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Evolutionarily conserved mechanisms that control aging are predicted to have prereproductive functions in order to be
subject to natural selection. Genes that are essential for growth and development are highly conserved in evolution,
but their role in longevity has not previously been assessed. We screened 2,700 genes essential for Caenorhabditis
elegans development and identified 64 genes that extend lifespan when inactivated postdevelopmentally. These
candidate lifespan regulators are highly conserved from yeast to humans. Classification of the candidate lifespan
regulators into functional groups identified the expected insulin and metabolic pathways but also revealed enrichment
for translation, RNA, and chromatin factors. Many of these essential gene inactivations extend lifespan as much as the
strongest known regulators of aging. Early gene inactivations of these essential genes caused growth arrest at larval
stages, and some of these arrested animals live much longer than wild-type adults. daf-16 is required for the enhanced
survival of arrested larvae, suggesting that the increased longevity is a physiological response to the essential gene
inactivation. These results suggest that insulin-signaling pathways play a role in regulation of aging at any stage in life.
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Introduction

The lifespan of an organism is regulated by both genetic
and environmental influences in many species [1]. Recent
work has identified specific components from a variety of
cellular processes that regulate lifespan. In C. elegans loss-of-
function mutations in the insulin/insulin-like growth factor-1/
daf-2 signaling pathway can more than double the lifespan of
an animal [2–6]. The regulation of lifespan by DAF-2 occurs
during adulthood [7]. The insulin-signaling pathway nega-
tively regulates the forkhead (FOXO) transcription factor
DAF-16, which ultimately functions to both positively and
negatively regulate transcription of metabolic, chaperone,
cellular defense, and other genes [8–11]. The regulation of
lifespan through an insulin-like signaling cascade is an
evolutionarily conserved mechanism and has been demon-
strated in flies and mice [12–15]. The regulation of DAF-16
activity is also modulated by the JNK signaling pathway, the
SIR-2.1 deacetylase, and HSF-1, LIN-14, and SMK-1 in the
nucleus [16–20].

In many organisms the rate of aging is tied to reproduc-
tion. In C. elegans germline proliferation produces a DAF-16
and KRI-1 mediated signal that negatively regulates lifespan
while the somatic gonad promotes lifespan extension [21–23].

Caloric restriction (CR) also extends lifespan across species
including yeast, worms, flies, and mice [24–29]. The sir-2.1 and
let-363 genes in C. elegans regulate lifespan via CR [30,31].
Unlike insulin signaling, in flies, imposing CR at anytime can
increase lifespan [32]. Finally, perturbations in mitochondrial
function have been shown to increase lifespan [33–36].
Diminished function of the mitochondrial electron transport
system can further extend mutations in the insulin-like
signaling pathway, however mutations in the ubiquinone
biosynthesis gene clk-1 do not further increase the longevity
phenotype from CR. The mechanism of longevity induced by
defective mitochondria is thought to occur during develop-
ment, as previous attempts to use RNA interference (RNAi) to

inhibit mitochondrial function in adults has not been shown
to increase lifespan [34].
Recent genome-wide RNAi screens for increased longevity

have identified ;100 potential regulators of lifespan in C.
elegans from diverse cellular pathways, many of which are
evolutionarily conserved [37,38], but genes essential for
viability are underrepresented in genome-wide RNAi screens
for postdevelopmental phenotypes such as aging. These RNAi
screens for adult longevity preclude the identification of gene
inactivations that cause lethality, larval arrest, sterility, and/or
other developmental pleiotropies (i.e., essential genes), unless
these genes are inactivated after their required developmen-
tal roles.
Here we report 64 genes that, when inactivated postdeve-

lopmentally by RNAi, increase adult lifespan. We also report
the enhanced survival phenotype of the animals arrested
during development by these essential gene inactivations.

Results/Discussion

Postdevelopmental RNAi Screen for Clones That Increase
Lifespan
To identify essential genes that function in adulthood to

regulate lifespan, we selected 2,700 RNAi clones that, if fed
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from the previous generation or from the L1 larval stage,
cause arrest at embryonic or larval stages, and screened them
for increased lifespan after initiating RNAi at the L4 larval/
young adult stage (Figure 1). We found three observations
that validate this approach: First, C. elegans lifespan can be
extended when fed dsRNA targeting the insulin receptor/daf-2
at any developmental larval stage through adulthood [7];
second, conditional daf-2 alleles cause dauer arrest if the gene
is inactivated at the L1 stage but increased longevity if
inactivated in adults [39]; and third, null alleles of daf-2 are
lethal [40] demonstrating the necessity of uncoupling the
developmental and aging phenotypes of essential genes as
well as the utility of producing non-null phenotypes by RNAi.

We performed the RNAi screen utilizing the eri-1(mg366)
[41] strain to improve RNAi in all cells types including
neurons, which are normally refractory to RNA interference.
In fact, many of the longevity genes we identify are expressed
in the nervous system, which has been implicated in insulin
regulation of longevity (Figure S1; Table S1) [42].

Gene inactivations that caused increases in mean lifespan
of at least 10% were scored as positive in our screen.
Endocrine signaling, stress adaptation, metabolism, and
reproduction are potent and evolutionarily conserved regu-
lators of aging [43]. Our screen identified genes from these
canonical longevity-promoting pathways in addition to
pathways not previously implicated in aging (Figures S2 and
S3; Table 1).

Essential genes are more conserved in phylogeny than
genes with no obvious developmental phenotype; more than
90% of the genes we identify are conserved from yeast to
humans. The theory of antagonistic pleiotropy suggests that
any genes that function in postreproductive longevity control
should be under natural selection at prereproductive stages.
Our data support this notion: our yield of major lifespan
regulators is 64 gene inactivations out of 2,700 tested
(;2.4%), a 4-fold increased yield compared to the previous

89 gene inactivations out of 16,000 screened (;0.6%), and a
higher proportion of the gene inactivations cause large
increases in longevity (percent increase compared to vector
control denoted in parentheses for each RNAi clone),
although the use of an enhanced RNAi strain may also
contribute to the increased sensitivity.

