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ABSTRACT: We investigate the performance of beyond-GW approaches in many-body perturbation
theory by addressing atoms described within the spherical approximation via a dedicated numerical
treatment based on B-splines and spherical harmonics. We consider the GW, second Born (2B), and
GW + second order screened exchange (GW+SOSEX) self-energies and use them to obtain ionization
potentials from the quasi-particle equation (QPE) solved perturbatively on top of independent-particle
calculations. We also solve the linearized Sham−Schlüter equation (LSSE) and compare the resulting xc
potentials against exact data. We find that the LSSE provides consistent starting points for the QPE but
does not present any practical advantage in the present context. Still, the features of the xc potentials obtained with it shed light on
possible strategies for the inclusion of beyond-GW diagrams in the many-body self-energy. Our findings show that solving the QPE
with the GW+SOSEX self-energy on top of a PBE or PBE0 solution is a viable scheme to go beyond GW in finite systems, even in
the atomic limit. However, GW shows a comparable performance if one agrees to use a hybrid starting point. We also obtain
promising results with the 2B self-energy on top of Hartree−Fock, suggesting that the full time-dependent Hartree−Fock vertex may
be another viable beyond-GW scheme for finite systems.

1. INTRODUCTION
The GW approximation1−3 of many-body perturbation theory
(MBPT) has been the state-of-the-art method for the
prediction of excitation spectra for the last 40 years.4−7 It
has been applied to the band structure calculation of a variety
of condensed matter systems, with the band gap being the
property best predicted. Over the last 15 years, it has also
found a successful application in molecules.8−14 GW, however,
still fails at predicting a number of properties and phenomena,
such as occupied bandwidths,15−23 satellites,24 strong
correlations,25 and orbital energy ordering and spacing.26−28

It being framed within Hedin’s iterative scheme, a self-
consistent approach to GW should be implemented in
principle. In practice, this is often detrimental for the
prediction of band structures and energy levels,29,30 so different
flavors of self-consistency are pursued instead,21,31,32 including
no self-consistency at all, that is, single shot G0W0 calculations.
This gives rise to a starting point dependence of GW, which is
also numbered among its drawbacks.
In Hedin’s iterative scheme, GW corresponds to the neglect

of vertex corrections. In order to fix the shortcomings of GW,
there has been a recent resurgence of interest in the field of
vertex corrections. While it has been suggested that vertex
corrections may have little effect on the band gap prediction,33

they have been found to improve other observable quantities
such as ionization potentials of extended systems34,35 and
molecules.27,36,37 The ambiguity concerning self-consistency
has also been addressed: By now it has been accepted that
vertex corrections and self-consistency effects tend, at least
partially, to cancel out,23,38,39 justifying non-self-consistent GW
calculations on the one hand and suggesting that full self-

consistency should be pursued only in the presence of vertex
corrections on the other. There is no unambiguous way to go
beyond GW. Following Hedin’s scheme, the most natural
approach would be to simply take the first self-energy diagram
of higher order than GW in the screened interaction.33,34,38

Alternative approaches include those targeting positive-
definiteness of the spectral function40−42 or compliance with
the Ward identity.20,35 For computational simplicity, local 2-
point vertices have also been proposed.35,43−45

In the present work, we benchmark low-order expansions of
self-energies obtained by employing nontrivial vertex functions
(see Appendix A). In particular, besides the GW approx-
imation, we consider the second Born (2B) self-energy46 and
the GW plus second order screened exchange (GW+SOSEX)
self-energy introduced in refs 27 and 47. We use spherical
atoms as our test bed, reducing the numerical problem to one
spatial dimension and treating it with a dedicated all-electron
implementation based on a B-spline basis and spherical
harmonics. The simplicity of the problem allows us to avoid
the use of a number of approximate techniques commonly
adopted in general-purpose codes, including pseudopotentials,
frequency representations,48,49 and extrapolations to the
complete basis set limit. The numerical error stemming from
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these approximations may hinder the assessment of method
accuracy and makes the comparison of results from different
codes difficult. Moreover, assuming a negligible contribution
from relativistic effects, the numerical precision we achieve
allows for a direct comparison with experiments. To our
knowledge, in the literature there are few MBPT studies
focused on atoms,8,9,50−53 while some general MBPT bench-
marks include atomic systems as a part of larger test sets.54,55

Another important aspect to be assessed when using self-
energy-based methods is the study of the optimal starting point
and possibly even of the effect of self-consistency. If on the one
hand 2B is naturally framed within the time-dependent
Hartree−Fock (TDHF) approach8,36,37 and is therefore fit
for a HF reference, on the other hand, GW and GW+SOSEX
have shown more ambiguity. In molecules, GW seems to work
best on average with a hybrid DFT starting point.11,14,26 This
can be explained by the fact that HF constitutes a decent guess
for orbitals and eigenvalues to start with but offers a poor
description of screening in self-energies containing a random
phase approximation (RPA) screened interaction such as GW.
As already witnessed in solid state systems, the RPA screening
tends to perform much better when built on the KS system,56

which however constitutes an especially bad guess for energy
levels in molecules, where local and semilocal functionals miss
the 1/r decay of the xc potential.57,58 Therefore, hybrid
functionals such as PBE0 should in principle bring in the best
of both worlds, but this is not always true: In fact, the HF
reference and different flavors of self-consistent schemes have
also been considered in specific cases and have proven better
than a hybrid reference.52,54,59−61 GW+SOSEX has so far
shown less ambiguity, performing much better with PBE and
PBE027,62 rather than with HF;28 self-consistent schemes have
only been marginally addressed with this self-energy.63

In this work, other than considering the usual HF, PBE, and
PBE0 references in perturbative (or “one-shot”) many-body
calculations, we also address self-consistency in a less
traditional way by employing the self-consistent solution of
the linearized Sham−Schlüter equation (LSSE)64 as a starting
point. As shown by our results, in atoms this constitutes a
privileged starting point whose highest occupied molecular
orbital (HOMO) is left mostly unchanged by a single iteration
of the Dyson equation, provided that the self-energy used in
the Dyson equation is the same as that used in the LSSE.65,66

This is a strong hint that, as is expected,67 the density of the
starting point is largely preserved, given the relation that
HOMO energy levels have with the decay of the density.68,69

Band gaps similar to those of self-consistent GW have been
found in condensed matter by adopting this procedure,70 and a
good agreement with experiment has also been found for
selected systems.71

Given the availability of very accurate xc potentials for
selected atoms,58,72 we also propose the solution of the LSSE
as a further benchmark for self-energies, as is also done with
total energy functionals.73 In this respect, the LSSE can be
considered an alternative, if not an approximation, to the self-
consistent Dyson equation of MBPT. In fact, both approaches
are based on the stationarity of the Klein energy functional, the
latter with an unconstrained Green’s function (GF) and the
former under the restriction of the GF being noninteracting
and subject to a local potential.67 The accuracy of the LSSE as
an approximation to the self-consistent Dyson equation has
not been thoroughly investigated yet. Solving the LSSE with
the HF self-energy has been found to yield good approx-

imations to the HF HOMOs, and the upper valence thus
obtained is also in closer agreement with HF than one would
get with local and semilocal KS-DFT functionals.74,75 In this
case the static, spatially nonlocal Fock exchange self-energy is
approximated with a static, spatially local xc potential. In
general, however, the xc potential is required to approximate
dynamical, spatially nonlocal self-energies obtained in the self-
consistent solution of the Dyson equation, which may be too
demanding. As of now, an argument involving the adiabatic
connection between the self-consistent Dyson equation and
the self-consistent KS equations has been proposed in order to
justify the LSSE solution as a starting point for many-body
calculations (see Appendix B of ref 65): solving the Dyson
quasi-particle equation on top of it (without renormalization
factor) provides a first-order approximation to the self-
consistent quasi-particle energies.
In general, our results suggest that despite the consistency

