15733 measured reflections

 $R_{\rm int} = 0.030$

3316 independent reflections

2913 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,3'-[(4-Nitrophenyl)methylene]bis(4hydroxy-2H-chromen-2-one)

N. Ravikumar, G. Gopikrishna and K. Anand Solomon*

Sankar Foundation Research Institute, Naiduthota, Vepagunta, Visakhapatnam, Andhra Pradesh 530 047, India Correspondence e-mail: anand.dcb@gmail.com

Received 3 December 2011; accepted 20 December 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.089; data-to-parameter ratio = 10.7.

The molecular conformation of the title compound, $C_{25}H_{15}NO_8$, is stabilized by strong intramolecular $O-H \cdots O$ hydrogen bonds, resulting in the formation of $S_1^1(7)$ ring motifs. In the crystal, π - π stacking interactions are observed between adjacent nitrobenzene and pyranone rings with a centroid-centroid distance of 3.513 (12) Å. The dihedral angles between the nitrobenzene ring and the coumarin ring systems are 65.61 (8) and 66.11 (8) $^{\circ}$ while the coumarin ring systems are inclined at $65.69 (8)^{\circ}$.

Related literature

For the synthesis of benzylidene-bis-(4-hydroxycoumarin) derivatives, see: Mehrabi & Abusaidi (2010); Završnik et al. (2011). For hydrogen bonds, see: Desiraju & Steiner (1999). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the biological activity of substituted benzylidene-bis-(4-hydroxycoumarin) derivatives, see: Borges et al. (2005); Nolan et al. (2009); Prakash et al. (2008); Zhao et al. (1997).

Experimental

Crystal data

C25H15NO8 $M_r = 457.38$ Orthorhombic, Pna21 a = 14.0061 (6) Å b = 14.1511 (6) Å c = 10.4179 (4) Å