Functional Classes of Postdevelopmental Regulators of

Longevity
Protein synthesis. Sorting by the lifespan increase, inacti-

vation of genes involved in protein synthesis caused the most
potent lifespan increase. We identified several RNAi clones
that target components of the translation initiation factor
(eIF) complex; egl-45 (eIF3, 52%), eif-3.F (eIF3, 32%), eif-3.B
(eIF3, 51%), ifg-1 (eIF4G, 55%), T27F7.3 (eIF1, 25%), and two
clones targeting inf-1 (eIF4A, 46% and 28%). Inhibition of
these genes increased lifespan up to 50% longer than with
vector control RNAi. In mammals, insulin stimulates protein
synthesis in vivo and in vitro by increasing the rate of
translation initiation by regulating the eIF4F complex
consisting of eIF4G, eIF4E, eIF4A, and the 40S ribosome
[44]. eIF4F then recruits eIF3 to generate the 43S ribosome.

Figure 1. Representation of the Postdevelopmental RNAi Screen for

Longevity

Embryos from gravid C. elegans hermaphrodites were isolated by
hypochlorite treatment and allowed to hatch overnight in the absence
of food. The synchronized L1 larvae were then placed on OP50 agar
plates at 20 8C and allowed to develop to L4/young adult stage. The L4/
young adult animals were then washed from the plates, cleaned from
bacteria by sucrose flotation, and placed on six-well RNAi plates (;30
worms/well). From three replicates of the first pass, 470 RNAi clones were
identified as positive and were retested in the second pass under similar
conditions while increasing the stringency for scoring positive. A total of
134 RNAi clones passed the second pass criteria and were scored
longitudinally in the third pass against blind positive (daf-2 RNAi) and
negative (empty vector, eri-1 RNAi, and daf-16 RNAi) controls. A total of
64 RNAi clones increased mean lifespan by .10% compared to the
negative controls.
doi:10.1371/journal.pgen.0030056.g001
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Author Summary

The lifespan of an animal is determined by both environmental and
genetic factors, and many of the mechanisms identified to increase
lifespan are evolutionarily conserved across organisms. Previous
longevity screens in C. elegans have identified over 100 genes, but
;2,700 essential for normal development were excluded from
analysis. Paradoxically, these essential genes are five times more
likely to be highly conserved in phylogeny than genes with no
obvious developmental phenotypes. We screened these 2,700
essential genes for increased adult lifespan by initiating the gene
knockdown once the animal had reached adulthood, thus bypassing
earlier developmental roles. We identified 64 genes that can extend
lifespan when inactivated postdevelopmentally. More than 90% of
the genes we identified are conserved from yeast to humans. Many
of the newly identified longevity genes extend lifespan as robustly
as the most well-characterized longevity mutants. It is possible that
the homologues of these genes may also regulate lifespan in other
organisms as well. Genetic analysis places some of these genes in
known pathways regulated by insulin-like signaling, although many
of these gene inactivations function independently of this
mechanism of lifespan extension. Surprisingly, a subset of these
gene inactivations that induce potent developmental arrest also
facilitate enhanced survival in the arrested state, suggesting that
aging at any stage may be subject to regulatory control.



Protein synthesis may be closely monitored in the cell to
allow energy equivalents to be redirected to other processes
such as genomic maintenance and stress adaptation. Mice
lacking the translational inhibitor 4E-BP1 are lean and have
increased metabolism and mitochondrial biogenesis, which
are opposing phenotypes found in long-lived mutants [45].
We found that three clones that target components of the 40S
subunit of the ribosome, rps-3 (32%), rps-8 (18%), and rps-11
(28%) also increased mean lifespan. Although components of
the 80S ribosome complex were represented in the RNAi
library that we screened, only components of the 43S
complex, predominantly translation initiation factors
emerged as regulators of lifespan.

Under conditions of ER stress a transient block in protein
synthesis occurs. Inactivation of the ER oxidoreductase ero-1
(32%) also increased lifespan (Table 1). In mammals, C. elegans,
and yeast, the ATF4/atf-5/GCN4 gene contains an extensive
59UTR with multiple upstream open reading frames. Under
normal conditions the upstream open reading frames are
preferentially utilized for translation initiation yielding
truncated proteins, whereas under low nutrient conditions
the proper ATG is used to synthesize ATF4/atf-5/GCN4. eIF1
has been shown to regulate initiation codon selection [46]. In
support of our findings two recent studies also identified ifg-1
and rps-11 as regulators of longevity [47,48]. Therefore,
although complex, translation can be an effective regulator
of cellular stress and adaptation.

Signaling. Genes in the insulin-signaling pathway are well-
established and potent regulators of longevity in the worm
[43]. Our screen identified many signaling molecules that
extend adult lifespan (Figure S2). For example, we identify
SEM-5 (24%), a SH2- and SH3-like protein that negatively
regulates RAS-MAP and -IP3 signal transduction. sem-5 was
also identified as an enhancer of dauer formation (S.S. Lee,
unpublished data). In addition, inactivation of four annotated
kinases—the serine/threonine protein kinases tpa-1 (28%) and
tag-181 (21%), an ARK kinase family member sel-5 (29%), and
a previously identified integrin-linked kinase pat-4 (13%)
[38]—increased lifespan. daf-16(mgDf47) epistasis (discussed
below) reveals that some of these kinases may act in the
insulin pathway.