that the LSSE starting points display for many-body
calculations these are not a good approximation to the self-
consistent Dyson equation. The numerical effort required for
the solution of the LSSE is not even justified by an increased
accuracy with respect to traditional perturbative schemes
starting from (generalized) KS-DFT solutions. In fact, when
the GW and GW+SOSEX self-energies are used, we find it
beneficial to use such perturbative schemes, which are known
to generally render the RPA screened interactionW reasonably
accurate as discussed earlier in this section. Confirming the
common knowledge on finite systems,11,14,26 we find that even
in atoms the GW self-energy needs a fraction of nonlocal
exchange in the KS-DFT starting point to achieve good
accuracy, which we obtain with the PBE0 functional. Instead,
the GW+SOSEX self-energy displays no such need, also
showing a reduced starting point dependence in going from
PBE to PBE0.27 The 2B self-energy is also capable of yielding
good, if not excellent, accuracy in many atoms at a reduced
computational cost, provided that the HF starting point is
used. This draws our interest to the full TDHF vertex.
This article is organized as follows: In section 2, we present

the two ways in which we deal with self-energies in this work:
by plugging them either in the many-body QPE or in the
LSSE. Then we introduce the self-energies under investigation
and briefly detail how we perform frequency integrations. We
present and discuss the results in section 3, starting from the
exposition of the main numerical aspects of our treatment
(section 3.1). Then, given the specificity of the approach, we
devote section 3.2 to elucidating the features of the xc
potentials obtained from the self-consistent solution of the
LSSE. Next, in section 3.3, we assess the performance of the
selected self-energies by looking at ionization potentials (IPs)
as obtained from the negative of the HOMO energies. Finally,
we draw our conclusions in section 4 and elaborate on the
possible forthcoming work.

2. THEORETICAL FRAMEWORK

2.1. The Green’s Function and the Dyson Equation.
The mathematical key object of MBPT is the one-particle
Green’s function (GF), from which the charged excitation
spectrum of a system can be extracted. Starting from the
Hartree GF, GH, the GF of the system of interacting electrons
G can be obtained via the Dyson equation,76

G G G GH H= + Σ (1)
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involving the self-energy operator Σ. The self-energy can be
cast as a functional of the interacting GF, that is, Σ = Σ[G], in
order to write approximations to Σ as sums of a few physically
meaningful Feynman diagrams.
Having Σ = Σ[G] implies that the Dyson equation should in

principle be solved self-consistently. In practical implementa-
tions, the calculation of G is often perturbative (also termed
“one-shot”), consisting of a single iteration of the Dyson
equation upon an independent-particle solution of the
electronic problem. Here we follow this path starting from
either a HF or a KS-DFT GF, whereas in the next section we
will tackle self-consistency by letting Σ = Σ[G] in the Sham−
Schlüter equation (although we will quickly approximate G
with GKS). Therefore, the Dyson equation reads either

G G G G GHF HF
c

HF= + Σ [ ] (2)

when starting from a HF solution or

G G G G G v G( )KS KS
x

KS
c

KS
xc= + Σ [ ] + Σ [ ] − (3)

when starting from a KS-DFT solution. In the latter case, the
xc potential, vxc, is removed and the nonlocal Fock exchange,
Σx, is added; in the former case, the Fock exchange is already
present in GHF, and only the correlation self-energy, Σc = Σ −
Σx, is needed in going from the noninteracting GHF to the
interacting G. From the GF G thus obtained, the spectral
function

A
i

G G( )
1

2
( ) ( ) sign( )Fω

π
ω ω ω= [ − ] ϵ −†

(4)

can be computed, and its peaks can be identified with the
charged excitations of the system. Here ϵF is the Fermi energy.
The operator A is meant to reproduce the spectra from angle-
resolved photoemission experiments, its trace representing the
density of states. In the absence of strong correlation, the main
peaks of the spectral function are found in correspondence of
the so-called quasi-particle (QP) energies, ϵQP. For numerical
convenience, a diagonal approximation of the GF, self-energy,
and spectral function operators is often adopted, yielding the
quasi-particle equations (QPEs),

i iRe ( )i i i
QP HF

c
QPϵ = ϵ + {⟨ |Σ ϵ | ⟩} (5)

and

i v iRe ( )i i i
QP KS

x c
QP

xcϵ = ϵ + {⟨ |Σ + Σ ϵ − | ⟩} (6)

for the computation of QP energies with the HF and the KS-
DFT starting points, respectively. The i index runs over the
independent-particle states of the system, to which QP states
correspond one by one. We refer to the difference between the
QP energy and the independent-particle energy as QP shift.
2.2. The xc Potential and the Sham−Schlüter

Equation. Both MBPT and KS-DFT are capable of yielding
the exact ground-state electron density of a system, provided
that the exact self-energy Σ and the exact xc potential vxc are
used. Applying to both sides of eq 3 (now with Σ = Σ[G]) a
linear density operator e

i
id

2
0∫ •ω

π
ω +

, which maps G to the

ground-state density of the system, yields

i
G G v

i
G G G

r r r r r r

r r r r r r r r

d
2

d ( , , ) ( , , ) ( )

d
2

d d ( , , ) ( , , ; ) ( , , )

1
KS

1 1 xc 1

1 2
KS

1 1 2 2

∫ ∫
∫ ∫

ω
π

ω ω

ω
π

ω ω ω= Σ [ ]

(7)

which is known as the Sham−Schlüter equation (SSE).64 The
density condition employed for deriving it implies that GKS

produces the same density as G. The equation is in the form
Ax = b, and can be solved as a linear system in the unknown x,
which is the xc potential, vxc(r). Since the unknown itself is
needed to compute GKS, which enters the kernel A and the
inhomogeneous term b, the problem must, in general, be
solved iteratively. Most often, it is linearized by performing the
substitution G → GKS, which amounts to retaining the lowest
order in GKS in eq 3. By doing so one obtains the linearized
Sham−Schlüter equation (LSSE):

v
i

G G G

r r r r r r

r r r r r r

d ( , ) ( )
d
2

d d

( , , ) ( , , ; ) ( , , )

1 0
KS

1 xc 1 1 2

KS
1 1 2

KS KS
2

∫ ∫ ∫χ ω
π

ω ω ω

=

Σ [ ] (8)

where χ0
KS is the KS independent-particle static polarizability.

We emphasize that the dependence Σ = Σ[G] in the full SSE
implies that the full Dyson equation for G, eq 1, is obeyed self-
consistently, while this is not the case for the LSSE, where Σ =
Σ[GKS] and there is no reference to G any longer. This implies
that the density condition used to derive the SSE no longer
holds exactly, and it has to be verified how close the densities
produced by the fully self-consistent G and by the LSSE-self-
consistent GKS are. The KS scheme differs significantly from
the MBPT scheme, in that it does not account for frequency
dependence and is affected by the KS gap problem.77−79

Nonetheless, one iteration of the Dyson equation is expected
to preserve the density of GKS as obtained from the self-
consistent LSSE.65−67

Alternatively, the LSSE can also be derived via an optimized
effective potential (OEP) strategy starting from total energy
functionals.67,80,81 In the framework of MBPT, it is possible to
build total energy functionals that depend directly on the
GF.82,83 In this case, the LSSE can be obtained67,84 by
minimizing the Klein functional with the constraint that the
GF be given by a static and spatially local potential. The Klein
functional reads83,85−88

E G E G G I G G

G G H G

Tr

ln( ) Tr

K
H xc 0

1

0
1

0 0

[ ] = [ ] + Φ [ ] + { −

+ } + { }
ω

ω

−

−
(9)

and its (unconstrained) optimization implies that the Dyson
equation is obeyed self-consistently at stationarity. In this

expression, Trω{} stands for e Tr
i

id
2

0∫ {}ω
π

ω +
, EH is the Hartree

energy and G0 is the free-particle GF corresponding to H0 = T
+ vext. The Φxc[G] functional, which carries electron
interaction contributions beyond Hartree, is also related to
the self-energy by

i
G

G
1

2
( )

( )
xc

π
ω

δ
δ ω

Σ =
Φ [ ]

(10)

Constraining the Klein functional to GF Gs obtained from a
static and spatially local potential vs(r) yields

E v T v E G GK
s s ext H s xc s∫ρ ρ[ ] = [ ] + + [ ] + Φ [ ]

(11)

where Ts is the kinetic energy of noninteracting particles
(subject to a local potential) of density ρ. Imposing the

variational condition 0E v
v r( )

K
s

s
=δ

δ
[ ]

yields

v v v vr r r r( ) ( ) ( ) ( )s ext H xc
oep= + + (12)
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where vxc
oep(r) is obtained as the solution of the LSSE, eq 8.

