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Arterial hypertension (AHT) currently affects approximately 40% of adults worldwide, 
and its pathological mechanisms are mainly related to renal, vascular, and endocrine 
systems. Steroid hormones as aldosterone and cortisol are highly relevant to human 
endocrine physiology, and also to endocrine hypertension. Pathophysiological condi-
tions, such as primary aldosteronism, affect approximately 10% of patients diagnosed 
with AHT and are secondary to a high production of aldosterone, increasing the risk 
also for cardiovascular damage and heart diseases. Excess of aldosterone or cortisol 
increases the activity of the mineralocorticoid receptor (MR) in epithelial and non- 
epithelial cells. Current research in this field highlights the potential regulatory mech-
anisms of the MR pathway, including pre-receptor regulation of the MR (action of 
11BHSD2), MR activating proteins, and the downstream genes/proteins sensitive to 
MR (e.g., epithelial sodium channel, NCC, NKCC2). Mineralocorticoid AHT is present 
in 15–20% of hypertensive subjects, but the mechanisms associated to this condition 
have been poorly described, due mainly to the absence of reliable biomarkers. In 
this way, steroids, peptides, and lately urinary exosomes are thought to be potential 
reporters of biological processes. This review highlight exosomes and their cargo 
as potential biomarkers of metabolic changes associated to mineralocorticoid AHT. 
Recent reports have shown the presence of RNA, microRNAs, and proteins in urinary 
exosomes, which could be used as biomarkers in physiological and pathophysiological 
conditions. However, more studies are needed in order to benefit from exosomes and 
the exosomal cargo as a diagnostic tool in mineralocorticoid AHT.

Keywords: arterial hypertension, exosomes, biomarker, water-electrolyte balance, microRnA, urine, sodium 
channels

ARTeRiAL HYPeRTenSiOn (AHT)

Arterial hypertension is a multifactorial disease with a complex pathogenesis involving several 
systems. Different etiologies of AHT are known to occur from the interplay between genetic and 
environmental factors that lead to changes in biological pathways and eventually trigger this com-
plex disorder that primarily involves the cardiovascular system (1–3). AHT is a major risk factor 
for stroke, myocardial infarction, heart failure, and end-stage renal disease. Worldwide, approxi-
mately 40% of adults over 25 years old are affected by AHT, contributing to 45–50% of deaths due 
to heart disease and stroke (4, 5), making AHT a major concern for public health, particularly 
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in western countries (6–11). The pathogenesis of AHT involves 
the renal, vascular, and endocrine systems (12–15), affecting 
mainly sodium-water reabsorption and arterial vasoconstric-
tion. Pathological conditions, such as primary aldosteronism 
(PA), are responsible for up to 5–10% of patients diagnosed with 
AHT, and involve an increased production of aldosterone that 
leads to AHT, cardiovascular damage, heart diseases (16–18), 
and renal and immune alterations (19–23). Aldosterone is a 
mineralocorticoid hormone with non-genomic and genomic 
actions; the latter through the mineralocorticoid receptors (MR) 
can alter sodium transport in renal collecting ducts, increase 
water uptake, blood volume, and eventually raise blood pres-
sure. Along with effects of aldosterone in AHT, different studies 
in cells, animal models, and human trials through the analysis 
of serum and urinary markers have confirmed the pathogenic 
role of aldosterone on inflammation, endothelial dysfunction, 
oxidative stress, and fibrosis (20, 24, 25). Other factors, as novel 
proteins associated to aldosterone have also been reported to 
independent activate or enhance the MR action, such as a small 
GTP-ase Rac1 (26, 27), GPER (28), and the co-activator RACK1 
(29). However, only Rac1 has been described as component of 
exosomes (http://exocarta.org/download). GPER (previously 
known as GPR30) is a recently recognized G protein-coupled 
receptor implicated in mediating some of the rapid effects of 
steroid hormones, especially aldosterone. GPER protein is 
activated by aldosterone, but its relation with exosomes and 
mineralocorticoid AHT has not been studied to date.

Most studies about primary AHT have being focused in 
genetic alterations associated with the onset and progression 
of AHT affecting cardiac, endocrine, and renal systems (1, 2, 
30–32). Gene-specific (31, 33, 34), genome-wide association 
(35–39), and epigenetic studies (40, 41) support the knowl-
edge about the genetic components related to AHT. Several 
phenomena that regulate gene expression through genetics and 
epigenetics are emerging to understanding of AHT development  
(40, 42, 43). Most of the studies addressing the role of epigenet-
ics in human AHT (44, 45) have focused their interest on DNA 
methylation (46, 47) and non-coding RNAs such as microRNAs 
(miRNAs) (41).