 $V = 2064.85 (15) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^-$ T = 295 K $0.35\,\times\,0.30\,\times\,0.25$ mm Data collection

```
Bruker Kappa APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2004)
  T_{\rm min} = 0.902, \ T_{\rm max} = 0.973
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	1 restraint
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
3316 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
310 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O3-H3A\cdots O5\\ O6-H6A\cdots O1 \end{array}$	0.82	1.79	2.597 (2)	166
	0.82	1.80	2.617 (2)	173

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

The authors thank the Managing Trustee and the Founder Trustee of the Sankar Foundation for their financial support and encouragement. We also acknowledge, the Head, SAIF, IIT-Chennai, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2323).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887-916.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. A. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Mehrabi, H. & Abusaidi, H. (2010). J. Iran. Chem. Soc. 4, 890-894.
- Nolan, A. K., Doncaster, R. J., Dunstan, S. M., Scot, A. K., Frenkel, D., Siegel, D., Ross, D., Barnes, J., Levy, C. & Leys, D. (2009). J. Med. Chem. 57, 7142-7156

Prakash, O., Kumar, R. & Prakash, V. (2008). Eur. J. Med. Chem. 43, 435-440. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Završnik, D., Muratović, S., Damjan Makuc, D., Plavec, J., Cetina, M., Nagl, A., Clercq, E. D., Balzarini, J. & Mintas, M. (2011). Molecules, 16, 6023-6040.
- Zhao, H., Neamati, N., Hong, H., Mazumder, A., Wang, S., Sunder, S., Milne George, W. A., Pommier, Y. & Burke, T. R. Jr (1997). J. Med. Chem. 40, 242-249.

Acta Cryst. (2012). E68, o265 [doi:10.1107/S1600536811054778]

3,3'-[(4-Nitrophenyl)methylene]bis(4-hydroxy-2*H*-chromen-2-one)

N. Ravikumar, G. Gopikrishna and K. A. Solomon

Comment

Sevaral methods were reported in the literature (Mehrabi *et al.* 2010) and (Završnik *et al.* 2011) for the synthesis of the title compound. Coumarin ring forms an important pharmacophore in several naturally occurring as well as synthetic molecules (Prakash *et al.* 2008). These coumarin derivaties showed numerous therapeutic applications such as anticoagulant and antibacterial agents (Borges *et al.* 2005). Several multifunctionalized coumarin derivatives were reported to exhibit anti-*HIV* properties (Zhao *et al.* 1997) and also as inhibitors of quinone oxidoreductase-1 (Nolan *et al.* 2009).