Importantly, as in the unconstrained optimization, the self-
energy in the LSSE/OEP case is obtained from the Φ
functional via eq 10. Nevertheless, Σ is no longer a functional
of G but rather of GKS (see eqs 7 and 8).
2.3. Self-Energies. In the present work, we focus on the

second Born (2B), GW, and GW plus second-order screened
exchange (GW+SOSEX) self-energies. As seen in the first line
of Figure 1, besides the Fock exchange, the 2B self-energy

includes a second order direct (2Bd) and a second order
exchange (2Bx) diagram. These are all possible second order
irreducible diagrams. As long as occupied states are concerned,
they balance each other with respect to the self-screening error,
meaning that solving the Dyson equation with this self-energy
in a one-electron system yields a vanishing QP shift of the
occupied level. On the other hand, in 2B, screening is
accounted for through the use of one bubble in the direct
diagram, making this self-energy unsuitable for extended
systems (especially metals) and possibly large polarizable
molecules.
Screening is better accounted for within the GW

approximation (second line of Figure 1), where it is introduced
at the random phase approximation (RPA) level. This comes
with the price of having only a direct diagram in the self-
energy, giving rise to a self-screening error.88−90 Ameliorating
the situation with the inclusion of the bare 2Bx diagram,
balancing the 2Bd diagram naturally contained in GW, is
unsuitable in extended systems and has proven unsuccessful
even in molecules.26 A partial inclusion of RPA screening at
second order via the SOSEX diagram (third line of Figure 1)
has led to more promising results,27,62,63 and the diagram itself
can be justified by symmetry arguments27 originally made for
RPA total energies.91,92 These arguments aim at restoring the
antisymmetry of the two-particle GF upon odd permutation of
its space−time arguments (also referred to as crossing
symmetry), as the fermionic nature of electrons requires. A
justification of the SOSEX diagram within the T-matrix
formalism is also possible.47 It must be noted that even with
the SOSEX diagram full cancellation of the self-screening error
occurs only up to second order in the bare Coulomb
interaction, that is, at the 2B level of theory. It is also
unknown whether the partial screening in this diagram can
actually make it suitable for metals.
We now give the analytical expressions for the self-energies,

in a real-space/frequency representation. The 2B self-energy
reads

2B x 2Bd 2BxΣ = Σ + Σ + Σ (13)

with Σx being the Fock self-energy,

i i
G

G G

v v

r r r r r r

r r r r

r r r r

( , , )
d
2

d
2

d d ( , , )

( , , ) ( , , )

( , ) ( , )

2Bd 1 2
1 2 1

1 2 1 2 2 1 2

2 1

∫ ∫ω
ω
π

ω
π

ω ω

ω ω ω

Σ ′ = − ′ +

× +

× ′ (14)

and

i i
G

G G

v v

r r r r r r

r r r r

r r r r

( , , )
d
2

d
2

d d ( , , )

( , , ) ( , , )

( , ) ( , )

2Bx 1 2
1 2 1 1

1 2 1 2 2 2

2 1

∫ ∫ω
ω
π

ω
π

ω ω

ω ω ω

Σ ′ = +

× + ′

× ′ (15)

v is the Coulomb interaction. The GW self-energy reads:

i
G Wr r r r r r( , , )

d
2

( , , ) ( , , )GW 1
1 1∫ω

ω
π

ω ω ωΣ ′ = − ′ + ′

(16)

Finally, the SOSEX contribution to the GW+SOSEX self-
energy reads

i i
G

G G

W v

r r r r r r

r r r r

r r r r

( , , )
d
2

d
2

d d ( , , )

( , , ) ( , , )

( , , ) ( , )

SOSEX 1 2
1 2 1 1

1 2 1 2 2 2

2 1 1

∫ ∫ω
ω
π

ω
π

ω ω

ω ω ω

ω

Σ ′ = − +

× + ′

× ′ (17)

with the GW+SOSEX self-energy obviously given by
ΣGW+SOSEX = ΣGW + ΣSOSEX. All the screened interactions W
are to be intended in the RPA, that is, the Dyson equation,

W v v W( ) ( ) ( )0ω χ ω ω= + (18)

is obeyed with χ0 being the independent-particle irreducible
polarizability, that is,

i
G Gr r r r r r( , , )

d
2

( , , ) ( , , )0
1

1 1∫χ ω
ω
π

ω ω ω′ = ′ + ′

(19)

We conclude this section by linking the self-energies to their
respective total energy functionals, when available. Approx-
imate KS-DFT total energies can be obtained via the
constrained Klein functional by making approximations on
the Φ functional (see eq 11). We remark that even with the
exact Φ functional, the exact energy cannot be obtained as long
as KS GFs are fed to the Klein functional (therefore making it
the constrained Klein functional). An approximation on the Φ
functional in turn entails an approximation on the self-energy
(see eq 10). In particular, the Φ functional yielding the HF
self-energy upon differentiation (first diagram of either line in
Figure 2) leads to the exact-exchange (EXX) energy upon
insertion in eq 11. Following this reasoning, the 2B self-energy
corresponds to the MP2 energy (first line in Figure 2), and the
GW self-energy corresponds to the RPA energy (second line in
Figure 2). On the other hand, the GW+SOSEX self-energy (at
least in the current formulation with W treated at the RPA
level) is not Φ-derivable and is therefore not rigorously
suitable for the variational argument presented in section 2.2.
The total energy expressions termed RPA+SOSEX introduced
in the frameworks of coupled cluster theory91 and of the
adiabatic connection formula92 are not formally linked to the
GW+SOSEX self-energy. We nonetheless apply the LSSE

Figure 1. Self-energy diagrams benchmarked in this work. Solid lines
represent the fermion propagators, dashed lines the bare Coulomb
interaction, and wiggly lines the dressed Coulomb interaction.
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treatment to the GW+SOSEX self-energy for benchmarking
purposes.
For coherence with this picture and the literature, we adopt

the following nomenclature: we will refer to the potential
obtained from the HF self-energy through the solution of the
LSSE as the EXX potential, the potential obtained from the 2B
self-energy will be the MP2 potential, and the one obtained
from the GW self-energy will be the RPA potential. On the
other hand, the GW+SOSEX self-energy will simply corre-
spond to the GW+SOSEX potential.
2.4. Frequency Integrations. Implementing the solution

of the Dyson equation in a one-shot fashion greatly simplifies
the numerical problem at hand. In this case, all the GFs
appearing in eqs 13−19 can be taken to be noninteracting and
cast in a spectral representation by using the orbitals ψα and
eigenvalues ϵα of the underlying independent particle
Hamiltonian, according to