Gene expression is a coordinated system regulating specific 
synthesis and interaction of RNA, miRNAs, and proteins.  
All of them can be also carried and potentially transferred to 
other cells (recipient cells) through nanovesicles called exosomes, 
where they regulate further cellular and metabolic processes (48). 
Identification of cell-specific RNA and proteins contained in 
exosomes isolated from different biofluids, may be a promising 
biological tool to identify early signs of AHT (49–51). This review 
highlight exosomes and their cargo as potential biomarkers or 
biological reporters of metabolic changes associated to mineralo-
corticoid AHT.

eXOSOMeS ARe CARRieRS  
OF BiOLOGiCAL inFORMATiOn

Exosomes and microvesicles are involved in several metabolic 
processes (52) initially proposed in the 1980s (53), described in 
tissues (54), body fluids (55) and considered to be vehicles for 

eradicating cell waste products (56). They are currently defined 
as extracellular vesicles of endosomal origin, with a spherical 
shape and a phospholipid bilayered structure of 30–150  nm 
diameter, carrying exosomal markers (e.g., CD63, HSP70) and 
a buoyant density of 1.23–1.16  g/L (57–59). Exosomes have 
important functions in immunology, cancer, coagulation, and 
many others aspects of human physiology, as carriers of informa-
tion including, proteins (60), lipids (61), mRNA, miRNA (48), 
and DNA (62).

Exosomes act through receptor–ligand interactions, by 
attaching/fusing with the target-cell membrane or by being 
internalized by the recipient cells (63) performing cell-to-cell 
communication and the intercellular exchange of proteins and 
nucleic acids, with relative stability against proteinases and 
RNAses (48). mRNAs horizontally transferred from exosomes 
to neighboring cells can be translated into proteins, and  
miRNAs can regulate acceptor mRNA expression (64). 
Exosomes contain a specific subset of cellular proteins, some 
of which depend on the cell type of origin, and others that are 
only found in exosomes regardless of the cell type of origin (57).

eXOSOMeS AnD eXOSOMAL CARGO 
ARe POTenTiAL nOveL BiOMARKeRS 
FOR ARTeRiAL HYPeRTenSiOn

Arterial hypertension is mainly associated with alterations in the 
cardiovascular and renal systems, in which there is great interest 
for discovering new biomarkers, highlighting the potential role 
of exosomes. Human blood, saliva, and urine are biofluids that 
constitute a source of non-invasive, convenient and easy to access 
biomarkers that can be collected many times over long periods 
of time. Spot urine and 24-h urine is the focus for the identifica-
tion of novel peptide, steroidal, or exosomal biomarkers with a 
potential role in diagnosis and classification of diseases related 
to renal system (65, 66).

Recent urinary proteomic studies have identified potential 
protein biomarkers of renal disease (67) such as nephrin (68) or 
podocin (69), but none of them have been translated into regular 
clinical practice. This is probably because free urinary proteins 
are often scarce, and frequently reabsorbed in the tubular renal 
systems or subjected to proteolytic digestion (70), similar to 
urinary RNA, which is degraded by RNAses in renal tissues (71); 
therefore, exosomes and their cargo, which are protected by a 
plasmatic membrane that is resistant to these influences, seem 
to be a suitable source of urinary biomarkers (72).

URinARY eXOSOMeS, Renin–
AnGiOTenSin–ALDOSTeROne SYSTeM 
(RAAS) AnD MineRALOCORTiCOiD AHT

Urinary exosomes originate from cells lining the nephron lumen 
and the urinary tract (70). Plasmatic exosomes cannot cross the 
glomerular filtration apparatus; therefore, urinary exosomes 
originate exclusively from luminal epithelial renal cells (73). 
Proteins detected in urinary exosomes are a reflection of the 
proteins in renal tissues (74, 75) and from acute injured sites 
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distant from the urinary tract (e.g., liver injury). The former 
increase their protein abundance upon stimulation of the renin-
angiotensin-aldosterone system (RAAS), which is an important 
blood pressure regulator (65). Exosomal RNAs, miRNAs, and 
proteins can mirror gene expression changes in kidney diseases 
(70, 76) promising to be effective and non-invasive biomarkers 
for renal disease and may be used as surrogate markers of RAAS 
activation, affecting expression of the epithelial sodium chan-
nel (ENaC) (OMIM: 600228), the thiazide-sensitive sodium-
chloride-cotransporter (NCC) (OMIM: 600968) (77, 78) among 
others. The complexity of the urinary proteome hinders the 
detection of low-abundance proteins that may have pathophysi-
ological relevance; therefore, the evaluation of urine exosomal 
proteins, which represent approximately 3% of the whole urine 
proteome, reduces the complexity of studying the whole urine 
proteome (79). These urinary proteins may originate from renal 
physiological processes that occur within the kidneys and/
from exosome secretion (72). Comprehensive studies have been 
conducted on the proteome of urinary exosomes, revealing that 
they contain a variety of cell-specific proteins/transporters from 
the kidney and from the urogenital tract (80, 81), that could be 
useful in the diagnosis of mineralocorticoid AHT.