The C. elegans genome contains one insulin-like receptor,
daf-2, but 39 insulin-like peptides of which only a few have
known functions [49]. Loss-of-function mutations in daf-2 are
of the strongest enhancers of lifespan in C. elegans, and in our
screen RNAi of daf-2 increased lifespan by ;79%. In humans,
the relaxin family of peptides are structurally similar to
insulin and bind to seven transmembrane receptors to
initiate signaling cascades [50]. We identified two serpentine
receptors, str-49 (15%) and sre-25 (23%), that act in lifespan
control. Since the lifespan extension phenotype of these gene
inactivations requires DAF-16 (Figure 2), it is conceivable that
these seven transmembrane receptors utilize a subset of the
insulin-like peptides, in analogy to relaxin in humans.

Signals from proliferating germ cells negatively regulate C.
elegans aging, via the insulin-signaling pathway [43]. We
identified glp-1 (33%), which codes for a DSL-family ligand
receptor in the germline that controls germ cell proliferation
and negatively regulates lifespan [22]. The design of our
screen was fortunate in that the somatic gonad and the
establishment of the initial pool of proliferating germ cells at
adulthood was not perturbed. Down-regulating genes such as

glp-1 or genes that function in the reproductive system (Table
S1) could disrupt signaling from the germline to increase
lifespan.
Vacuolar Hþ-ATPases were another potent lifespan regu-

lator to emerge from the screen. These proteins acidify
intracellular compartments and act in synaptic transmission
and cell death signaling cascades [51]. UNC-32, a subunit of
the vacuolar ATPase, regulates male longevity [52]. The
vacuolar ATPase is comprised of a V0/V1 heteromultimer. We
identified one of each type of subunit from our screen; vha-6
(V0, 24%) and tag-300 (V1, 23%). In addition, we identified
two other candidate longevity genes linked to cell-death
pathways; the apoptotic cysteine protease ced-3 (19%) and the
cell death related nuclease crn-5 (41%). We were surprised to
identify an RNAi clone targeting ced-3 from our screen since
ced-3(0) mutants fail to undergo programmed cell death but
are not lethal [53]. However, we noted synthetic lethality
between ced-3(717) and daf-2(e1370) indicating a genetic
interaction between these longevity-promoting pathways
(unpublished data). In support of this finding, the increased
lifespan phenotype of ced-3 (RNAi) was dependent upon daf-
16 (Figure 2).
Mitochondria. We were surprised to find that late

inactivation of mitochondrial genes also increased lifespan.
RNAi clones targeting F26E4.6 (28%) and atp-3 (21%) were
previously identified to increase lifespan [37,38]. However,
previous work has suggested that perturbations that disable
mitochondria to increase lifespan must occur during larval
development, rather than after the L4 stage as we observe
here [34]; these differences may be attributed to the enhanced
RNA interference phenotype of the eri-1(mg366) strain. In
addition, we identified seven other mitochondrial RNAi
clones that significantly increased adult lifespan when the
gene inactivation occurred postdevelopmentally: two sub-
units of respiratory complex V (atp-2 [43%] and phi-37 [27%]);
three subunits of the NADH:ubiquinone oxidoreductase
complex (F59C6.5 [19%], nuo-1 [23%], and Y56A3A.19
[21%]); a predicted mitochondrial carrier protein (F43E2.7,
21%); and a mitochondrial AAA-protease (spg-7, 22%). In
support of a role for nuo-1 in negative regulation of lifespan,
overexpression of nuo-1 causes decreased fecundity and
shortened lifespan [40].
Gene expression. RNA binding/processing and chromatin-

associated factors were among the largest class of regulators;
comprising over 20% of the genes identified in our screen
and yielding some of the most potent extension of lifespan
(Figures S2 and S3; Table 1). The strong enrichment for RNA
factors was intriguing because few have been identified in the
previous genome-wide RNAi screens for longevity [37,38]. We
identified three clones targeting predicted RNA helicases, dic-
1 (22%), B0511.6 (50%), and ZK686.2 (24%) that scored as
among the strongest gene inactivations that increase lifespan
(Table 1). We also found two clones with predicted conserved
RNA binding domains; hrp-1 (49%) contains an RRM domain,
and C56G2.1 (20%) has a KH and a Tudor domain that may
facilitate RNA and chromatin interactions, respectively. In
addition, the protein products of a large number of genes
identified are predicted to modify and/or process RNA; these
include a predicted mRNA splicing factor D1054.14 (36%);
two ribonucleases crn-5 (41%) and Y54E10BR.4 (15%); mRNA
cleavage and polyadenylation factor F25C6.2 (24%); RNA
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Table 1. 64 RNAi Clones That Increase Adult Lifespan When Fed Postdevelopmentally

Sequence

Name

Locus Chromosome Group Brief Description Meana Standard

Errorb
Median/

25%c
Total

n/Censored nd
p-Valuee

Y55D5A.5 daf-2 III SIG Insulin/IGF receptor tyrosine kinase 29.63 0.90 31/35 141/11 ,0.0001

M110.4 ifg-1 II TRN Translation-initiation factor 4G 25.74 1.18 27/31 49/4 ,0.0001

C27D11.1 egl-45 III TRN Translation-initiation factor 3a 25.20 0.79 27/31 94/10 ,0.0001

Y54E2A.11 eif-3.B II TRN Translation-initiation factor 3b 25.00 0.87 25/31 86/7 ,0.0001

B0511.6 I RNA ATP-dependent RNA helicase 24.78 0.85 27/31 80/7 ,0.0001

F42A6.7 hrp-1 IV RNA RRM domain 24.67 0.74 25/29 67/7 ,0.0001

F57B9.6f inf-1 III TRN Translation-initiation factor 4A 24.19 1.18 23/31 42/0 ,0.0001