G
i

r r
r r

( , , )
( ) ( )∑ω

ψ ψ
ω η

′ =
* ′

− ϵ ±α

α α

α (20)

where η is a positive, vanishingly small real value ensuring the
time-ordering expression of the GF; we use Greek letters to
indicate suitable multi-indices. Frequency integrals can then be
easily performed by means of the residue theorem, when the
explicit knowledge of the poles of W is not required. In fact,
while it is in principle possible to cast W as a sum over poles,
for example, by solving an eigenvalue problem,93 here we solve
eq 18 via a matrix inversion at given frequencies in the complex
plane, so we do not have access to the explicit position of the
poles of W. Before proceeding, we introduce the following
notation for partially and fully saturated Coulomb integrals,
respectively:

v vr r r r r r( ) d ( ) ( , ) ( )1 1 1 1∫ ψ ψ= *μν μ ν (21)

v vr r r r r r r rd d ( ) ( ) ( , ) ( ) ( )1 2 1 2 1 2 1 2∫ ψ ψ ψ ψ= * *μν
αβ

α μ β ν

A similar notation is also used for W(ω).
Next, we consider frequency integrations for each self-energy

and see how the frequency dependence of W is dealt with,
when present. In the case of the 2B self-energy, there is no W
and the solution of the frequency integrals using the residue
theorem simply yields

v v Ir r r r r r( , , ) ( ) ( ) ( ) ( ) ( )0
2Bd ∑ω ψ ψ ωΣ ′ = + ′ * ′

μνβ
μν νμ β β μνβ

(22)

v v Ir r r r r r( , , ) ( ) ( ) ( ) ( ) ( ),0
2Bx ∑ω ψ ψ ωΣ ′ = − ′ * ′

μνβ
μν βμ β ν μνβ

(23)
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We have also set θμ = θ(ϵμ − ϵF) and θ̅μ = 1 − θμ = θ(ϵF − ϵμ).
We place 0 in the subscripts of self-energies to indicate that
they are computed with a one-shot procedure.
In the case of GW, the frequency integration involving W

can be dealt with using a contour deformation technique.94,95

The same can be done with the SOSEX diagram after carrying
out the integral in ω2 of eq 17; by doing so using the residue
theorem, one gets
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with
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The fact that Iμν has the same pole structure as W allows for
the application of the contour deformation technique.
When Σ enters the LSSE (eq 8), the frequency integral in

the RHS, that is, the inhomogeneous term, can be again
performed using the residue theorem, and the integrals
involving W that were treated using the contour deformation
simply reduce to integrals over the imaginary axis.96,97 As an
example, we consider the frequency integral in the correlation
contribution to the RPA inhomogeneous term, obtained when
the GW self-energy is used:

b
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with Wp = W − vc, and we stress that is obtained from GKS in
this last expression. Expressing each GF in spectral form
according to eq 20 (also dropping the KS label for ease of
notation), and integrating with respect to ω the three GF of eq
27, one obtains
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The fact that this expression has the same pole structure as W
allows once again for integration with respect to ω′ in eq 27 via
the contour deformation technique, which in this case trivially
reduces to an integration over the imaginary frequency axis.
The result in eq 28 can also be obtained for the MP2 and

Figure 2. MP2 and RPA Φ functionals, from which the 2B and GW
self-energies, respectively, are obtained upon differentiation with
respect to the GF.
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SOSEX inhomogeneous terms. While for the latter a
continuation to the imaginary axis is again applied to compute
the leftover frequency integral, a fully analytical expression can
be worked out for the former using the residue theorem.

3. RESULTS AND DISCUSSION
3.1. Numerical Details. The numerical problem for

spherical atoms can be reduced to one dimension, namely,
the radial one. The leftover angular degrees of freedom can be
treated analytically by means of the spherical harmonics
machinery. In other words, matrices are made block diagonal
in the spherical harmonics representation. To give a flavor of
how the angular problem is treated, we mention that the
coupling of spherical harmonics in direct self-energy diagrams
such as 2Bd and GW yields the Wigner 3j symbols, whereas in
exchange diagrams such as 2Bx and SOSEX, the Wigner 6j
symbols appear. The basics of this machinery can be found in
ref 98.
The numerical radial problem is treated with a B-spline basis

set in analogy with the method presented in ref 99. A cubic
grid extending over a 30 Bohr-radius rmax is employed, with
vanishing functions at the boundaries as imposed by the B-
splines. Matrix diagonalizations and inversions are performed
in the B-spline basis, ensuring smoothness and faithful
representation of functions and operators. We checked that
300 B-splines ensure convergence within 1 mRy of the energy
values presented throughout. We had to sometimes resort to a
smaller basis set of 100 B-splines for more demanding
computations, such as those producing the GW+SOSEX
potentials. We verified that this does not heavily impact the
quality of the results anyway, which remain converged well
within a threshold of 10 mRy even with this smaller basis.
Self-energies are calculated using the techniques presented

in section 2.4 over a frequency grid to solve eqs 5 and 6. The
calculation of LSSE inhomogeneous terms is also presented in
section 2.4, but the numerical solution of the LSSE requires
more care. The LSSE linear system is rank-deficient,66 due to
the degree of freedom given by the possibility of incorporating
inside the xc potential an arbitrary energy shift. In the spherical
problem, this degree of freedom can be saturated by imposing
the known theoretical asymptotic behavior

v r v r r( ) ( ) 1/xc xc= ̅ − (29)

with v̅xc → 0 faster than 1/r for r→∞. In our implementation,
we solve for rv̅xc with a singular value decomposition (SVD)
treatment for the linear system inversion. The SVD allows us

to impose the vanishing of vxc for r → ∞. Thanks to the B-
spline basis set, the unphysical oscillations in the potentials
found when solving the problem on a radial grid are
avoided.98,99 However, we found numerical noise in the
matching of vxc with the long-range solution −1/r. Although
the SVD showed some efficacy in removing such noise, we
found that it still impacted the quality of the KS HOMOs. We
managed to improve them by adopting the following
procedure: At each LSSE iteration, we discard vxc in the
interval [rcut, rmax], with rcut being the radial coordinate at
which the noise onset is found, and replace it with −1/r; then
we shift vxc in the leftover interval [0, rcut] in order to match
−1/r at rcut. Unfortunately rcut is system-dependent and has to
be evaluated for every atom and spin polarization. Never-
theless, this procedure allows us to obtain EXX HOMOs in
very good agreement with the HF ones and MP2 and RPA
HOMOs in excellent agreement with those in the liter-
ature.98,99

3.2. EXX, MP2, RPA, and GW+SOSEX xc Potentials.
The xc potentials for atoms as obtained from the self-
consistent solution of eq 8 using the EXX, MP2, and RPA
functionals have already been documented and characterized
in the literature for a number of atoms, mostly up to
Ar.74,75,98−104 Here we also consider the solution of eq 8 with
the GW+SOSEX self-energy and present calculations for an
extended set of spherical atoms, including those from the
fourth period (i.e., K, Ca, Mn, Zn, As, and Kr), in which the 3d
shell comes into play starting from Mn. Moreover, we extend
the RPA calculations previously performed on closed-shell
spherical atoms99 to spin-polarized spherical atoms having half-
filled shells.
In Figure 3, we show the potentials for two of the heavier

atoms we present in this work, Ca and Zn. The shell structure
of the electronic charge in atoms is reflected on the potential
through the presence of bumps. These bumps are found
between two regions in space where the charge density
originates from different orbitals.79,105,106 Local functionals
used in KS-DFT such as local-density approximation (LDA)
cannot describe the charge localization due to the atomic shell
structure, displaying smoother behavior in the xc potential.
PBE does better in this regard but still yields xc potentials far
away from the LSSE solutions, which properly account for
exchange. Moreover, neither LDA nor PBE capture the correct
1/r decay of the xc potential (insets of Figure 3), which is due
to the predominance of exchange in the long-range.57,58