In title compound, $C_{25}H_{15}NO_8$, **I**, two 4-hydroxycoumarin moieties are linked through a methylene bridge on which one hydrogen atom has been replaced with a phenyl ring bearing *p*-nitro group (Fig. 1). The 4-hydroxycoumarin moieties are stabilized by intramolecular hydrogen bonding by forming $S_1^1(7)$ ring motifs (Etter *et al.* 1990) and (Bernstein *et al.* 1995) between hydroxyl and carbonyl oxygen atoms. The crystal structure of **I** is stabilized by C–H···O and π – π interactions (Fig. 2). The range of H···O distances (Table 1) found in **I** agrees with those found for C–H···O hydrogen bonds (Desiraju & Steiner, 1999). The supramolecular chains were extended by π – π -interactions, where the distance between the two centroids namely (C1/O2/C2/C7-C9) and (C20-C25) of the two corresponding coplanar rings is 3.513 (12)Å.

Experimental

The 4-hydroxycoumarin (2 m.mol, 0.324 g) and 4-nitrobenzaldehyde (1 mmol, 0.151 g) were refluxed in ethanol (5 ml) at 333 K for 12 h. After completion of the reaction as monitored by *TLC*, the reaction mixture was cooled to room temperature. The obtained precipitate was collected by suction filtration and dried. The pure product was obtained by recrystallization from dichloromethane in 92% yield.

Refinement

All H atoms were positioned geometrically. H atoms attached to C atoms were placed in calculated positions with C–H = 0.93\AA (aromatic) and C–H = 0.98\AA (methine) with $U_{iso}(H) = 1.2Ueq(C)$ and allowed to ride. The O–H distances were restrained to 0.82\AA and refined as riding atoms with $U_{iso}(H) = 1.5Ueq(O)$ in the final cycles of refinement. The 1539 Friedel pairs were merged during structure refinement.

Figures

Fig. 1. Molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2. Crystal packing diagram of the title compound.

3,3'-[(4-Nitrophenyl)methylene]bis(4-hydroxy-2H-chromen-2-one)

Crystal data

I'(000) = 944
$D_{\rm x} = 1.471 \ {\rm Mg \ m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 6438 reflections
$\theta = 2.1 - 24.2^{\circ}$
$\mu = 0.11 \text{ mm}^{-1}$
T = 295 K
Block, orange
$0.35 \times 0.30 \times 0.25 \text{ mm}$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Data collection

Bruker Kappa APEXII CCD diffractometer	3316 independent reflections
Radiation source: fine-focus sealed tube	2913 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.030$
ω and ϕ scans	$\theta_{\text{max}} = 24.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)	$h = -15 \rightarrow 16$
$T_{\min} = 0.902, \ T_{\max} = 0.973$	$k = -16 \rightarrow 16$
15733 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained

$P(F^2) = 0.000$	$w = 1/[\sigma^2(F_0^2) + (0.0543P)^2 + 0.1473P]$