C34E10.6 atp-2 III MIT F0F1-type ATP synthase 23.74 0.78 25/29 82/6 ,0.0001

C14A4.5 crn-5 II RNA Exosomal 39-59 exoribonuclease 23.36 0.75 23/27 81/11 ,0.0001

T28F12.2 unc-62 V TRX HOX transcription factor 22.91 0.74 21/29 104/20 ,0.0001

C34C6.6 prx-5 II MET TPR repeat-containing 22.88 0.66 23/27 61/12 ,0.0001

D1054.14 V RNA Predicted PRP38-like splicing factor 22.50 1.00 23/27 48/8 ,0.0001

F19B6.1 IV SIG Armadillo/beta-catenin/plakoglobin 22.30 0.77 23/27 65/2 ,0.0001

F02A9.6 glp-1 III SIG Fibrillins, Ca2þ-binding EGF-like 22.00 0.70 19/25 93/15 ,0.0001

D2013.7 eif-3.F II TRN Translation-initiation factor 3f 21.90 0.94 19/29 70/5 ,0.0001

Y105E8B.8 ero-1 I TFC ER oxidoreductin 21.89 0.94 21/27 58/5 ,0.0001

VC5.3 npa-1 V MET Fatty acids and vitamin A binding 21.84 0.70 23/25 82/38 ,0.0001

C23G10.3 rps-3 III TRN 40S ribosomal subunit S3 21.80 0.74 21/27 76/15 ,0.0001

W07E6.1 II RNA tRNA and rRNA cytosine-C5-methylase 21.66 0.84 21/27 79/14 ,0.0001

F35B12.5 sas-5 V NUC Chromatin-binding snw family 21.56 0.60 21/27 95/9 ,0.0001

F35G12.3 sel-5 III SIG ARK protein kinase family 21.44 0.69 21/25 85/15 ,0.0001

F57B9.6f inf-1 III TRN Translation-initiation factor 4A 21.25 0.89 19/27 49/1 ,0.0001

F40F11.1 rps-11 IV TRN 40S ribosomal-protein S11 21.22 0.66 21/25 71/8 ,0.0001

K01C8.10 cct-4 II CHP Chaperonin complex 21.19 0.80 21/27 72/10 ,0.0001

B0545.1 tpa-1 IV SIG Serine/threonine protein kinase 21.19 0.87 23/25 55/17 ,0.0001

F26E4.6 I MIT Cytochrome c oxidase 21.15 0.66 19/27 94/0 ,0.0001

ZK792.3g inx-9 IV SIG Innexin-type channels 21.12 0.90 19/27 63/11 ,0.0001

Y105C5B.12h IV UNK 21.09 0.81 21/25 54/10 ,0.0001

H28O16.1 phi-37 I MIT F0F1-type ATP synthase 21.04 0.65 21/27 102/7 ,0.0001

F26A3.4 I SIG Dual-specificity phosphatase 20.95 0.71 19/27 70/10 ,0.0001

F53F4.11 V UNK 20.94 0.76 21/25 63/13 ,0.0001

ZC132.3 V UNK 20.82 0.79 19/25 61/9 ,0.0001

T27F7.3 II TRN Translation-initiation factor 1 20.72 1.00 19/27 66/18 0.0002

ZK686.2 III RNA DEAD-box ATP-dependent RNA helicase 20.62 0.77 19/25 56/4 ,0.0001

F25G6.2 V RNA mRNA cleavage and polyadenylation 20.59 0.80 19/27 56/7 ,0.0001

ZK1127.5 II RNA RNA 39-terminal phosphate cyclase 20.54 0.85 17/27 71/22 ,0.0001

T07A9.8 IV RNA RNA methylase 20.52 0.85 19/25 78/22 ,0.0001

VW02B12L.1 vha-6 II TFC Vacuolar Hþ-ATPase 20.49 0.80 19/27 64/6 0.0001

D2030.9 I UNK WD40 repeat-containing 20.49 0.78 19/25 43/0 0.0002

C14F5.5 sem-5 X SIG SH2 and SH3 domains 20.47 0.66 19/25 111/28 0.0001

C09H10.3 nuo-1 II MIT NADH:ubiquinone oxidoreductase 20.37 0.86 21/25 46/8 ,0.0001

Y110A7A.12i tag-300 I TFC Vacuolar Hþ-ATPase 20.34 0.74 19/25 72/8 ,0.0001

Y57A10C.5 sre-25 II SIG Serpentine receptor 20.31 0.77 19/25 58/5 0.0003

Y47G6A.10 spg-7 I PTO AAAþ-type ATPase peptidase 20.28 0.78 21/25 60/2 0.0001

F08B4.1 dic-1 IV RNA DEAD box RNA helicase 20.16 0.71 19/25 77/11 ,0.0001

F27C1.7 atp-3 I MIT Mitochondrial F1F0-ATP synthase 20.12 0.76 19/25 74/19 0.003

T20F10.1 tag-181 I SIG Warts/lats-like S/T kinases 20.09 0.61 21/23 75/5 0.0001

Y56A3A.19 III MIT NADH-ubiquinone oxidoreductase 20.08 0.71 19/25 76/11 ,0.0001

F43E2.7 II MIT Mitochondrial carrier protein 20.07 0.86 19/25 61/9 0.0001

F52E1.1 pos-1 V NUC CCCH-type Zn-finger 19.90 0.89 19/25 65/18 0.002

F01F1.8 cct-6 III CHP Chaperonin complex 19.88 0.72 19/25 85/26 0.0008

C56G2.1 III RNA KH and Tudor RNA-binding 19.88 0.58 21/27 107/15 ,0.0001

F59C6.5 I MIT NADH-ubiquinone oxidoreductase 19.77 0.74 17/25 60/3 0.0006

F57C9.5 htp-3 I NUC HORMA domain 19.71 0.74 19/23 50/1 0.0001

C48D1.2 ced-3 IV SIG Caspase, apoptotic cysteine protease 19.68 0.85 19/23 61/10 0.0009