Finally, it can also be noticed how filling the shells

Figure 3. EXX, RPA, LDA, and PBE xc potentials for Ca (left) and Zn (right); (inset) xc potentials multiplied by the radial coordinate.
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progressively shortens the range of the potentials, in analogy
with the density.
The inclusion of correlation of any kind generally has the

effect of damping the bumps of the xc potential. In order to
study correlation with a suitable scale, it is customary to resort
to the correlation potential, which is obtained by removing the
exchange contribution from the xc potential. Here we adopt
the definition of ref 99, relying on the difference between two
potentials evaluated at the respective self-consistent densities:

v v vr r r( ) ( ; ) ( ; )c xc xc x xρ ρ= [ ] − [ ] (30)

that is, the potential to be subtracted is the EXX one, vx
evaluated at its self-consistent density ρx. Some correlation
potentials calculated by us are plotted in Figures 4, 5, and 6.
For He, Be, and Ne a comparison is made with the exact
results obtained by Umrigar and Gonze.58 We note that we
compare potentials obtained at self-consistency using the
respective functionals: this is not the approach adopted by all
authors, some preferring to evaluate the potentials with one
iteration of the LSSE starting from accurate densities.98

In the next section we discuss the IPs as obtained from the
KS HOMOs, which can be rationalized observing the behavior
of the respective xc potential as displayed in Figure 4. The
MP2 functional is known to yield the main features of the exact
correlation potential, although often missing the correct
scale.98,103 For instance, in He the MP2 potential is close to
the exact one in the region near the nucleus but poorly
matches it in the medium and long range, consistently
attaining higher values. As a result, the MP2 HOMO level of
He is too shallow and shows little improvement as compared
with the EXX one. In contrast, the RPA potential offers a

poorer description in the short-range radial region but more
closely resembles the exact potential in the middle and long
range. This leads to a markedly improved KS eigenvalue,
almost exactly matching the one from experiments. In
evaluating these results, one should not be fooled by the
logarithmic scale commonly adopted for plotting the
potentials, which has the effect of extending over a
considerable length very small radial regions.
Moving on to Be, we recall that for this atom no self-

consistent xc potential can be obtained from the MP2

Figure 4. Correlation potentials for helium, beryllium, and neon. The MP2 correlation potential for beryllium is computed on top of EXX orbitals
and eigenvalues. Exact correlation potentials are from ref 58.

Figure 5. Alternative beyond-RPA correlation potentials for
beryllium. Self-consistency has little impact on the GW+SOSEX
HOMO: we have ϵHOMO

scGW+SOSEX = −0.733 Ry and ϵHOMO
GW+SOSEX@EXX =

−0.735 Ry. Exact correlation potential is from ref 58.
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functional.98 The MP2 energy functional is divergent in the
presence of a vanishing gap, and the self-consistent procedure
leads indeed to the closure of the KS gap. This instability is
likely to occur in systems with small KS gaps, as is the case for
Be. Ca also presents a small KS gap, and our calculations
confirm the presence of the instability also for this atom. As a
consequence, the MP2 correlation potentials for Be and Ca are
computed by iterating the LSSE solver only once starting from
EXX orbitals and eigenvalues. Switching to the RPA functional
restores the possibility of having a self-consistent xc potential.
It must be noted, however, that the improvement toward the
exact potential in Be is modest, as is the improvement of the
KS HOMO. Finally, for Ne the MP2 functional produces an
especially bad result, whereas the RPA functional performs
much better. As we shall see in the next section, the 2B self-
energy also performs poorly with Ne. There we discuss why it
is likely that it is necessary to fully include screening at least at
the RPA level in atoms such as Ne.
We now consider the GW+SOSEX potentials. As a first

remark, we observe that the tail of the correlation potential is
strikingly off in He, with the zero being approached from
below. The issue becomes less relevant in heavier atoms but is
still present as one can see in Ne. As a consequence, the GW
+SOSEX HOMO levels are generally deeper (with the
exception of the group 1 atoms) than the RPA ones, which
are already too low as compared with experiment. Even in the
short-range region, the GW+SOSEX potential is not always
satisfactory: while there is an improvement with respect to
RPA in He and Ne, in Be there is a visible worsening. It should
be noted, however, that the inclusion of a screened exchange
diagram allows for a self-consistent solution in Be, whereas the
bare second-order diagram in MP2 did not. If one computes
the GW+SOSEX potential for Be with a single iteration of the
LSSE on an EXX self-consistent solution, as we did in the MP2
case, a short-range description in line with the ones of MP2
and RPA is recovered (see Figure 5). In this case, self-
consistency appears to exacerbate the bad features of the GW
+SOSEX potential, as already seen with the MP2 functional.98

The KS HOMO is subject to little influence by self-consistency
anyway, since it mainly affects the potential in the short-range.
In Figure 5, we also briefly explore the “RPA plus MP2

exchange” (RPA+MP2x) functional in the case of Be, yielding
a self-energy consisting of the GW plus 2Bx diagram in the
SSE. The resulting xc potential presents features in opposition
with those of the exact potential, suggesting that the
unscreened 2Bx diagram is not properly balanced by the GW

diagram. In He, we even find that the peak in the correlation
potential disappears. Overall, all our calculations show that the
RPA+MP2x functional performs badly with atoms and should
probably not be employed in general. The related GW+2Bx
self-energy has also been found to perform poorly in the past.26

This suggests that in order to build upon the RPA/GW level of
theory some amount of screening should always be included in
the higher-order diagrams. Our results show that doing it with
the SOSEX diagram restores the features of the exact potential,
although retaining a suboptimal asymptotic behavior. The GW
+SOSEX diagram can then be viewed more positively and
considered as a starting point for more sophisticated self-
energies, which could possibly yield better results. For instance,
it is an ingredient of the full second-order (in the screened
interaction) diagram, which would also restore variationality if
employed in the LSSE, it being a Ψ-derivable self-energy.85,107
Additionally, a set of diagrams enforcing the positive-
definiteness of the spectral function could be obtained starting
from the SOSEX diagram, following the recipe provided in ref
40.
Another positive aspect of the GW+SOSEX potential is that

it does circumstantially improve on the RPA one. As we
discuss in section 3.3, the GW+SOSEX self-energy leads to a
better prediction of the HOMO of group 1 atoms (save for H)
with either the self-consistent LSSE solution discussed in this
section or the one-shot QPE starting from HF (see Figure 8).
Therefore, we present in Figure 6 the correlation potentials of
two atoms from group 1 (Na and K). We can only speculate
on what the improvements of the GW+SOSEX potential are
on the RPA one, since no exact potential is currently available
for these atoms. Looking at the majority spin-channel
potentials, we see that the GW+SOSEX potential is found
between the MP2 and the RPA potentials in the medium and
long range. From the results of the next section, we can see
that for atoms in group 1 the best prediction of the HOMO is
given by the MP2 functional. Thus, including a screened
exchange diagram, which tends to bring the RPA potential
closer to the MP2 one, has the effect of improving the
ionization potential, although not making it as accurate as the
MP2 one.

