combination at 7.5 and 15 min (Fig. 5B)
because early predictions are driven mainly by initial transcript
levels. However, by 30 min (Fig. 5C), the full model begins to out-
perform all other models, maintaining an R2 of 0.44 even 2 h after
exposure of the cells to cadmium (Fig. 5D).

Although our models cannot ascertain causal links between
changes in chromatin and transcription, and although they use
measures that do not fully characterize the chromatin state, they
nevertheless provide strong evidence that a large proportion of
the transcriptional state of the cell can be predicted from simple
measures of its chromatin state, even after significant environmen-
tal perturbation.

Discussion

As this study demonstrates, MNase digestion is a powerful tool to
explore the chromatin landscape, surveying the occupancy of all
DNA-binding factors across the genome, without regard to their
identities. It provides an alternative to ChIP-based approaches
which use an antibody to ensure the identity of a single factor
whose occupancy is being surveyed. Because thousands of differ-
ent factors bind to a cell’s genome, each approach has its limita-
tions: ChIP cannot easily scale to surveying the full chromatin

A B D
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Figure 4. Small fragment occupancy in the promoter and nucleosome disorganization in the gene body reveal timing of stress response pathways and
patterns of antisense transcription. (A) Hierarchical clustering of 832 genes (union of the 500 with greatest increase in average small fragment occupancy
and the 500 with greatest increase in average nucleosome disorganization). Clusters 6–8 contain genes exhibiting anticorrelated chromatin dynamics.
(B) Median (black dot) and interquartile range (red bar) of antisense transcript levels for genes within each cluster across the time course. Cluster 6 genes
display a marked increase in antisense transcripts, perhaps explaining why the cluster exhibits increased nucleosome disorganization despite decreased
small fragment occupancy in panel A. (C) Distribution of the log2 fold-change in sense transcription rate against the log2 fold-change in antisense tran-
scripts from 0–120 min. Antisense transcripts are enriched genome-wide by 120 min. (D) Distribution of the log2 fold-change in antisense transcripts
for each time point following 0 min. Antisense transcripts monotonically increase throughout the time course. (E) Counts of genes that exhibit decreased,
unchanged, and increased sense and antisense transcripts from 0–120 min. Genes in each category of sense transcription exhibit positively skewed enrich-
ment of antisense transcripts.
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landscape, let alone doing so under dynamic conditions, whereas
MNase digestion cannot easily determine the identities of the
bound factors it detects.

MNase digestion characterizes nucleosomes very effectively,
owing to their high abundance and distinctively sized longer
fragments, but using the smaller fragments to profile the TFs
and complexes that regulate gene expression is a more challeng-
ing, open problem. Motif analysis, along with prior studies
exploring the dynamics of various individual promoter-binding
factors including TFs, general TFs, polymerases, mediator, SAGA,
TFIID, and chromatin remodelers (Huisinga and Pugh 2004;
Shivaswamy and Iyer 2008; Venters et al. 2011; Rhee and Pugh
2012; Weiner et al. 2012, 2015; Reja et al. 2015; Chereji et al.
2017; Vinayachandran et al. 2018), provided us with useful con-
text to interpret the dynamics of small fragments in our MNase-
seq data, such as in our characterizations of HSP26 (Fig. 1B,C),
the sulfur pathways (Fig. 3), and the iron homeostasis regulators
Aft1/Aft2 (Supplemental Fig. S12). Development of methods

that facilitate further interpretation of small fragments will be
an important future direction.

In our analysis of theMet4 cofactor geneMET31, we detected
chromatin changes linked with increased antisense transcription,
potentially explaining how its sense transcription is regulated.
Moreover, we observed pervasive antisense transcription under
cadmium stress (Fig. 4C–E), and although this has previously
been shown to occur under a variety of environmental perturba-
tions (Camblong et al. 2007; Toesca et al. 2011; Nadal-Ribelles
et al. 2014; Swamy et al. 2014), we were able to characterize rela-
tionships between sense and antisense transcription with regula-
tory insight from the perspective of the local chromatin
landscape. We identified antisense transcripts for 667 genes.
Incorporating chromatin measures relative to the antisense tran-
scripts of these genes improved ourmodel (marginally) for predict-
ing sense transcription (Fig. 5A). This benefit could be further
explored by narrowing in on the effect size of these antisense-relat-
ed chromatin measures and by examining the expression of the

A

C

B

D

Figure 5. Chromatin occupancy dynamics are predictive of gene expression. (A) Comparison of the performance of each GPmodel using the coefficient
of determination, R2. The full model incorporating all chromatin features and initial transcript level outperforms all other models after 15 min. Later time
points rely less on initial transcript level for prediction, so the statistical benefits of chromatin features become more evident over time (compared to RNA-
only baseline). (B) Comparison between true and predicted log2 transcript level for the full model after 7.5 min. Most genes are well predicted using 0 min
transcript level. (C) Full model predictions at 30min. Predictions remainwell correlated, but less than at 7.5min. (D) Fullmodel predictions at 120min. After
two full hours have elapsed, transcript level predictions have become a bit less correlated, but still, R2 remains 0.44.
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individual genes that appear to have a relationship with antisense
transcription.