F42C5.8j rps-8 IV TRN 40S ribosomal-protein S3 19.55 0.64 19/23 78/9 0.0001

Y65B4BR.5 I TRX NAC/TS-N transcription factor 19.46 0.70 19/23 68/7 0.0001

T21B10.1 II UNK 19.39 0.61 19/23 82/14 0.0001

C34D4.7k str-49 IV SIG Serpentine receptor 19.10 0.49 19/21 99/28 0.0001

Y17G7B.5 mcm-2 II NUC DNA-replication licensing factor 19.09 0.63 19/23 79/15 0.0067

C01G8.5 erm-1 I SIG Radixin, moesin 19.01 0.71 19/21 64/19 0.0022

Y54E10BR.4 I PTO RNA-binding Nob10 19.00 0.70 19/21 92/29 0.0021

C29F9.7 pat-4 III SIG Integrin-linked kinase 18.78 0.69 17/23 76/15 0.0193

M03A8.4 gei-15 X UNK 18.78 0.68 19/23 56/10 0.0188

ZC101.2 unc-52 II SIG Basement-membrane (HSPG) core 18.47 0.62 17/23 70/14 0.036

Vector Control 16.57 0.48 17/21 150/38 NA

T07A9.5 eri-1 IV RNA RNA nuclease 16.22 0.55 15/21 162/30 *
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cyclase ZK1127.5 (24%); and two RNA methylases, T07A9.8
(24%) and W07E6.1 (31%).

Chromatin-associated factors are conserved players in
altering gene expression, coordinating cell fate, and modu-

lating small RNA mechanisms of gene regulation in eukar-
yotes [54–56]. Inactivation of these chromatin-associated
factors caused increased lifespan: C56G2.1 (20%), sas-5
(30%), htp-3 (19%), and the DNA replication licensing factor
mcm-2 (15%). In support of our findings, mcm-2 was also
identified by Serial Analysis of Gene Expression analysis to be
transcriptionally repressed in daf-2/insulin-receptor mutants
and may contribute to their longevity phenotype [57].
Two transcription factors, unc-62/homothorax/MEIS (38%)

and Y65B4BR.5/NAC/TS-N (17%) were found to negatively
regulate lifespan. Recently, the Dubcovsky laboratory re-
ported that mutations in the NAC transcription factor NAM-
B1 delay senescence by more than three weeks in Triticum
turgidum, and the ancestral wild wheat allele functions to
accelerate senescence and increase nutrient remobilization
[58], suggesting this may be an evolutionary conserved
mechanism regulating lifespan. Although a role for unc-62
has not previously been described in an adult animal, the unc-
62 promoter element is active in adult neuronal tissues
(Figure S1). While a mechanism for RNA and chromatin-
associated factors in controlling lifespan is unknown, there
are significant alterations in the transcriptional profile of
aging populations [59]; these genes may regulate such
changes.

Phenotypic Analysis of Candidate Longevity Genes
One established method of validating genes that emerge

from RNAi screens is to test gene knockouts for the same
phenotype. For these essential genes, it may prove possible to
study the longevity of the arrested animals. However, to study
adult longevity conditional alleles will be required. Such
alleles tend to emerge from detailed genetic analysis rather
than genomic knockout projects and are not currently
available.
The aging research community has characterized several

central mechanisms that mediate lifespan regulation includ-
ing insulin/insulin-like growth factor signaling, CR, and
mitochondrial function. To classify the pathways represented
by these new genes, we performed secondary assays: DAF-16
localization, sod-3 expression, arrested larval survival, sup-
pression of polyglutamine aggregation, and aberrant fat
metabolism and clustered the genes by the phenotypes
observed (Figure 2; Figure S4; Table 2; Tables S1 and S2).
Identification of clones that act in or converge upon the

insulin-signaling pathway. The DAF-16/FOXO transcription
factor is a key player in many biological processes that
regulate lifespan including stress adaptation and metabolism
[10,11,39,60]. Because loss of function daf-16 alleles are
epistatic to many longevity promoting mutations, we in-

RNAi clones were identified as outlined in Figure 1. Functional groups and brief description are based on KOG codes [40]: CHP, chaperone; MET, metabolism; MIT, mitochondria; NUC,
nuclear and chromatin; PTO, protein turnover; RNA, RNA biology; SIG, signaling; TFC, trafficking; TRX, transcription; TRN, translation and protein synthesis; UNK, unknown.
aThe mean lifespan in days.
bThe standard error of the mean in days.
cThe median lifespan and the time when 25% of individuals remain alive in days.
dThe total number of individuals scored is shown (followed by the number of individuals censored due to bursting vulva, bagging, or crawling off the agar).
eThe p-value from a log rank test comparing RNAi treatment populations to the vector control population.
fF57B9.6 RNAi clones may hybridize to F57B9.3.
gZK792.3 RNAi clone may hybridize to ZK792.2.
hY105C5B.12 RNAi clone may hybridize to T13A10.11.
iY110A7A.12 RNAi clone may hybridize to F20B6.2.
jF42C5.8 RNAi clone may hybridize to F24C5.9.
kC34D4.7 RNAi clone may hybridize to C34D4.6 and C34D4.16.
IGF, insulin-like growth factor; NA, not applicable. *, p-value was not significant.
doi:10.1371/journal.pgen.0030056.t001