3.3. Ionization Potentials. In this section, we address the
performance of the different self-energies described in Figure 1.
We do this by evaluating the mean absolute error (MAE) with
respect to experiment of the IPs computed with each self-
energy approximation (Figure 7). These are obtained as the
negative of the HOMO energies, that is, IP = −ϵHOMO. In

Figure 6. Correlation potentials for sodium and potassium. Thick lines are for the spin majority channel; thin lines are for the spin minority
channel.
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Table 1, we also provide the maximum and minimum errors
found on the test set, and in Figure 8, we provide the error

contributions resolved on each atom. The LSSE results are
considered at the scf level without an iteration of the QPE. In
fact, as we discuss at the end of this section, the LSSE does
provide a consistent starting point for the QPE, if the same
self-energy approximation is used in both steps, so that the
QPE produces a mostly negligible QP shift on the HOMO.
The first notable result is that on average the 2B self-energy

performs remarkably well on the studied atoms on top of the
HF starting point. However, not considering alkali metals, it
falls short of this result if the PBE or PBE0 functionals are used
instead, also displaying a strong starting point dependence. We
note that the 2B self-energy is generated by one iteration
through Hedin’s scheme with the TDHF vertex, and
subsequent truncation to second order in the Coulomb
interaction. Therefore, employing the HF starting point
implies having a consistent functional derivative of the self-
energy with respect to the GF in the vertex equation (i.e., a
physical polarizability).36 This, together with other results from
the literature,23,36,104 points to a possible relevant role of a
consistent inclusion of the vertex corrections, which should be
further investigated. This may also explain why, as seen in the
previous section, the MP2 functional treated at the LSSE level

produces underwhelming results, along with perturbative QPE
schemes using starting points different from HF.
We note, however, that with some atoms, such as Ne, the 2B

self-energy fails even with the HF starting point. This can be
explained with the findings of Bruneval,52 who pointed out the
sizable difference that including all the infinite GW self-energy
diagrams can sometimes make as compared with including just
the first single-ring one, that is, the 2Bd diagram in this work.
This difference suggests that screening plays an important role
also in finite systems, as already emphasized by Shirley and
Martin in ref 8. Here, we find it to be especially important in
Ne in order to obtain an accurate result. However, this does
not imply that the RPA screening on top of a HF solution
(RPA@HF), which we are using in GW@HF, is necessarily the
best choice. In fact, according to ref 52, the QP shift in N is
also sensitive to the full inclusion of the RPA screening beyond
the 2Bd diagram via GW. However, 2B performs quite well
with N, whereas GW does considerably worse. Including the
SOSEX diagram further worsens the result for N, suggesting
that adding more diagrams with the RPA@HF screening can
do little to improve the description.
The behavior described for N is confirmed for many of the

selected atoms: in most cases, GW@HF overbinds the HOMO
and GW+SOSEX@HF increases the error. A similar trend has
also been recently found using the GW100 test set.28

Therefore, the introduction of the SOSEX diagram does not
seem justified with the HF starting point, owing to the
suboptimal RPA@HF screening. A few notable exceptions are
alkali metals, Li, Na, and K: it could be argued that the self-
screening of the lone s electron is particularly relevant in these
atoms and is thus the main source of error for GW, which can
be ameliorated by GW+SOSEX. However, this explanation is
not confirmed by the H atom, the archetypical system for self-
screening detection: in this case the error of GW@HF is
already small to start with and GW+SOSEX@HF does worse.
As we shall see, the picture is puzzlingly the opposite when
using (generalized) KS-DFT solutions from the PBE and PBE0
functionals as starting points.
Interestingly, the results for GW@HF and GW+SOSEX@

HF are generally mirrored in the LSSE framework: GW
+SOSEX consistently improves on GW in atoms of group 1
and consistently does worse in almost all the others. This may
be explained by the fact that the EXX contribution is dominant
in determining the LSSE occupied orbitals and eigenvalues,
which end up being similar to the HF ones, especially in the
upper valence.75 We therefore conclude that the KS spectrum
as obtained from the LSSE is not sufficient to provide a better
RPA screening than the HF one. The remaining discrepancies
between the QPE@HF and the LSSE methods may be
explained by the following two major facts: (i) the solution of
the LSSE has a different unoccupied spectrum, with the
LUMO being a KS bound state, whereas it is an unbound state
in QPE@HF; (ii) the LSSE also involves a form of KS self-
consistency. As compared with GW@HF and GW+SOSEX@
HF, these two differences provide some advantage to the LSSE
in noble gases, in atoms of the N family, and in Zn (the LSSE-
GW+SOSEX IP of Zn surprisingly matching the experiment)
but end up worsening the results in group 1 and 2 atoms.
If solutions using density functionals in the (generalized) KS

scheme are used as a starting point, the picture drastically
changes. GW@PBE is seen to do worse than GW@HF, now
strongly underbinding the HOMO in many lighter atoms.
Adding the SOSEX diagram greatly improves the HOMO

Figure 7.Mean absolute error (MAE) on the ionization potentials for
each method and starting point. In white, we indicate the
independent-particle self-consistent field (scf) methods.

Table 1. Negative of HOMO Energies (Ry) as Computed
with Different Self-Energies and Starting Points: Mean
Absolute Error (MAE), Maximum Absolute Error (Max
AE), and Minimum Absolute Error (Min AE)

@HF @PBE @PBE0 LSSE

−ϵHOMO
2B

MAE 0.015 0.072 0.040 0.051
Max AE 0.088 0.491 0.250 0.273
Min AE 0.000 0.001 0.000 0.000

−ϵHOMO
GW

MAE 0.022 0.030 0.017 0.027
Max AE 0.048 0.086 0.042 0.060
Min AE 0.001 0.001 0.001 0.003

−ϵHOMO
GW+SOSEX

MAE 0.026 0.014 0.017 0.032
Max AE 0.054 0.039 0.031 0.047
Min AE 0.001 0.001 0.001 0.000
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energies, reducing by half the MAE. The GW+SOSEX self-
energy is now seen to perform worst with the atoms with
which it performed best using the HF starting point, that is the
group 1 atoms; and conversely, GW performs better. Notably,
the rationale for the SOSEX diagram as a cure for the self-
screening problem of GW seems now justified if H is
considered. This confirms early observations that the GW
self-screening problem in H can be exacerbated by a starting
point that suffers from a self-interaction/delocalization error
and is instead small when an accurate starting point is
adopted.50,51

Going from the PBE to the PBE0 starting point greatly
affects the performance of GW, which is now comparable with

GW+SOSEX@PBE and scarcely the one of GW+SOSEX. On
the one hand, this confirms a reduced starting point
dependence of the GW+SOSEX self-energy,27,28 also seen in
self-consistent schemes.63 On the other hand, a fraction of
exchange in the starting point might as well be sufficient for
obtaining accurate IPs with GW.14 Of course one should
consider larger test sets for a more reliable assessment: the IPs
of ref 27 obtained with the larger G2 test set seem to confirm
this picture. The more recent results of ref 28 obtained with
the GW100 test set do show a marked improvement with the
GW+SOSEX self-energy instead, even with the PBE0
reference. Moreover, other observables such as deeper binding

Figure 8. Deviation from experiment of the ionization potentials of the neutral atoms as computed with the selected self-energies and starting
points. The LSSE-MP2 IPs of Be and Ca and the LSSE-GW+SOSEX IP of Mn are computed starting from EXX orbitals and eigenvalues.
Experimental IPs are from ref 108.

Table 2. IPs (Ry) from the Self-Consistent Solution of the LSSE vs IPs from the One-Shot Solution of the QPE upon the Self-
Consistent LSSEa

LSSE QPE@LSSE

atoms MP2 RPA GW+SOSEX 2B GW GW+SOSEX expt108

H 1.000 0.997 1.011 0.999 0.997 1.017 0.999467
He 1.785 1.802 1.833 1.785 1.803 1.841 1.80714
Li 0.396 0.455 0.437 0.396 0.455 0.449 0.39628
Be 0.710 0.733 0.709 0.741 0.68521
N 1.000 1.072 1.106 1.001 1.071 1.113 1.06824
Ne 1.316 1.594 1.629 1.316 1.594 1.639 1.58496
Na 0.381 0.426 0.403 0.381 0.426 0.411 0.37772
Mg 0.604 0.596 0.595 0.603 0.596 0.601 0.56199
P 0.770 0.792 0.799 0.771 0.793 0.807 0.7707575
Ar 1.117 1.183 1.196 1.117 1.183 1.206 1.15831
K 0.333 0.363 0.340 0.333 0.364 0.345 0.31904
Ca 0.483 0.495 0.483 0.503 0.44931
Mn 0.623 0.570 0.623 0.570 0.546390
Zn 0.800 0.707 0.689 0.795 0.707 0.696 0.6904609
As 0.738 0.757 0.759 0.737 0.758 0.766 0.71945
Kr 1.024 1.069 1.075 1.025 1.070 1.082 1.02895

aNo self-consistent MP2 xc potentials can be computed for Be and Ca owing to an instability due to the closure of the KS gap in the self-
consistency procedure. No self-consistent GW+SOSEX potential for Mn is present either due to numerical issues. Basis set size = 100 B-splines.
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energies may also be considered for a more comprehensive
assessment.
We conclude this section by checking the validity of the