wATeR-eLeCTROLYTiC BALAnCe: 
TAKinG ADvAnTAGe OF eXOSOMeS

Sodium Transporters
There is considerably more research on the use of urinary 
exosomes than circulating exosomes for the diagnosis of hyper-
tension, probably because most sodium transporter are present 
on the apical plasma membrane of the kidney epithelium and 
urinary exosomes are released to the lumen of the nephron under 
hormonal regulation. Sodium channels and specific miRNAs  
expression in exosomes are susceptible to the action of aldos-
terone alone and the RAAS (49, 65, 82). The RAAS and the 
kidneys play a pivotal role in blood pressure regulation (83) with 
sodium channels acting as crucial elements in the regulation of 
the electrolyte balance and blood pressure (84, 85). Some of the 
main players in sodium/water balance are the NHE3 (SLC9A3, 
sodium-hydrogen exchanger 3) (86) present in the renal proximal 
tubule, the Na–K–Cl cotransporter NKCC2 (SLC12A1) in the 
thick ascending loop of Henle (LoH) (84, 87, 88) and the NCC 
(SLC12A3) along with the ENaC (SCNN1) on the distal nephron 
(distal convoluted tubules and collecting duct). Altered function of 
these leads to hypertensive syndromes, such as Liddle (increased 
ENaC activity) (89) and Gordon (WNK4-NCC) (90, 91), or 
hypotensive syndromes, such as Gitelman (NCC) (92) and Bartter  
(NKCC2) (30) (see Figure 1).

Patients diagnosed with Gordon syndrome had a fourfold 
increase in the abundance of NCC in urinary exosomes when 
compared to controls (90); a recent publication in patients under 
exogenous mineralocorticoid (fludrocortisone) administration 
showed a reduction of 48% in the phosphorylated NCC (pNCC)/
NCC ratio along with a rapid increase in the abundance of NCC 
and pNCC in urinary exosomes, possibly through the WNK 
pathway (77). Interestingly, Castagna et al. in 2015 showed that 

exosomal and urinary NCC is under circadian regulation (93). 
Urinary exosomes from patients diagnosed with the Gitelman 
and Bartter type-1 syndromes, showed almost undetectable lev-
els of NCC and NKCC2 proteins, making feasible to discriminate 
between the syndromes and their severity through the exosomal 
protein content (94).

Urinary exosomes from mildly hypertensive patients on a 
low-sodium diet (activated RAAS) showed that a 11.4% of 
their total protein content changes (316 out of 2,775 proteins), 
with 4.1% of the proteins increasing and 7.3% decreasing the 
expression level. Here, the abundance of NCC, and the α, β, 
and γ subunits of ENaC increased under low-sodium diet or 
aldosterone infusion correlating with plasma aldosterone and 
urinary Na/K ratio (65). This communication also highlights 
the presence of the γENaC[112–122] peptide that increases nearly 
20-folds by both challenges (LS diet or under aldosterone infu-
sion) and correlates with plasma aldosterone and urinary Na/K 
ratio, while αENaC and NCC from urinary exosomes did not 
change under the same stimuli (65). Further evidence linking 
ENaC, exosomes, and AHT comes from Nielsen et al. (95) who 
studied pregnant women in normal and preeclamptic condi-
tions (95) and from Olivieri et al. (96) who measured urinary 
exosomal prostasin from healthy subjects and found a correla-
tion with aldosterone to renin ratio and urinary sodium (96).