$WR(F^{-}) = 0.089$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
3316 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
310 parameters	$\Delta \rho_{min} = -0.14 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0066 (11)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.65097 (16)	0.52018 (16)	0.9180 (2)	0.0425 (5)
C2	0.67257 (16)	0.67214 (16)	0.8278 (2)	0.0465 (5)
C3	0.73555 (19)	0.7470 (2)	0.8087 (3)	0.0672 (7)
H3	0.7965	0.7461	0.8442	0.081*
C4	0.7053 (2)	0.8221 (2)	0.7359 (4)	0.0817 (9)
H4	0.7464	0.8724	0.7210	0.098*
C5	0.6141 (2)	0.82367 (19)	0.6844 (3)	0.0757 (9)
Н5	0.5947	0.8751	0.6353	0.091*
C6	0.55268 (19)	0.75111 (17)	0.7049 (3)	0.0585 (6)
Н6	0.4915	0.7531	0.6704	0.070*
C7	0.58132 (16)	0.67400 (16)	0.7773 (2)	0.0455 (5)
C8	0.52015 (15)	0.59312 (15)	0.80351 (19)	0.0412 (5)
C9	0.55171 (14)	0.52169 (14)	0.87827 (19)	0.0374 (5)
C10	0.49380 (14)	0.43608 (14)	0.9198 (2)	0.0377 (5)
H10	0.5301	0.4097	0.9918	0.045*
C11	0.49566 (14)	0.35862 (15)	0.81912 (19)	0.0403 (5)
C12	0.42673 (16)	0.36412 (15)	0.7157 (2)	0.0422 (5)
C13	0.49157 (18)	0.22343 (14)	0.6267 (2)	0.0492 (6)
C14	0.4862 (2)	0.15815 (18)	0.5260 (3)	0.0643 (7)
H14	0.4379	0.1614	0.4650	0.077*
C15	0.5557 (2)	0.08853 (19)	0.5208 (3)	0.0742 (9)
H15	0.5537	0.0436	0.4556	0.089*
C16	0.6277 (2)	0.08488 (19)	0.6106 (3)	0.0698 (8)

H16	0.6742	0.0382	0.6047	0.084*
C17	0.6315 (2)	0.14788 (16)	0.7066 (3)	0.0623 (7)
H17	0.6806	0.1441	0.7665	0.075*
C18	0.56350 (17)	0.21869 (15)	0.7178 (2)	0.0486 (6)
C19	0.56297 (16)	0.29003 (15)	0.8164 (2)	0.0484 (6)
C20	0.39601 (14)	0.45796 (15)	0.9770 (2)	0.0389 (5)
C21	0.37848 (15)	0.54447 (15)	1.0351 (2)	0.0453 (5)
H21	0.4233	0.5926	1.0277	0.054*
C22	0.29604 (17)	0.56044 (17)	1.1036 (2)	0.0516 (6)
H22	0.2853	0.6184	1.1431	0.062*
C23	0.22999 (15)	0.48919 (18)	1.1123 (2)	0.0503 (6)
C24	0.24222 (17)	0.40444 (18)	1.0508 (2)	0.0534 (6)
H24	0.1951	0.3582	1.0537	0.064*
C25	0.32609 (17)	0.38952 (15)	0.9845 (2)	0.0472 (5)
H25	0.3358	0.3318	0.9438	0.057*
N1	0.14454 (16)	0.5031 (2)	1.1934 (2)	0.0652 (6)
O1	0.69024 (11)	0.45293 (11)	0.96905 (17)	0.0531 (4)
02	0.70638 (10)	0.59589 (11)	0.89430 (15)	0.0509 (4)
O3	0.43458 (11)	0.59699 (11)	0.74979 (15)	0.0502 (4)
H3A	0.4116	0.5438	0.7469	0.075*
O4	0.42395 (12)	0.29414 (11)	0.62710 (16)	0.0528 (4)
05	0.37047 (12)	0.42867 (11)	0.70029 (16)	0.0515 (4)
O6	0.63447 (12)	0.28370 (12)	0.90099 (19)	0.0663 (5)
H6A	0.6486	0.3367	0.9266	0.099*
07	0.08403 (15)	0.44080 (18)	1.1938 (3)	0.0931 (7)
08	0.13895 (14)	0.57467 (17)	1.2562 (2)	0.0814 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0420 (12)	0.0473 (13)	0.0382 (11)	0.0001 (11)	0.0025 (9)	-0.0094 (10)