LSSE starting points as approximate self-consistent solutions.
In Table 2, we report the ionization potentials of all atoms as
obtained from self-consistent solutions of the LSSE and from
the solution of the QPE (eq 6) on top of the LSSE solutions.
As expected on the basis of the LSSE construction (preserving
the charge density, and therefore the IP, to first order in
converting the KS equations into the Dyson equation),65−67 it
can be seen that 2B@LSSE-MP2 and GW@LSSE-RPA
calculations exhibit almost no QP shift in the IPs, the
discrepancy between the KS HOMO and the QP HOMO
being at most 1 mRy (with the exception of the 2B@LSSE-
MP2 calculation for Zn). The discrepancies between the GW
+SOSEX HOMOs are more sizable instead but still within 10
mRy (with the exception of Li). The reason why this occurs
may be that the GW+SOSEX self-energy is not suitable for the
variational argument presented in section 2.2. Moreover, the
suboptimal long-range behavior of the GW+SOSEX xc
potential may also hint at some underlying numerical issue
in the solution of the LSSE. In fact, these potentials are more
sensitive to the rcut parameter chosen for matching with the
long-range solution (see section 3 of the Supporting
Information); therefore, a larger error bar is to be expected
on the IPs as obtained from the GW+SOSEX HOMO energies
than one gets with the MP2 and RPA potentials, however not
undermining the assessment presented in this section. One
may conservatively estimate this error from the QP shift
obtained from the Dyson equation, which, as already
mentioned, can be up to the order of 10 mRy.
In order to check whether the LSSE could be an

approximate pathway to self-consistency, it would also be
useful to compare the MP2 and RPA IPs with the self-
consistent 2B and GW ones, respectively. In Table 3, we

compare our IPs from the solution of the LSSE with those
from the self-consistent calculations of refs 9 and 46 (see also
section 1 of the Supporting Information). We find a generally
poor agreement of the 2B/MP2 IPs and a partial agreement of
the GW/RPA ones, that is, only for He and Ne do we have
similar GW/RPA IPs. While some aspects of our numerical
treatment may differ from those of ref 46, this does not seem
sufficient to explain so-large a discrepancy between the 2B and
MP2 results. Therefore, it can be argued that the LSSE does
not provide a good approximation to the self-consistent Dyson
equation when the 2B self-energy is employed. The agreement
between the two methods appears to be sometimes better with
the GW self-energy but still system-dependent. Further precise
self-consistent calculations are needed to assess when and
whether the two methods yield similar results. Other
observable quantities should also be targeted in the LSSE

approximate self-consistency, such as the HOMO−LUMO gap
upon inclusion of the derivative discontinuity correction.70

4. CONCLUSIONS AND PERSPECTIVES
In this work, we have presented a benchmark of three self-
energies derived within MBPT, that is, 2B, GW, and GW
+SOSEX. We implemented the resolution of the many-body
QPE and of the self-consistent LSSE with these self-energies
for a set of spherical atoms, aided by an easily converged B-
spline basis set. We chose to also consider the solution of the
LSSE for two reasons: to possibly have a consistent starting
point for the QPE and, as a further benchmark, to compare the
xc potentials we get from it with the exact ones available in the
literature.
The EXX, MP2, and RPA xc potentials computed by solving

the LSSE reproduce the ones present in the literature. We
extended these calculations to atoms belonging to the fourth
period and to spin-polarized cases, the latter kind not yet
considered for the RPA potential. Furthermore, we explored
the GW+SOSEX self-energy in the LSSE framework: we find
that it brings the correlation potentials closer to the exact ones
in the short-range for He and Ne but not for Be; in the long-
range, the description is even worse, with these potentials
reaching zero from below. This is especially noticeable in
lighter atoms, whose HOMO is affected worst by this bad
feature. In contrast, the GW+SOSEX potential seems to
improve on GW in group 1 atoms by bringing the description
closer to the MP2 one.
The bottom line of this part of the work is that, as is known

in MBPT, also in the LSSE framework “more diagrams” does
not necessarily mean “better results”: the GW+2Bx/RPA
+MP2x calculations we briefly presented are explanatory in this
regard. At least we find the GW+SOSEX potentials to restore
the correct main features of the exact potentials by building
upon the GW+2Bx/RPA+MP2x level of theory. Therefore, we
believe that improving on the GW+SOSEX level of theory with
a sensibly chosen criterion could fix the issue of the long-range
behavior. Among these criteria, we include variationality (e.g.,
considering the self-energy diagram of second order in the
screened interaction) or positive definiteness of the spectral
function (following ref 40).
Concerning the IPs, we find the solutions of the LSSE to

provide a consistent starting point for the QPE, yielding small
to vanishing QP shifts in the HOMO and therefore hinting at
conservation of the starting density to a large degree.67

However, the comparison with the existing literature, though
limited, suggests that this does not necessarily mean that the
IPs we obtain from the self-consistent LSSE are a good
approximation to the ones obtained from the self-consistent
Dyson equation. We also find that the LSSE generally performs
poorly as compared with the resolution of the QPE starting
from independent-particle solutions given by either the HF
method or semilocal/hybrid functionals in (generalized) KS-
DFT. In this regard, we get the best performance from GW
+SOSEX@PBE/PBE0, 2B@HF, and GW@PBE0. This con-
firms the common knowledge that hybrid functionals provide
good starting points for GW applied to finite systems,11 even in
the atomic limit.
The justification of the SOSEX diagram as a cure for the self-

screening error of GW seems to be correct only with the PBE
and PBE0 starting points. On the contrary, adding the SOSEX
diagram to GW with the HF starting point appears to be
inaccurate, likely due to the poor description given by the RPA

Table 3. Self-Consistent LSSE RPA and MP2 IPs (Ry) of
Selected Atoms Compared to Self-Consistent GW and 2B
Ionization Potentials from the Literature

atoms
LSSE-RPA
(B-spline)

sc-GW9

(Slater orb.)
LSSE-MP2
(B-spline)

sc-2B46

(Slater orb.) expt108

He 1.804 1.805 1.786 1.811 1.80714
Be 0.711 0.636 0.660 0.68521
Ne 1.593 1.600 1.312 1.497 1.58496
Mg 0.597 0.535 0.605 0.553 0.56199
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screening computed on top of a HF solution. These
performances are in line with those found with larger test
sets involving small molecules.27,28 However, we must point
out that, as in ref 27, we find that the GW+SOSEX self-energy
does not bring a marked improvement to the IPs, on average,
as compared to GW, when the PBE0 reference is used;
analogous results have been recently found by Bruneval et al. in
ref 14 by using another hybrid reference, leading them to claim
that GW is still the best choice within MBPT for computing
IPs of molecules. Almost as recently, and by using the same
test set, the work by Wang et al. presented in ref 28 has instead
shown an improvement on GW with the GW+SOSEX self-
energy even starting from the PBE0 reference. As we already
stated in the introduction, the arbitrariness of the starting point
adds a layer of complexity to the assessment of a self-energy-
based method, and the possibility of tuning a parameter in
hybrid functionals seems to allow GW to be most often up to
the task,14,109,110 perhaps at the expense of conceptual clarity.
Finally, we are positively impressed by the good perform-

ance of the 2B self-energy. This motivates us to build upon this
level of theory by including all the self-energy diagrams
generated by the TDHF vertex, which has recently been shown
to be a promising route to electronic excitations in
molecules.36,37

■ APPENDIX A: SELF-ENERGIES FROM VERTEX
CORRECTIONS

Iterating through Hedin’s scheme with a nontrivial vertex
function would in principle be an ideal and systematic way to
devise beyond-GW approximations. However, doing so can
quickly lead to very complex methods. This procedure allows
for the inclusion of self-energy diagrams to infinite order.
Nevertheless, since the vertex function includes the derivative
of the self-energy, Σ, with respect to the Green’s function G,
new diagrams are added at each iteration, making a rigorous
implementation of Hedin’s scheme numerically unfeasible. In
order to overcome this complexity, approximations and
truncations in the iteration process must be made. In the
GW approximation, vertex corrections are neglected alto-
gether, making the vertex function trivial and allowing for a
self-consistent solution independent of the starting point.
The simplest vertex correction is the time-dependent

Hartree−Fock (TDHF) scheme, obtained by plugging the
Fock self-energy into the vertex equation (see Figure 9, top).