Using just the initial transcript level and simple measures of
chromatin dynamics, our regression model is able to predict the
level of sense transcript with an R2 of at least 0.44, even 2 h after
cadmium exposure (Fig. 5A). This model can be extended in
multiple directions. We can further quantify the chromatin by in-
cluding additional classes of fragments, by computing new mea-
sures of chromatin dynamics, and by considering chromatin
beyond 200 bp of a promoter and the first 500 bp of a gene
body. Additionally, our data could be modeled with other statisti-
cal methods including generalized linear models, deep neural net-
works, or random forests. This model and its predictions serve as a
baseline showing the potential modeling opportunities and rich
statistical power of MNase-derived time-series chromatin data.

Methods

Yeast strain

The yeast strain used in this study has the W303 background with
the genotype: MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1,
his3-11,15.

Growing and sampling cells over the time course

Cells were grown asynchronously in YEPD at 30°C to an OD600 of
0.8. Immediately before the addition of CdCl2, one sample was re-
moved and cross-linked with formaldehyde to a final concentra-
tion of 1% for MNase-seq, and another was pelleted and flash-
frozen for RNA-seq; these represent time 0. After the addition of
CdCl2 to a final concentration of 1 mM, samples were taken at
7.5 min, 15 min, 30 min, 60 min, and 120 min, and processed
in the above manner, respectively, in preparation for MNase-seq
and RNA-seq. All experiments were repeated independently as bi-
ological replicates. The CdCl2 concentration of 1 mM was chosen
to study acute cellular response to cadmium (cells do not grow at
this concentration [Supplemental Fig. S16]).

Preparing chromatin

Cells were resuspended with 20mL of buffer Z (0.56M sorbitol, 50
mM Tris at pH 7.4) and 14 µL of β-ME, and 0.5 mL of a 10 mg/mL
solution of zymolyase (Sunrise Science Products) prepared in buff-
er Z was added. Samples were incubated for 30 min at 24°C with
shaking. Cells were centrifuged at 1500 rpm for 6 min at 4°C and
then resuspended in 2.5 mL of NP buffer (1 M sorbitol, 50 mM
NaCl, 10 mM Tris at pH 7.4, 5 mM MgCl2, 1 mM CaCl2), supple-
mented with 0.5 mM spermidine, 0.007% β-ME, and 0.075% NP-
40. To determine the best digestion conditions, a four-step titra-
tion of 15 U/µL MNase (Worthington) was added to 400 µL of
zymolyase-treated cells (Supplemental Fig. S17). Samples were in-
verted to mix and digested on the benchtop for 20 min. The reac-
tion was halted by adding 100 µL of stop buffer (5% SDS, 50 mM
EDTA). Next, Proteinase K was added to a 0.2mg/mL final concen-
tration, and the samples were inverted and then incubated over-
night at 65°C. DNA was recovered by phenol/chloroform
extraction and isopropanol precipitation.

Processing reads from MNase-seq and RNA-seq replicates

After confirming high concordance between them, MNase-seq and
RNA-seq replicates were subsampled and merged to increase read
depth and reduce bias from library preparation, sequencing, and
digestion. Details are provided in Supplemental Method S5. After

merging, we had 24,152,389 mapped MNase fragments (pairs of
reads) and 42,107,377 mapped RNA reads for each time point.

Selecting a set of genes for analysis

We compiled a set of 4427 genes for analysis. A gene was chosen if
it satisfied five criteria: it (1) is classified as either verified or
uncharacterized by sacCer3/R64, (2) contains an open reading
frame (ORF) at least 500 bp long (Supplemental Fig. S18A), (3) con-
tains an annotated TSS, (4) has a reported mRNA half-life, and
(5) has adequate MNase-seq coverage (Supplemental Fig. S18B).
Additional details are provided in Supplemental Method S6.

Defining classes of MNase-seq fragments and measures of their

occupancy

MNase-seq fragments can be associated with different DNA-bind-
ing factors on the basis of their length (Supplemental Fig. S19).
To summarize the chromatin occupancy of different factors
around genes, fragments were first filtered into two classes: frag-
ments associated with nucleosomes (length between 144 and
174 bp; see below for justification), and fragments associated
with smaller factors (length <100 bp; see below for justification).