Figure 2. Identification of RNAi Clones that Act through DAF-16

(A) Shading indicates that daf-16(mgDf47); eri-1(mg366) is epistatic to the
lifespan extension observed in eri-1(mg366) (Table S2).
(B) DAF-16 nuclear localization after feeding RNAi clone is shown. Light
shading indicates some nuclear localization, and medium shading
indicates more nuclear localization (Figure S4).
(C) sod-3p::gfp expression after RNAi feeding is shown. Light shading
indicates weak expression, medium shading indicated modest expres-
sion, and dark shading indicates strong expression.
doi:10.1371/journal.pgen.0030056.g002
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activated the 64 candidate longevity genes in an eri-1(mg366)
strain also carrying a null daf-16(mgDf47) mutation and scored
for lifespan extension (Figure 2; Table S2). In accord with
previous studies, most RNAi clones targeting mitochondrial
genes that increase adult lifespan did not depend on DAF-16
[34,35]. The gene inactivations targeting the protein synthesis
machinery also increase lifespan in the absence of DAF-16.
However, RNAi of a few representative genes from most
classes could increase the lifespan of the daf-16(mgDf47);eri-
1(mg366) strain and thus represent DAF-16 independent
pathways of lifespan extension (Figure 2). We classified the
remaining RNAi clones as DAF-16 dependent because they
failed to extend mean lifespan in the absence of DAF-16 by at
least 10% compared to vector controls. Among the DAF-16-
dependent genes were most of the signaling molecules and
RNA-related genes including mcm-2, hrp-1, pos-1, sas-5, crn-5,
T07A9.8, ZK686.2, and ZK1127.5. These genes may act in or
converge onto the insulin-signaling pathway for lifespan
control.

Although the role of DAF-16 in insulin-signaling is the best
understood, DAF-16 receives inputs from multiple cellular
pathways and has functions outside of adult lifespan
extension. DAF-16 transcriptional activity is negatively
regulated by cytoplasmic sequestration. Upon loss of inhib-
ition, DAF-16 translocates to the nucleus. Therefore, we
tested whether any of the gene inactivations identified in our
screen could induce DAF-16 nuclear localization, regardless
of the necessity for DAF-16 in adult lifespan extension.
Despite being independent of daf-16 gene activity for
increasing adult lifespan, inactivation of atp-3, ifg-1, vha-6,
F25G6.2, B0511.6, eif-3.B, inf-1, egl-45, rps-8, rps-3, eif-3.F, or rps-
11 induced localization of DAF-16 to the nucleus and
consequently drove expression of the DAF-16 target gene
sod-3 (Figure 2). Since these genes do not function through

DAF-16 to extend lifespan, the translocation of DAF-16 to the
nucleus may be due to a general stress or may represent a new
regulator of DAF-16 activity.
Larval arrest and survival phenotypes of RNAi clones

during development. Loss of DAF-2 during development
causes constitutive arrest in the dauer stage. daf-16(lf)
mutations are defective for dauer arrest induced by low
insulin signaling and also fail to arrest as L1 stage larvae in
the absence of food [60,61]. Many of the 2,700 gene
inactivations initiated by feeding RNAi from the L1 stage
cause highly penetrant developmental arrest at stages ranging
from early larval to sterile adult stage (Table S1). A subset of
these gene inactivations caused arrested larvae to survive
longer than control animals and facilitated DAF-16 nuclear
localization at the arrested stage (Figure 2; Table 2). We tested
if the larval arrest and increased survival of the arrested
larvae induced by these gene inactivations depend on DAF-16
activity by feeding the RNAi clones that cause larval arrest in
eri-1(mg366) to a daf-16(mgDf47);eri-1(mg366) double mutant.
The absence of DAF-16 abrogated the long-lived phenotype
for most of the arrested larvae (Table 2). For most gene
inactivations, daf-16 mutant animals still arrested when fed
the RNAi clone; however they did not survive as long in the
arrested state. The daf-16(mgDf47) allele did, however, weakly
suppress the larval arrest of inf-1 or spg-7 inactivation (Table
2). These data suggest that at almost any stage, stress pathways
requiring daf-16 may be triggered by gene inactivations to
ensure the survival of the arrested larvae.
We noted that many of the gene inactivations that cause

increased survival of arrested larvae encode translation
factors. Translation is a major target of antibiotics, which
are produced by a wide range of fungi and microbes that
nematodes encounter in the environment. As a larvae or
adult enters an environment with an antibiotic, there may be
signaling pathways that detect ribosomal deficiency to trigger
developmental arrest as well as xenobiotic protective path-
ways. The induced stress adaptation and survival pathways
would ensure that the animal could live long enough to
escape the antibiotic and resume reproductive development.
Inhibition of translation by RNAi of ribosomal and other
translation factors may mimic the ribosomal deficiencies
induced by antibiotics in the normal C. elegans ecosystem, and
trigger this physiological response, developmental arrest, and
cessation of aging. Because it is a prereproductive arrest, this
response may be under natural selection to trigger longevity
enhancing pathways [62]. It may be significant that other gene
inactivations with potent arrested larval lifespan increases, a
vacuolar ATPase and the mitochondrial ATP synthase, are
also targets of natural antibiotics [63,64].

Summary
In this study, we have screened a large portion of the

genome previously underrepresented in genome-wide based
RNAi screens for aging phenotypes and identified 64 genes
that normally function to shorten lifespan. Characterization
of these gene knockdowns by epistasis with the insulin-
signaling pathway and use of biomarkers of aging places them
into distinct classes. Because these molecules are predicted to
function in complex cellular pathways (Figure S5), future
work will focus to dissect the mechanisms employed by these
essential processes to regulate lifespan.

Table 2. Larval Arrest and Survival Phenotypes of RNAi Clones
during Development

Sequence Name Locus eri-1(mg366) daf-16(mgDf47);

eri-1(mg366)

F27C1.7 atp-3 Lva, Age Lva, Age

H28O16.1 phi-37 Lva, Age Lva, Age

Y47G6A.10 spg-7 Lva non-Lva, n.c.