Rat models of sodium imbalance show a correlation between 
the renal-tissue expression of NCC and NKCC2, and the expres-
sion of the same proteins on urinary exosomes (75). Urinary 
exosomes from rats under aldosterone infusion or low-sodium 
diet increased the levels of pNCC (97), similar to urinary 
exosomes from patients with PA, who had more pNCC than 
hypertensive patients, suggesting a possible role for exosomes 
as a PA biomarker (93). Similarly, an animal model of Sprague-
Dawley rats under sodium restriction showed increased expres-
sion of fully processed ENaC, with the α and γ subunits in fully 
cleaved states, and the β-ENaC fully glycosylated in urinary 
exosomes (98).

Aquaporins
Aquaporins (AQPs) are renal membrane proteins involved in the 
transfer of water and solutes across cell membranes, influencing 
urine formation and water handling. At least eight isoforms 
are reported in renal tissues (AQP 1–4, 6–8, 11) (99). AQP1 is 
expressed in the kidney’s proximal tubule cells, the thin descend-
ing LoH and the descending vasa recta, while AQP2 (anti-diuretic 
hormone-regulated water channel) is expressed in the principal 
cells of connecting tubules and collecting ducts (100–102).

Urinary exosomes have been observed carrying AQP1 and 
AQP2 (80, 103). AQP2 is under circadian regulation decreas-
ing in the morning and increasing in the afternoon/evening 
(93). The exosomal protein levels of AQP1–2 correlate with the 
renal expression and reflect their action on renal cells (104). 
The other AQPs have not been found in urinary extracellular 
vesicles (99). Decreased levels of AQP1 have been observed in 
urinary exosomes from a renal rat ischemia reperfusion injury 
model, from the urine of human patients after renal transplanta-
tion (105) and in cultured cells after exposure to acetazolamide 
(diuretic acting on the nephron’s proximal tubules) (106).  
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In contrast, acetazolamide increases AQP1 in rat urinary 
exosomes without a decrease in the renal expression (107). 
Long-term effect of vasopressin or vasopressin analogs pro-
motes extracellular vesicle uptake in renal epithelial cells (108), 
extracellular vesicle release in collecting duct cells, and enhance 
urinary excretion of exosomal AQP2 (109, 110) in murine kid-
ney collecting duct cells (mCCDC11), rodents, and patients with 
central diabetes insipidus (111). The short-term effects of these 
hormones increase the abundance of urinary exosomal AQP2 
protein (101) but reduces it under hypervolemic states (112). 
Regarding the mineralocorticoid pathway, there is a controver-
sial relation between AQP2 expression, aldosterone and the MR 
activation (113).

Renin–Angiotensin–Aldosterone System
As stated previously, the RAAS is a major regulator of blood 
pressure acting over the renal, vascular, cardiac, and adrenal 
systems. Angiotensin II (Ang II) and the Ang II type I receptor 
(AT1R) play key roles that could be being driven by exosomes. 
In 2015, Pironti et al. showed that either cardiac overload or 
Ang-II stimulation, induced the release of exosomes to the 
circulation (mainly from cardiomiocytes) carrying functional 
AT1R, that move to cardiac/skeletal myocytes and resistance 
vessels, further regulating blood pressure (114), and probably 
improving their sensitivity to RAAS (82).

Angiotensin II besides elevating blood pressure, is also 
associated with inflammation mediated end-organ dam-
age and fibrosis in AHT; hypertensive rat models (Ang II or 
l-NAME infused) release serum exosomes with decreased 
levels of miRNA-17 (ICAM-1 negative regulator) that when 
cultured with human coronary artery endothelial cells increase  
the protein expression of ICAM-1 and PAI-1, which are essen-
tial pro-inflammatory factors in vascular inflammation (115) 
providing evidence that hypertensive-related endothelial dam-
age may be due to exosomes and their cargo. The association 
between urinary exosomes and renal RAAS has been poorly 
studied and only indirect evidence has been reported in the 
literature (65, 80, 97).

URinARY eXOSOMeS AS CARRieRS  
OF miRnAs

MicroRNAs are endogenous small RNA molecules of approxi-
mately 22 nucleotides that can control a target gene transcription-
ally and posttranscriptionally (116) by complementarily binding 
the 3′UTR of target mRNA (117, 118). miRNAs are involved in 
cellular processes including proliferation, development, metabo-
lism, differentiation, and apoptosis. Individual miRNAs may 
regulate hundreds of genes, collectively 50–60% of the total tran-
scriptome (119), suggesting that miRNAs can have pleiotropic 
biological effects. Deregulation of miRNA expression is linked to 
many human pathological conditions; however, few studies have 
evaluated the relationship between miRNA expression and regu-
lation of the MR pathway, which has been associated mainly to 
gene expression downregulation at pre-receptor level, as occurs 
with 11BHSD2 (120, 121).