Nucleosomal fragment lengths were determined by examin-
ing the distribution of MNase-seq fragments prior to cadmium
treatment around the top 2500 unique nucleosome positions re-
ported by a highly sensitive chemical assay (Brogaard et al.
2012). In ourMNase-seq data, the distribution of fragment lengths
at these sites had a clearmode at 159 bp;we chose a ±15-bp interval
around this mode to capture most of the nucleosomal fragments,
resulting in the final 144- to 174-bp range.

As for fragments associated with smaller factors, because prior
studies have found clear enrichment of small fragments at Abf1
sites (Henikoff et al. 2011), we examined the distribution of frag-
ments prior to cadmium treatment around 279 Abf1 binding sites,
as determined by phylogenetic conservation and motif discovery,
obtained from http://fraenkel-nsf.csbi.mit.edu/improved_map/
p001_c2.gff (MacIsaac et al. 2006). In our MNase-seq data, most
of the fragments at these sites were shorter than 100 bp (mode:
75 bp), so those were classified as small fragments.

For each gene, two regionswere defined relative to its TSS. The
promoter region was defined as a 200-bp region upstream of the
TSS. The length of this region was chosen as previously described
(Smale and Kadonaga 2003; Lubliner et al. 2013). The gene body
region was defined as a 500-bp region including and downstream
from the TSS, chosen to include the +1, +2, and +3 nucleosomes.
The occupancy of a class of fragments within a particular region
is computed simply as the number of fragments of that class whose
centers lie within that region.

Computing chromatin scores with cross-correlation kernels

Some chromatin statistics require more spatial precision than is
provided by occupancy in a region—for example, when determin-
ing the position or organization of a factor. In these cases, we used
cross-correlation scores in a similar manner to that described in
Tripuraneni et al. (2021). Around the TSS for each gene, a per-bp
cross-correlation score was computed to smooth positional varia-
tion and filter out irrelevant fragments. Three two-dimensional
cross-correlation kernels were constructed: an idealized, well-posi-
tioned nucleosome kernel (Supplemental Fig. S20A); a clearly
bound small factor kernel (Supplemental Fig. S20B); and a triple-
nucleosome gene body summary kernel (Supplemental Fig.
S20C). Each kernel was applied to the region local to the TSS of
each gene for each time point to compute a cross-correlation score
at each base pair (Supplemental Fig. S20D).
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The nucleosome and small factor kernels were constructed us-
ing a bivariate Gaussian distribution parameterized by the mean
and variance for the position and length of MNase-seq fragments.
The parameters for each kernel were determined using the frag-
ment length and position distributions at positions in Brogaard
et al. (2012) andMacIsaac et al. (2006), as described in the previous
subsection.

To summarize the gene body chromatin as a whole, a triple-
nucleosome kernel was constructed to dampen the effect of the
+1 nucleosome tending to be more well-positioned (Mavrich
et al. 2008; Nocetti andWhitehouse 2016). The triple-nucleosome
kernel was constructed by repeating the nucleosome kernel and in-
creasing the variance to take into account variable linker spacing.
The nucleosome kernel spacing was determined using the average
peak spacing between the [+1,+2] and the [+2,+3] nucleosome
cross-correlation scores (Supplemental Fig. S20E).

This method of summarizing the nucleosome signal was
found to be robust, whether we used positions from Brogaard
et al. (2012) (Supplemental Fig. S21A,B) or those called by
DANPOS (Chen et al. 2013) with default paired-end parameters
(Supplemental Fig. S21C,D).

Quantifying nucleosome disorganization

Nucleosome disorganization was computed for each gene at each
time point using information entropy. Entropy measures whether
the nucleosomal fragments observed in the gene body match a
sliding triple-nucleosome kernel extremely well in only a few posi-
tions (well-organized) or marginally well in many positions
(disorganized).

Cross-correlation scores computed using the triple-nucleo-
some kernel over a 150-bp window downstream from the TSS
were normalized to form the empirical probability distribution of
a categorical random variable X:

s(i) = triple nucleosome cross-correlation score at TSS+ i

p̂(X = i) = s(i)
∑149

i=0 s(i)
.

Awindow of size 150 bp around the +1 nucleosome was used
because the triple kernel already incorporates the +2 and +3 nucle-
osome occupancy into its score.

Nucleosome disorganization is then defined as the informa-
tion entropy of the probability distribution of X (examples are
shown in Supplemental Fig. S20F):

−
∑149

i=0

p̂(X = i) log2 p̂(X = i).