C2	0.0413 (12)	0.0472 (13)	0.0511 (13)	-0.0003 (11)	0.0030 (11)	-0.0054 (11)
C3	0.0438 (14)	0.0689 (17)	0.089 (2)	-0.0088 (13)	0.0035 (14)	-0.0068 (16)
C4	0.0630 (19)	0.0618 (17)	0.120 (3)	-0.0202 (14)	0.0069 (18)	0.0188 (19)
C5	0.0685 (19)	0.0583 (16)	0.100 (2)	-0.0043 (14)	0.0060 (17)	0.0207 (16)
C6	0.0534 (15)	0.0545 (14)	0.0677 (16)	0.0010 (12)	0.0029 (12)	0.0087 (13)
C7	0.0428 (12)	0.0449 (12)	0.0488 (12)	-0.0003 (10)	0.0089 (10)	-0.0043 (10)
C8	0.0337 (11)	0.0490 (13)	0.0409 (12)	0.0026 (10)	0.0026 (9)	-0.0021 (10)
C9	0.0342 (11)	0.0427 (11)	0.0354 (11)	0.0005 (9)	0.0016 (9)	-0.0049 (9)
C10	0.0369 (12)	0.0417 (11)	0.0345 (10)	0.0026 (9)	-0.0070 (9)	0.0004 (9)
C11	0.0389 (11)	0.0412 (12)	0.0409 (12)	-0.0014 (9)	0.0022 (10)	0.0040 (9)
C12	0.0509 (14)	0.0389 (11)	0.0368 (11)	-0.0038 (11)	0.0033 (10)	0.0010 (10)
C13	0.0604 (14)	0.0345 (11)	0.0526 (13)	-0.0015 (10)	0.0142 (12)	0.0055 (10)
C14	0.0851 (18)	0.0583 (15)	0.0494 (14)	-0.0100 (15)	0.0073 (14)	-0.0014 (13)
C15	0.112 (3)	0.0490 (15)	0.0616 (18)	-0.0094 (16)	0.0349 (18)	-0.0098 (13)
C16	0.0773 (19)	0.0537 (15)	0.079 (2)	0.0051 (14)	0.0275 (18)	0.0036 (15)
C17	0.0576 (15)	0.0484 (14)	0.0809 (18)	0.0018 (12)	0.0105 (13)	0.0003 (15)
C18	0.0493 (13)	0.0425 (12)	0.0541 (13)	-0.0059 (11)	0.0042 (11)	0.0039 (11)

C19	0.0480 (13)	0.0442 (12)	0.0531 (14)	-0.0025 (11)	-0.0030 (11)	0.0054 (11)
C20	0.0373 (11)	0.0486 (12)	0.0307 (10)	-0.0013 (10)	-0.0040 (9)	0.0031 (9)
C21	0.0401 (12)	0.0518 (13)	0.0441 (12)	-0.0054 (10)	0.0010 (10)	-0.0027 (11)
C22	0.0475 (13)	0.0621 (14)	0.0452 (13)	0.0028 (11)	0.0019 (11)	-0.0027 (12)
C23	0.0352 (12)	0.0741 (16)	0.0417 (11)	0.0025 (11)	0.0000 (10)	0.0101 (13)
C24	0.0461 (13)	0.0652 (16)	0.0488 (13)	-0.0126 (12)	0.0014 (11)	0.0093 (12)
C25	0.0521 (14)	0.0474 (12)	0.0421 (12)	-0.0071 (11)	0.0002 (11)	0.0001 (10)
N1	0.0462 (13)	0.0952 (18)	0.0543 (13)	0.0153 (13)	0.0055 (11)	0.0188 (14)
01	0.0451 (9)	0.0569 (9)	0.0572 (9)	0.0081 (8)	-0.0130 (8)	-0.0037 (8)
O2	0.0381 (8)	0.0581 (9)	0.0565 (9)	-0.0053 (8)	-0.0031 (7)	-0.0013 (8)
O3	0.0418 (9)	0.0545 (9)	0.0544 (10)	0.0002 (7)	-0.0068 (7)	0.0087 (8)
O4	0.0626 (10)	0.0494 (9)	0.0464 (9)	0.0000 (8)	-0.0093 (8)	-0.0036 (8)
O5	0.0520 (10)	0.0515 (9)	0.0510 (9)	0.0035 (8)	-0.0109 (7)	0.0003 (8)
O6	0.0612 (11)	0.0539 (10)	0.0837 (13)	0.0115 (9)	-0.0241 (10)	-0.0028 (10)
O7	0.0484 (12)	0.1247 (18)	0.1063 (17)	-0.0157 (12)	0.0204 (12)	0.0188 (15)
08	0.0626 (12)	0.1100 (17)	0.0715 (14)	0.0265 (12)	0.0137 (10)	-0.0006 (13)

Geometric parameters (Å, °)

1.221 (3)	C13—C14	1.400 (3)
1.346 (3)	C14—C15	1.386 (4)
1.451 (3)	C14—H14	0.9300
1.367 (3)	C15—C16	1.376 (4)
1.382 (3)	C15—H15	0.9300