Different studies relate renal expression of miRNAs and  
AHT (122). In 2013, Gildea et  al. studied the miRNAome 
of urinary exosomes (49) and found 45 miRNAs likely to be 
potential biomarkers that correlated with salt sensitivity or 
inverse salt sensitivity of blood pressure. Some of these miRNAs 
regulate signaling pathways associated to AHT, reflecting the 
metabolic activity of the kidney and particularly sodium handling  
(see Table 1).

inTRARenAL COMMUniCATiOn 
MeDiATeD BY eXOSOMeS

Exosomes are proposed to play a key role in the inter- and 
intra-cellular communication of renal epithelial tissues among 
the different nephron segments. The available literature shows 
scarce and indirect evidence of MR activity associated to 
intrarenal communication mediated by exosomes. However, 
a study by Jella et  al. (50) showed that apical and basolateral 
exosomes secreted from a proximal tubule cell line (LLC-PK1) 
carrying active GAPDH that was taken up by cortical collecting 
duct cells (mpkCCD), which decreased its ENaC activity. This 
effect was mimicked in Xenopus 2F3 (distal tubule cells) and 
cortical collecting duct cells from SV129 wild-type mice in a 
GAPDH-dependent manner (50), providing information on 
how exosomes released on the proximal portion of the nephron 
can influence the activity of sodium channels in distal portions 
of the nephron (see Figure 1).

Another example of exosomal transferring, come from 
mCCDC11 cells (from cortical collecting duct epithelia) stimu-
lated with synthetic vasopressin analogs, which release exosomes 
loaded with AQP2 at levels that correlate with the AQP2 expres-
sion of the cell of origin. These exosomes are capable of transfer-
ring functional amounts of AQP2 to cells that do not express it, 
inducing an increase in cellular water flow (110). This suggests 
that exosomal content is physiologically regulated by vasopres-
sin and other hormones, through the loading of exosomes with 
functional proteins capable of regulating water homeostasis. 
On the other hand, fenoldopam and Ang II stimulate exosome 
release from human renal proximal tubule cells, which can then 
be taken up by human distal and collecting tubule cells, where the 
exosomes accumulate into multivesicular bodies and modulate 
the activity of reactive oxygen species downstream (73).

Finally, normal human urinary exosomes isolated and sequenced 
by RNA sequencing revealed that miR-10b-5p, miR10a-5p,  
miR30a-5p, miR26a-5p, and miR-30d-5p were the most abundant 
urinary miRNAs (51), confirming some miRNAs previously 
reported by Cheng et al. (71). Afterwards, human collecting duct 
cells and proximal tubular cells (HKC-8) were exposed to these 
isolated urinary exosomes. They were internalized and reduced the 
protein levels of ROMK, SGK1 and WNK1 in human collecting 
duct cells, and decreased the mRNA levels of the coupled neutral 
amino acid transporter 2 (SLC38A2) and its encoded protein 
SNAT2 in HKC-8 cells (51). These studies showed a potential 
functionality of urinary exosomes through miRNAs, suggesting 
that they carry specific miRNA families that target specific renal 
functions.
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TABLe 1 | Studies reporting miRNAs associated to genes or signaling pathways related to AHT.

Cell type  
or zone

Gene nCBi iD OMiM MicroRnA (miRnA) affecting gene Sample source Function related to AHT Reference

Collecting 
duct tubule 
(CDT) cells

NEDD4L NG_029954.1 606384 miRNA-30a-5p Urine from healthy volunteers Aldosterone regulated sodium 
reabsorption

(51)

HSD11B2 NG_016549.1 218030 miRNA-4474-3p Urine from healthy volunteers Mineralocorticoid receptor (MR) 
activation

(51)

SCNN1A NG_011945.1 600228 miRNA-4747-5p Urine from healthy volunteers αENaC-mediated sodium 
transport

(51)

SCNN1B NG_011908.1 600760 miRNA-138-1-3p Urine from healthy volunteers βENaC-mediated sodium 
transport

(51)

Colon, 
smooth 
muscle cell, 
and Henle’s 
loop

SLC12A2 
(NKCC1)

NG_042286.1 600840 miRNA-26a-5p; miRNA16-5p; miRNA-181a-2-3p, 
miRNA-101-3p; miRNA-203a; miRNA-561-3p; 
miRNA-26b-5p; miRNA-15b-5p