Identifying transcription factor binding sites

TF binding sites were called using small fragment cross-correlation
scores and motif finding as follows. For each gene’s promoter, the
cross-correlation scores at eachposition and timepointwere sorted
in a list. The position corresponding to the highest score was la-
beled as a small fragment peak and then removed from the list; po-
sitions within 50 bp of this peak (at any time point) were also
removed. This procedure was repeated until all positions for that
promoter were removed. Then, for each small fragment peak, the
occupancy of small fragments within 50 bp of the peak was com-
puted at each time point, enabling us to identify peaks whose oc-
cupancy changed over time.

Within each called peak, the motif finder FIMO (Grant et al.
2011) was run against the motif database from MacIsaac et al.
(2006) using the default P-value threshold. Select binding sites
with supporting literature were annotated on typhoon plots.

Estimating transcription rates

To account for potential differences inmRNA stability, we estimat-
ed transcription rates from our measurements of transcript
levels. Changes in the two were found to be highly correlated,
and each correlated with various chromatin measures in nearly
identical ways (Supplemental Fig. S22). As previously described
in Cashikar et al. (2005), Rabani et al. (2011), and Yang et al.
(2003), transcription rates were computed by incorporating
mRNA decay rates into difference equations describing zero-order
growth with first-order decay. Details are provided in Supplemen-
tal Method S7.

Identifying and quantifying antisense transcripts

TSSs and TESs for antisense transcripts were determined using
RNA-seq pileup, the number of reads covering a genomic position.
To increase signal and decrease noise, we added the antisense pile-
up values across time points at each genomic position to produce a
cumulative pileup, and then smoothed that with a Gaussian
kernel.

Starting with the highest cumulative pileup value within a
gene’s transcript boundary on the antisense strand, the antisense
TSSs and TESs were identified by progressively searching upstream
and downstream, respectively, to identify the positions at which
the cumulative pileup values were minimized (Supplemental Fig.
S15A). Antisense transcripts were not called if they did not meet
a minimum threshold of pileup at any position within the tran-
script boundary.

For the 667 genes where an antisense transcript could be
called (Supplemental Fig. S15B), antisense transcription levels
were quantified using a TPM calculation (Wagner et al. 2012) for
strand-specific RNA-seq reads on the antisense strand within the
respective antisense transcript boundaries. We also computed nu-
cleosome disorganization and small fragment occupancy chroma-
tin measures relative to these called antisense transcripts, as
previously described for the sense strand.

Predicting transcript levels using Gaussian process regression

models

Gaussian process regression models were constructed to predict
the log2 transcript level for each time point using the log2 tran-
script level and features of the chromatin at 0 minutes, along
with features of the chromatin for the time being predicted.
Gaussian process regression was chosen to better incorporate mul-
tiple signals and model nonlinearity (Supplemental Fig. S23A)
compared to simpler linear models based on average nucleosome
occupancy (Supplemental Fig. S23B), average nucleosome disorga-
nization (Supplemental Fig. S23C), average small fragment occu-
pancy (Supplemental Fig. S23D), or combined chromatin score
(Supplemental Fig. S23E).

To compare various combinations of chromatin features, four
Gaussian process regression models were constructed: a promoter
small fragment occupancy model; a gene body nucleosome disor-
ganization model; a model using both chromatin measures; and a
full model incorporating all previousmodels’ features plus nucleo-
some occupancy within the promoter and within the gene body,
small fragment occupancy within the gene body, +1, +2, and +3
nucleosome position shift relative to 0 min (Supplemental Fig.
S14; Supplemental Fig. S24 confirms nucleosome shifts not due
to asymmetric digestion), and measures of chromatin relative to
called antisense transcripts (Supplemental Fig. S15).

Each Gaussian process regression model was estimated via
scikit-learn (Pedregosa et al. 2011) using a radial-basis function
(RBF) kernel with length scale bounded between 0.1 and 100
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and a white kernel with noise level 10−4 as priors for covariance.
The length scale bounds and noise parameters were determined
empirically through a sensitivity analysis on a subset of the data.

Small fragment occupancy and nucleosome disorganization
measures were each log-transformed to yield an approximately
normal distribution. Then, every chromatin measure (including
all those added to the full model) was z-normalized to allow the
RBF length parameter to be successfully estimated.

Performance for each model was evaluated under 10-fold
cross-validation using the coefficient of determination, R2.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE153609. Code to reproduce the results in this study is included
in Supplemental Code and available on GitHub (https://github
.com/HarteminkLab/cadmium-paper).
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