1.393 (3)	C16—C17	1.341 (4)
1.373 (4)	С16—Н16	0.9300
0.9300	C17—C18	1.388 (3)
1.385 (4)	С17—Н17	0.9300
0.9300	C18—C19	1.440 (3)
1.356 (4)	C19—O6	1.337 (3)
0.9300	C20—C25	1.379 (3)
1.386 (3)	C20—C21	1.388 (3)
0.9300	C21—C22	1.376 (3)
1.456 (3)	C21—H21	0.9300
1.324 (3)	C22—C23	1.371 (3)
1.350 (3)	C22—H22	0.9300
1.521 (3)	C23—C24	1.371 (4)
1.517 (3)	C23—N1	1.478 (3)
1.525 (3)	C24—C25	1.379 (3)
0.9800	C24—H24	0.9300
1.353 (3)	С25—Н25	0.9300
1.449 (3)	N1—O8	1.209 (3)
1.217 (2)	N1—07	1.223 (3)
1.355 (3)	O3—H3A	0.8200
1.378 (3)	О6—Н6А	0.8200
1.386 (3)		
116.14 (19)	C15—C14—H14	121.3
124.6 (2)	C13—C14—H14	121.3
119.3 (2)	C16—C15—C14	120.9 (3)
	1.221 (3) $1.346 (3)$ $1.346 (3)$ $1.451 (3)$ $1.367 (3)$ $1.382 (3)$ $1.393 (3)$ $1.373 (4)$ 0.9300 $1.385 (4)$ 0.9300 $1.356 (4)$ 0.9300 $1.386 (3)$ 0.9300 $1.456 (3)$ $1.324 (3)$ $1.521 (3)$ $1.521 (3)$ $1.525 (3)$ 0.9800 $1.353 (3)$ $1.449 (3)$ $1.217 (2)$ $1.355 (3)$ $1.378 (3)$ $1.386 (3)$ $116.14 (19)$ $124.6 (2)$ $119.3 (2)$	1.221 (3) $C13-C14$ $1.346 (3)$ $C14-C15$ $1.451 (3)$ $C14-H14$ $1.367 (3)$ $C15-C16$ $1.382 (3)$ $C15-H15$ $1.393 (3)$ $C16-C17$ $1.373 (4)$ $C16-H16$ 0.9300 $C17-C18$ $1.385 (4)$ $C17-H17$ 0.9300 $C18-C19$ $1.356 (4)$ $C19-O6$ 0.9300 $C20-C25$ $1.386 (3)$ $C20-C21$ 0.9300 $C21-C22$ $1.456 (3)$ $C22-C23$ $1.350 (3)$ $C22-H22$ $1.551 (3)$ $C23-C24$ $1.517 (3)$ $C23-N1$ $1.525 (3)$ $C24-C25$ 0.9800 $C24-H24$ $1.353 (3)$ $C25-H25$ $1.449 (3)$ $N1-O8$ $1.217 (2)$ $N1-O7$ $1.355 (3)$ $O3-H3A$ $1.378 (3)$ $O6-H6A$ $1.386 (3)$ $C15-C14-H14$ $116.14 (19)$ $C15-C14-H14$ $119.3 (2)$ $C16-C15-C14$

O2—C2—C7	121.88 (19)	C16—C15—H15	119.5
O2—C2—C3	117.0 (2)	C14—C15—H15	119.5
C7—C2—C3	121.1 (2)	C17—C16—C15	120.8 (3)
C4—C3—C2	118.2 (2)	С17—С16—Н16	119.6
С4—С3—Н3	120.9	C15—C16—H16	119.6
С2—С3—Н3	120.9	C16—C17—C18	121.0 (3)
C3—C4—C5	120.8 (3)	С16—С17—Н17	119.5
C3—C4—H4	119.6	С18—С17—Н17	119.5
С5—С4—Н4	119.6	C13—C18—C17	118.4 (2)
C6—C5—C4	120.8 (3)	C13—C18—C19	116.8 (2)
С6—С5—Н5	119.6	C17—C18—C19	124.8 (2)
С4—С5—Н5	119.6	O6—C19—C11	123.8 (2)
C5—C6—C7	119.9 (3)	O6—C19—C18	114.8 (2)
С5—С6—Н6	120.1	C11-C19-C18	121.4 (2)
С7—С6—Н6	120.1	C25—C20—C21	117.97 (19)
C2—C7—C6	119.3 (2)	C25—C20—C10	121.14 (19)
C2—C7—C8	117.3 (2)	C21—C20—C10	120.55 (18)
C6—C7—C8	123.4 (2)	C22—C21—C20	121.3 (2)
O3—C8—C9	124.8 (2)	C22—C21—H21	119.3
O3—C8—C7	114.90 (19)	C20-C21-H21	119.3
C9—C8—C7	120.27 (19)	C23—C22—C21	118.7 (2)
C8—C9—C1	119.29 (19)	С23—С22—Н22	120.7
C8—C9—C10	125.86 (18)	C21—C22—H22	120.7
C1—C9—C10	114.72 (18)	C24—C23—C22	121.9 (2)
С11—С10—С9	111.69 (17)	C24—C23—N1	119.0 (2)
C11-C10-C20	115.59 (16)	C22—C23—N1	119.1 (2)
C9—C10—C20	115.37 (17)	C23—C24—C25	118.3 (2)