This vertex has been studied in a perturbative fashion, that is,
with a single or a few iterations through Hedin’s scheme,
starting from a HF reference.8,36,37 By plugging the GW self-
energy into the vertex function, the time-dependent GW
(TDGW) method is obtained instead (see Figure 9, middle).
For simplicity, the dependence of the screened interaction on
the Green’s function is generally ignored in the differentiation
contained in the vertex function. By doing so, a TDGW vertex
is obtained, leading to the same skeleton self-energy diagrams
generated by the TDHF vertex, but framed in terms of the
screened interaction.
A way to further simplify the scheme is to truncate the

infinite summation of self-energy diagrams generated by a
vertex function, retaining only lower orders. This allows one to
avoid the often cumbersome solution of the vertex equation
and simply compute a number of selected self-energy diagrams.
For instance, with truncation to second order in the Coulomb
interaction, the summation generated by the TDHF vertex
yields the second Born (2B) self-energy. With truncation to
second order in the screened Coulomb interaction, the
summation generated by the TDGW vertex yields the GW
self-energy plus a second-order exchange contribution, the
latter corresponding to the 2B exchange (2Bx) diagram
expressed in terms of the dressed interaction W (see Figure
10). When this diagram is implemented, the two screened

interactions have most often been considered statically34 or
with a plasmon pole approximation;33,38 only recently has their
frequency dependence been fully taken into account.23,28

Moreover, a treatment for this diagram enforcing positive
definite spectral functions has also been proposed.40−42

A simpler second-order approximation, devoid of double
frequency integrals, can be devised by retaining only the zeroth
and first-order terms in the TDHF vertex (see Figure 9,
bottom) and then substituting them into the self-energy. This
produces a second-order diagram with one screened Coulomb
interaction, leaving the other at the bare level. This diagram is
termed the second-order screened exchange (SOSEX) diagram
and the self-energy approximation is referred to as GW
+SOSEX. This has been studied so far for molecules27,28,62 and
model systems.63

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00048.
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Figure 9. Vertex equations in the TDHF, TDGW, and GW+SOSEX
approximations.

Figure 10. Self-energy diagram of order 2 in the screened interaction
W.
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(34) Grüneis, A.; Kresse, G.; Hinuma, Y.; Oba, F. Ionization
Potentials of Solids: The Importance of Vertex Corrections. Phys. Rev.
Lett. 2014, 112, 096401.
(35) Tal, A.; Chen, W.; Pasquarello, A. Vertex function compliant
with the Ward identity for quasiparticle self-consistent calculations
beyond GW. Phys. Rev. B 2021, 103, L161104.
(36) Maggio, E.; Kresse, G. GW Vertex Corrected Calculations for
Molecular Systems. J. Chem. Theory Comput. 2017, 13, 4765−4778.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00048
J. Chem. Theory Comput. 2022, 18, 3703−3717

3715

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="S.+Vacondio"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-9494-7518
mailto:simone.vacondio@unimore.it
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="D.+Varsano"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7675-7374
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A.+Ruini"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A.+Ferretti"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00048?ref=pdf
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1002/wcms.1344
https://doi.org/10.1002/wcms.1344
https://doi.org/10.3389/fchem.2019.00377
https://doi.org/10.3389/fchem.2019.00377
https://doi.org/10.1103/PhysRevLett.49.1519
https://doi.org/10.1103/PhysRevLett.49.1519
https://doi.org/10.1103/PhysRevLett.55.1418
https://doi.org/10.1103/PhysRevLett.55.1418
https://doi.org/10.1103/PhysRevLett.55.1418
https://doi.org/10.1103/PhysRevLett.56.2415
https://doi.org/10.1103/PhysRevLett.56.2415
https://doi.org/10.1103/PhysRevLett.56.2415
https://doi.org/10.1038/s41563-021-01013-3
https://doi.org/10.1038/s41563-021-01013-3
https://doi.org/10.1103/PhysRevB.47.15404
https://doi.org/10.1103/PhysRevB.47.15404
https://doi.org/10.1209/epl/i2006-10266-6
https://doi.org/10.1209/epl/i2006-10266-6
https://doi.org/10.1103/PhysRevB.81.085103
https://doi.org/10.1103/PhysRevB.81.085103
https://doi.org/10.1021/ct300835h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct300835h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b01238?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevB.94.085125
https://doi.org/10.1103/PhysRevB.94.085125
https://doi.org/10.1103/PhysRevB.94.085125
https://doi.org/10.3389/fchem.2021.749779
https://doi.org/10.3389/fchem.2021.749779
https://doi.org/10.3389/fchem.2021.749779
https://doi.org/10.1103/PhysRevLett.57.1076
https://doi.org/10.1103/PhysRevLett.57.1076
https://doi.org/10.1103/PhysRevB.36.4499
https://doi.org/10.1103/PhysRevB.36.4499
https://doi.org/10.1103/PhysRevLett.59.819
https://doi.org/10.1103/PhysRevLett.59.819
https://doi.org/10.1103/PhysRevLett.60.1558
https://doi.org/10.1103/PhysRevLett.60.1558
https://doi.org/10.1103/PhysRevLett.83.3250
https://doi.org/10.1103/PhysRevLett.83.3250
https://doi.org/10.1103/PhysRevLett.87.226402
https://doi.org/10.1103/PhysRevLett.87.226402
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1103/PhysRevB.76.155106
https://doi.org/10.1103/PhysRevB.76.155106
https://doi.org/10.1103/PhysRevB.94.155101
https://doi.org/10.1103/PhysRevB.94.155101
https://doi.org/10.1103/PhysRevB.94.155101
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1038/npjquantmats.2016.1
https://doi.org/10.1038/npjquantmats.2016.1
https://doi.org/10.1103/PhysRevB.86.245127
https://doi.org/10.1103/PhysRevB.86.245127
https://doi.org/10.1103/PhysRevB.92.081104
https://doi.org/10.1103/PhysRevB.92.081104
https://doi.org/10.1021/acs.jctc.1c00488?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00488?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00488?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevB.54.8411
https://doi.org/10.1103/PhysRevB.54.8411
https://doi.org/10.1103/PhysRevB.54.8411
https://doi.org/10.1103/PhysRevB.57.2108
https://doi.org/10.1103/PhysRevB.57.2108
https://doi.org/10.1103/PhysRevB.64.235106
https://doi.org/10.1103/PhysRevB.64.235106
https://doi.org/10.1063/1.3089567
https://doi.org/10.1063/1.3089567
https://doi.org/10.1103/PhysRevB.49.10326
https://doi.org/10.1103/PhysRevB.49.10326
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevB.103.L161104
https://doi.org/10.1103/PhysRevB.103.L161104
https://doi.org/10.1103/PhysRevB.103.L161104
https://doi.org/10.1021/acs.jctc.7b00586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(37) Mejuto-Zaera, C.; Weng, G.; Romanova, M.; Cotton, S. J.;
Whaley, K. B.; Tubman, N. M.; Vlcěk, V. Are multi-quasiparticle
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