Urine from healthy volunteers NKCC1-mediated sodium, 
potassium, and chloride transport

(51)

miRNA-15a-5p; miRNA-424-5p
miRNA-4524b-5p; miRNA-195-5p
miRNA-218-5p; miRNA-374b-3p

Henle’s loop SLC12A1 
(NKCC2)

NG_021301.1 600839 miRNA-16-5p; miRNA-561-3p; miRNA-3662; 
miRNA-335-3p; miRNA-15b-5p; miRNA-15a-5p; 
miRNA-424-5p; miRNA-195-5p; miRNA-548k

Urine from healthy volunteers NKCC2-mediated sodium, 
potassium, and chloride transport

(51)

Proximal 
tubule cells

AQP1 NG_007475.2 107776 miRNA-128 Urine from healthy volunteers Water balance (51)

CDT cells AQP2 NG_008913.1 107777 miRNA-4747-5p Urine from healthy volunteers Water balance (51)

CDT cells NR3C2 NG_013350.1 600983 miRNA-28-3p; miRNA-320-a; miRNA-205-5p; 
miRNA-431-5p; miRNA-421; miRNA-135a-5p; 
miRNA-409-3p; miRNA-186-5p; miRNA-211-5p; 
miRNA-129-5p; miRNA-873-3p; miRNA-204-5p

Urine from healthy volunteers MR activation (51)

Ubiquitous ICAM1 miRNA-17 Rat urine from hypertension models (Ang II and l-NAME) Vascular inflammation (115)

LCoR miRNA-615-5p Human urinary exosomes from salt-sensitive or inverse salt 
sensitivity patients

Upregulation of PPARγ (49)

EGFR miRNA-221, miRNA-222 Human urinary exosomes from salt-sensitive or inverse salt 
sensitivity patients

EGFR pathway (49)

PIK3R1, 
PTEN

miRNA-29a-3p Human urinary exosomes from salt-sensitive or inverse salt 
sensitivity patients

Blockade of the TGF-β PI3k–Akt 
pathway

(49)

AML1/ETO miRNA-193a-5p Human urinary exosomes from salt-sensitive or inverse salt 
sensitivity patients

PTEN/PI3K signaling pathway (49)
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FiGURe 1 | Scheme of urinary exosomes released from different nephron segments. On the left, a scheme of the glomerulus and nephron showing exosomes 
released and traveling through the tubules carrying proteins or RNAs from the different segments of the nephron, containing specific channels associated to 
mineralocorticoid arterial hypertension. Specific local expression of sodium channels may be associated to the exosomal cargo: NHE3 from the proximal convoluted 
tubule (PCT) (blue exosome), NKCC2 from the loop of Henle (LoH) (yellow exosome), NCC from the distal convoluted tubule (green exosome), and epithelial sodium 
channel from the collecting duct (red exosomes). On the right, urinary exosomes (bilayered nanovesicles of 30–120 nm diameter) contain specific proteins  
(e.g., sodium channels), mRNA, and microRNA (miRNA), and show typical markers (CD63, HSP70) along with renal proteins (AQP1–2). Model based  
on references (49–51, 73, 80).

6

Barros and Carvajal Urinary Exosomes and Mineralocorticoid AHT

Frontiers in Endocrinology | www.frontiersin.org September 2017 | Volume 8 | Article 230

COnCLUSiOn

There is a growing evidence indicating that exosomes play a 
role in cardiovascular and renal physiology, where mineralo-
corticoid AHT could benefit from the discovery of effective 
biomarkers. Exosomes possess a variety of biological informa-
tion, and urinary exosomes mainly carry RNA and proteins 
could mirror biological events in the kidneys, which can be a 
useful a tool for identifying and studying metabolic changes 
in renal physiological and pathophysiological conditions. This 
review shows current evidence about urinary exosomes car-
rying mRNA, miRNAs, and specific sodium channels (ENaC, 
NCC, NKCC2), which could reflect their abundance in renal 
tissue and be related to metabolic pathways associated with 
mineralocorticoid AHT. Therefore, the information carried by 
exosomes could be beneficial for diagnosing different subtypes 
of AHT and enabling more appropriate treatment and further 
improving the quality of life for patients. Although progress in 
recent years has been made to elucidate the role of exosomes, 
many questions regarding their specific functions of urinary 

exosomes along the nephron and their response to different 
stimulus and pathological conditions still need more compre-
hensive answers. Further studies are needed to determinate the 
potential benefits of exosomes in mineralocorticoid AHT.
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