C11-C10-H10	104.2	C23—C24—H24	120.8
C9—C10—H10	104.2	C25—C24—H24	120.8
С20—С10—Н10	104.2	C24—C25—C20	121.7 (2)
C19—C11—C12	119.1 (2)	С24—С25—Н25	119.1
C19—C11—C10	123.00 (18)	С20—С25—Н25	119.1
C12-C11-C10	117.63 (17)	O8—N1—O7	123.9 (2)
O5-C12-O4	116.10 (19)	O8—N1—C23	118.2 (2)
O5-C12-C11	124.8 (2)	O7—N1—C23	117.9 (3)
O4—C12—C11	119.12 (19)	C1—O2—C2	121.44 (17)
O4—C13—C18	122.2 (2)	С8—О3—НЗА	109.5
O4—C13—C14	116.4 (2)	C12—O4—C13	120.87 (19)
C18—C13—C14	121.3 (2)	С19—О6—Н6А	109.5
C15—C14—C13	117.5 (3)		
O2—C2—C3—C4	176.3 (2)	O4—C13—C18—C17	-176.8 (2)
C7—C2—C3—C4	-1.3 (4)	C14—C13—C18—C17	0.7 (3)
C2—C3—C4—C5	0.8 (5)	O4—C13—C18—C19	1.8 (3)
C3—C4—C5—C6	0.0 (5)	C14—C13—C18—C19	179.3 (2)
C4—C5—C6—C7	-0.4 (5)	C16—C17—C18—C13	-0.5 (4)
O2—C2—C7—C6	-176.6 (2)	C16—C17—C18—C19	-179.0 (2)
C3—C2—C7—C6	1.0 (4)	C12—C11—C19—O6	174.1 (2)
O2—C2—C7—C8	3.1 (3)	C10—C11—C19—O6	-0.3 (3)
C3—C2—C7—C8	-179.3 (2)	C12—C11—C19—C18	-4.3 (3)

C5—C6—C7—C2	-0.1 (4)	C10-C11-C19-C18	-178.79 (19)
C5—C6—C7—C8	-179.8 (2)	C13—C18—C19—O6	-179.0 (2)
C2—C7—C8—O3	-177.99 (19)	C17—C18—C19—O6	-0.5 (3)
C6—C7—C8—O3	1.7 (3)	C13-C18-C19-C11	-0.4 (3)
C2—C7—C8—C9	2.4 (3)	C17-C18-C19-C11	178.1 (2)
C6—C7—C8—C9	-177.9 (2)	C11—C10—C20—C25	28.4 (3)
O3—C8—C9—C1	172.24 (19)	C9—C10—C20—C25	161.27 (19)
C7—C8—C9—C1	-8.2 (3)	C11—C10—C20—C21	-158.45 (19)
O3—C8—C9—C10	-3.4 (3)	C9—C10—C20—C21	-25.6 (3)
C7—C8—C9—C10	176.20 (19)	C25—C20—C21—C22	3.1 (3)
O1—C1—C9—C8	-168.8 (2)	C10-C20-C21-C22	-170.3 (2)
O2—C1—C9—C8	8.8 (3)	C20—C21—C22—C23	-0.8 (3)
O1—C1—C9—C10	7.3 (3)	C21—C22—C23—C24	-2.7 (3)
O2—C1—C9—C10	-175.05 (17)	C21—C22—C23—N1	175.6 (2)
C8—C9—C10—C11	84.8 (2)	C22—C23—C24—C25	3.7 (3)
C1—C9—C10—C11	-91.0 (2)	N1-C23-C24-C25	-174.5 (2)
C8—C9—C10—C20	-49.9 (3)	C23—C24—C25—C20	-1.3 (3)
C1—C9—C10—C20	134.28 (18)	C21—C20—C25—C24	-2.0 (3)
C9—C10—C11—C19	89.4 (2)	C10—C20—C25—C24	171.3 (2)
C20-C10-C11-C19	-136.0 (2)	C24—C23—N1—O8	173.4 (2)
C9—C10—C11—C12	-85.1 (2)	C22—C23—N1—O8	-4.9 (3)
C20-C10-C11-C12	49.5 (3)	C24—C23—N1—O7	-5.9 (3)
C19—C11—C12—O5	-171.1 (2)	C22—C23—N1—O7	175.9 (2)
C10-C11-C12-O5	3.7 (3)	O1—C1—O2—C2	174.34 (19)
C19—C11—C12—O4	7.8 (3)	C9—C1—O2—C2	-3.5 (3)
C10-C11-C12-O4	-177.41 (17)	C7—C2—O2—C1	-2.5 (3)
O4—C13—C14—C15	177.5 (2)	C3—C2—O2—C1	179.8 (2)
C18—C13—C14—C15	-0.1 (4)	O5-C12-O4-C13	172.42 (19)
C13-C14-C15-C16	-0.8 (4)	C11—C12—O4—C13	-6.6 (3)
C14—C15—C16—C17	1.0 (4)	C18—C13—O4—C12	1.8 (3)
C15-C16-C17-C18	-0.3 (4)	C14—C13—O4—C12	-175.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O3—H3A…O5	0.82	1.79	2.597 (2)	166
O6—H6A…O1	0.82	1.80	2.617 (2)	173
С10—Н10…О1	0.98	2.34	2.809 (3)	109
С10—Н10…Об	0.98	2.49	2.928 (3)	107

Fig. 2