T27F7.3 Lva, Age Lva, non-Age

M110.4 ifg-1 Lva, Age Lva, non-Age

VW02B12L.1 vha-6 Lva, Age Lva, non-Age

F01F1.8 cct-6 Lva, Age Lva, non-Age

B0511.6 Lva Lva, n.c.

Y54E2A.11 eif-3.B Lva, Age Lva, non-Age

C34E10.6 atp-2 Lva Lva, n.c.

F57B9.6a inf-1 Lva, Age non-Lva, non-Age

C27D11.1 egl-45 Lva Lva

F42C5.8 rps-8 Lva Lva, n.c.

C23G10.3 rps-3 Lva, Age Lva, non-Age

D2013.7 eif-3.F Lva Lva

F40F11.1 rps-11 Lva Lva, n.c.

Age, aging alteration; Lva, larval arrest; n.c., no change in survival compared to eri-
1(mg366).
aBoth RNAi clones targeting inf-1 that were identified in the screen for increased longevity
scored similarly.
doi:10.1371/journal.pgen.0030056.t002
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Materials and Methods

Strains. Strains were maintained and cultured using standard
techniques [65]. We used the following C. elegans strains and mutant
alleles: wild-type N2 Bristol, eri-1(mg366)IV, daf-16(mgDf47)I;eri-
1(mg366)IV; zIs356, (daf-16p::daf-16:: g fp; rol-6[su1006]); muIs84, (sod-
3p:: g fp); huIs33, (sod-3p::gfp; rol-6[su1006]); and rmIs133: (unc-
54p::Q40yfp).

Postdevelopmental RNAi lifespan screen. Eggs were isolated from
gravid eri-1(mg366) worms and synchronized by hatching overnight in
the absence of food. The synchronized L1 larvae were then placed on
OP50-containing agar plates and allowed to develop to L4-stage
larvae at 20 8C. The L4-stage larvae were washed thoroughly, cleaned
by sucrose flotation, and placed on 12-well plates with Escherichia coli
expressing double-stranded RNA (dsRNA) (described below). We
carried out a large-scale RNAi screen using the enhanced RNAi strain
eri-1(mg366) (Figure S1). Briefly, each RNAi colony was grown
overnight in LB with 50 lg/ml ampicillin and then seeded onto 12-
well RNAi agar plates containing 5 mM isopropylthiogalactoside
(IPTG). The RNAi bacteria were induced overnight at room temper-
ature for dsRNA expression. We then added ;30 synchronized L4-
stage animals to each well, allowed worms to develop to adults, and
then added 5-fluorodexoyuridine (FUdR) solution to a final concen-
tration of 0.1 mg/ml. Worms were kept at 20 8C, and their lifespan was
monitored. Worms feeding on bacteria carrying the empty vector or
targeting eri-1 were used as negative controls. At least 96 wells of the
empty vector control were included. At the time when all of the
control worms were dead, each well containing the different RNAi
bacteria was scored for live worms. RNAi wells in which live worms
were observed were scored as positives. RNAi clones that were scored
as positive in the first and second passes of screening (Figure S1) were
retested in duplicate during a third pass using a conventional
longitudinal RNAi lifespan assays (see below).

RNAi lifespan assay. RNAi bacteria were prepared as described
above. daf-2, eri-1, and daf-16 RNAi clones were included as positive
and negative controls in blind fashion in the conventional lifespan
assays (daf-2 RNAi construct kindly provided by M. Vidal, Harvard
Medical School, Boston, Massachusetts, United States). Synchronous
L4/young adult stage eri-1(mg366) animals treated with FUdR were
prepared as above and placed on 6-well plates containing the positive
RNAi clones and controls in duplicate. Approximately 40–60 adult
animals were scored in each well (two wells for each RNAi clone, in
two biological replicates). The animals were kept at 20 8C and scored
every two days by gentle prodding with a platinum wire to test for
viability. To ensure the continued efficacy of RNAi knockdown,
animals were fed freshly induced RNAi bacteria every five to seven
days. Lifespan is defined as the first day of adulthood (adult lifespan¼
0) to when they were scored as dead. Worms that died of protruding/
bursting vulva, bagging, or crawling off the agar were censored from
the analysis. For epistasis analysis, RNAi lifespan assays were
performed as described above, except that daf-16(mgDf47);eri-
1(mg366) worms were used.

Statistical analysis. Statistical analyses were performed using SPSS
software (http://www.spss.com). The survival experience of each RNAi-
treated population is compared with that of the population treated
with control RNAi using the log rank test. A p-value ,0.05 was
considered as significantly different from control.

Arrested larvae survival. Synchronized L1-stage eri-1(mg366) or eri-
1(mg366);daf-16(mgDf47) animals were placed on RNAi clones that
induce larval arrest phenotypes at 20 8C. To ensure that any animals
bypassing lethality did not reproduce the plates were moved to 25 8C
to exploit the temperature-sensitive sterility associated with eri-
1(mg366). The wells were qualitatively monitored every two days for
arrested larvae survival.

Fluorescence microscopy assays. Synchronized L1-stage animals or
freshly egg-prepped embryos carrying the integrated transgenes sod-
3p:: g fp, daf-16p::daf-16- g fp, and myo-3p::Q40yfp were each placed onto
RNAi bacteria as described above. The fluorescence intensity of each
population was monitored two and three days following RNAi
treatment.

L4 fat accumulation. Nile Red experiments were performed as
previously described [66] except that L4-stage eri-1(mg366) animals
were fed RNAi clones induced on plates containing 5 mM IPTG.

Promoter fusions. Promoter elements were amplified by PCR from
wild-type genomic DNA and fused to RFP [67]. The transcriptional
reporters were then injected into the gonads of wild-type adult
hermaphrodites. Transgenic animals harboring the extrachromoso-
mal arrays were then imaged.

Primer pairs used to amplify promoter elements. The primer pairs
used to amplify promoter elements are as follows:

c56g2.1: F: 59-CAGACAGGTGAAGCTGAGCGTGGC-39, R: 59-
AAACGCAGAAAACGTCGGTGACGGAATG-39;

egl-45: F: 59-CCAGCCAGGAAAAATCGATTATATTAAG, R: 59-
AGTTGTGCTCGGATTACCGCTGAATTG-39;

unc-62: F: 59-CCCTGAAATTGTTGCGAAAGTTTCTG, R: 59-
GTTCCTGCAAGAGAGAAATATTAAATTTTG-39;

htp-3: F: 59-CTCCCGAAGATTCCGCATTTGCTC, R: 59-TTTGA-
CACTTAAAATATTTTAAAACATTTTTTTTAA-39;

f26a3.4: F: 59-GACCGGAACAGGTGGGCAATGTCGAC, R: 59-
TTTGTAGTGTATCTGTAATCATATTAAATTTGATTC-39;

inf-1: F: 59-GTATGTGTTTATGGTGTGTGCACAAG, R: 59-GA-
CAGGTGGGTTGAAAAGTTAAAAATTAAC-39;

f08b4.1: F: 59-CTAACCGATTCCTCAAGCCACGTGGG, R: 59-
TTTTGATTATTGATATTTCATTCGAATTTGCCAG-39;

y54e10br.4: F: 59-CTCTCCCGATTCCGCCATAATGCCCG, R: 59-
TCTCTGAAATATCGAAAAGAAATGAGATAATTG-39;

sem-5: F: 59-GGGTTAGAGCACTCTTAATGAGTCATG, R: 59-
CGTCTCGCTACCTGAAATATACTCTT-39;

zk686.2: F: 59-GGTTCCGGAGATAACCAAGCAGTATTGG, R: 59-
TATCTGGAGAAATTAAAATATGAACCAAAAAATGCG-39.

Supporting Information

Figure S1. A Subset of Longevity-Promoting RNAi Clones Are
Expressed in Neuronal and Metabolic Tissues.

Found at doi:10.1371/journal.pgen.0030056.sg001 (16.2 MB AI).

Figure S2. Candidate Longevity Genes Constitute Diverse but Novel
Functional Groups

The 64 RNAi clones identified are classified into broad functional
groups: chaperones and protein turnover (6.3%); metabolism and
mitochondria (15.6%); RNA, transcription factors, and nuclear
chromatin (26.6%); signaling (21.9%); trafficking (4.7%); protein
synthesis (15.6%); and unknown (9.4%).

Found at doi:10.1371/journal.pgen.0030056.sg002 (829 KB AI).

Figure S3. Survival Curves for Novel Classes of Lifespan Regulators

Survival of eri-1(mg366) adult worms from the first day of adulthood
(day 0) fed control vector (blue line), daf-2(RNAi) (red line), or RNAi
to genes identified in our screen for increased mean lifespan.
Representative genes from the protein synthesis and RNA and
chromatin class are shown.

Found at doi:10.1371/journal.pgen.0030056.sg003 (958 KB AI).

Figure S4. Representative DAF-16-GFP Localization Phenotypes

Under ‘‘normal’’ conditions DAF-16 is predominantly cytoplasmic
(score ¼ 0). Under conditions of stress DAF-16 is translocated from
the cytoplasm to the nucleus (scores 1–3).

Found at doi:10.1371/journal.pgen.0030056.sg004 (3.7 MB AI).

Figure S5. Two-Hybrid Interaction Map of the 64-Candidate
Longevity Genes

Candidate genes identified are shown in red outline. This interaction
map was generated using the Interactome query page from M. Vidal’s
research group (http://vidal.dfci.harvard.edu).

Found at doi:10.1371/journal.pgen.0030056.sg005 (284 KB AI).

Table S1. Phenotypes Associated with Candidate RNAi Clones

Adult expression patterns identified in this study are highlighted in
red and were determined as stated in the Materials and Methods.
Developmental RNAi phenotypes and expression patterns of other
genes were previously determined [40]. All, almost all cell types; C,
coelomocytes; E, excretory cell; H, hypodermis; I, intestine; M, muscle;
N, nervous system; P, pharynx; R, reproductive system; RG, renal
gland; U, unidentified cell types. Homology is indicated by shading
with BLASTP e-values ,10�6 in related worm (Cb), yeast (Sc), fly (Dm),
mouse (Mn), and human (Hs). sod-3p:: g fp expression was determined
from four independent replicates. Adult fat accumulation was
determined by Nile Red staining. Increased Nile Red staining is
indicated by dark shading, and decreased Nile Red staining is
indicated by light shading. Clones with decreased polyQ aggregation
in adults compared to vector controls are indicated by shading.

Found at doi:10.1371/journal.pgen.0030056.st001 (205 KB DOC).

Table S2. daf-16(mgDf47);eri-1(mg366) Lifespan Epistasis

The mean lifespan is shown in days. The standard error of the mean
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lifespan is shown in days. The median lifespan and the time when
25% of individuals remain alive are shown in days. The total number
of individuals scored is shown (followed by the number of individuals
censored due to bursting, bagging, or crawling off the agar). The p-
value from a log rank test comparing RNAi treatment populations to
the control population is shown. Percent increase in mean lifespan of
RNAi treated populations compared to the population fed vector
control is shown.
Found at doi:10.1371/journal.pgen.0030056.st002 (167 KB DOC).
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