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Oxidative stress, which is a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety
of factors. This biochemical state is associated with diseases that are systemic as well as diseases that affect the central nervous
system. Epilepsy is a chronic neurological disorder, and temporal lobe epilepsy represents an estimated 40% of all epilepsy cases.
Currently, evidence from human and experimental models supports the involvement of oxidative stress during seizures and in the
epileptogenesis process. Hence, the aim of this review was to provide information that facilitates the processing of this evidence
and investigate the therapeutic impact of the biochemical status for this specific pathology.

1. Oxidative Stress: Antioxidant
Defense Mechanisms

Mitochondria are the organelles responsible for most ATP
production in nonphotosynthetic organisms. Mitochondria
produce energy by oxidizing carbohydrates and fats through
the tricarboxylic acid (TCA) cycle and 𝛽-oxidation, respec-
tively. Electrons from nicotinamide adenine dinucleotide
phosphate (NADH) and the reduced form of flavin adenine
dinucleotide (FADH

2
), which are produced through the TCA

cycle, are transferred to the electron transport chain in
the inner mitochondrial membrane. Although the primary
function of mitochondria is to produce ATP, they are also
critically involved in the control of apoptosis and calcium
homeostasis as well as the production and detoxification of
reactive oxygen species (ROS) [1].

The physiological levels of ROS can be scavenged by
enzymatic (e.g., superoxide dismutase (SOD), glutathione
peroxidase (GPx), glutathione reductase (GR), and cata-
lase (CAT)) and nonenzymatic (e.g., vitamin C, vitamin E,
carotene, coenzyme Q, melatonin, and reduced forms of
glutathione (GSH)) antioxidant defense systems. However,
excessive ROS levels caused by increased ROS production or
decreased antioxidant defense can lead to oxidative stress [2],
which damages proteins, phospholipids, and mitochondrial
DNA and results in cell death [3].

Antioxidants can delay or prevent the oxidation of a
substrate [4].The physiological production of ROS in aerobic
organisms requires the presence of a defense system to protect
against the effects of these oxidative species. This antioxidant
defense system has two parts: high molecular weight (antiox-
idant enzymes, including SOD, CAT, and peroxidases) and

Hindawi Publishing Corporation
Oxidative Medicine and Cellular Longevity
Volume 2014, Article ID 759293, 12 pages
http://dx.doi.org/10.1155/2014/759293

http://dx.doi.org/10.1155/2014/759293


2 Oxidative Medicine and Cellular Longevity

lowmolecular weight (nonenzymatic antioxidants, including
vitamins, lipoic acid, uric acid, and GSH) [5].

1.1. GSH: Activity of Antioxidant Enzymes. GSH is involved
in the activity of the antioxidant enzymes GPx, GR, and GST.

(a) GPx is a selenoenzyme that catalyzes the reduction of
twomolecules of peroxide using reducedGSH, and it is found
in several isoforms [6–9]. Cytosolic GPx (cGPx, GPx-1) is
present in the cytosol of all tissues at different concentrations.
Plasma GPx (pGPx, GPx-3) occurs in the extracellular fluid
of various tissues and in high concentrations in the kidney.
Phospholipid GPx (PHGPx, GPx-4) in the membrane and
cytosol of various tissues functions as an antioxidant in the
cell membrane, and it is abundant in testicles. Gastrointesti-
nal GPx (GI-GPx, GPx-2) is present in the cytosol of the liver
and intestinal tract of humans.

(b) The GR enzyme is found in the cytoplasm and
has an FAD+ coenzyme at its active site, and it catalyzes
the reduction of glutathione disulfide (GSSG) using the
coenzyme NADPH [10]. Evidence indicates that NADPH
reduces FAD+, which transfers two electrons to the disulfide
linkage (–S–S–) between two active site cysteine residues.The
two –SH groups that are formed then interact with GSSG,
reducing it to two GSH molecules. GR maintains the GSH
levels in the cell [11].

(c) GSH S-transferase (GST) is an enzyme that is found as
cytosolic and microsomal isoforms. Cytosolic GST is divided
into four main families (𝛼, 𝜇, 𝜋, and 𝜃) and four minor
families (𝜁, 𝜎, 𝜅, and 𝜔), whereas microsomal GST is divided
into three families (MGST1, MGST2, andMGST3). Cytosolic
GST consists of two identical protein subunits, whereas
microsomal GST is a trimer [12–14]. The principal function
of this enzyme is the conjugation of GSH with numerous
organic compounds; GST can also reduce lipid hydroperox-
ides, such as GPx, and may detoxify 4-hydroxynonenal (4-
HNE), a product of lipid peroxidation.

2. Role of GSH in Neurodegenerative Diseases

Currently, the etiology of neurodegenerative disease lacks
an explanation. Many nervous system (NS) disorders are
followed by cognitive function deterioration. Among these
neurodegenerative processes, a progressive loss of specific
neuronal populations is observed, resulting in scenarios
in which ROS play a central role. However, the neuronal
death that occurs because of trauma, ischemia, inflammatory
lesions, excitotoxicity, and excessive ROS may trigger the
degenerative process in certain diseases, such as Alzheimer’s
disease (AD) [15, 16], Parkinson’s disease (PD) [15, 17],
Huntington’s disease (HD) [15, 18, 19], amyotrophic lateral
sclerosis (ALS) [20–22], Friedreich’s ataxia (FRDA) [23, 24],
and epilepsy [25–27]. These diseases manifest a number of
complications, including impaired cognition, motor func-
tion, and dementia.

The brain is particularly vulnerable to oxidative stress
because of its high oxygen consumption; in addition, it
contains unsaturated fatty acids that are targets of lipid
peroxidation [28–30]. GSH is synthesized in brain cells, and

intracellular concentrations have been observed in the range
of 0.2 to 10mM [31]. In 1989, Chen et al. reported GSH
levels in different brain regions (i.e., cortex > hippocampus
> brainstem) and showed results similar to those reported
by Abbott et al. [32, 33]. The GSH level in the cerebrospinal
fluid (CSF) is much lower (∼5 𝜇M) than in brain tissue
[34, 35]. GSH depletion can enhance oxidative stress and
may also increase the levels of excitotoxicity molecules, and
both actions can initiate cell death in distinct neuronal
populations. Similarly, GSH plays multiple roles in the NS,
including that of a free radical scavenger, redox modulator of
ionotropic receptor activity, and possible neurotransmitter.

The involvement of GSH in neuronal diseases was first
described in the neuronal ceroid lipofuscinoses (NCLs),
which is known as Batten disease. In an initial study, the for-
mation of pathological “lipopigments” was observed, which
was possibly because of an increased rate of peroxidation
of polyunsaturated fatty acids [36]. Subsequent research has
shown that, in the blood cells of patients with NCLs, the
loss of oxidant enzymes is different from that in the controls
[37, 38].The loss of GSH is considered an early change that is
responsible for the increased susceptibility to oxidative stress,
and it is also associated with aging and leads to neuronal
degeneration.

Numerous studies have been conducted to determine
the role of GSH in PD, AD, HD, ALS, FRDA, and epilepsy.
Pearce et al. were the first to determine that the GSH content
in the substantia nigra is significantly lower than in other
brain regions [39]. Similar results were obtained in autopsied
human brains with PD [40, 41]. In addition, disturbances in
brain GSH metabolism may contribute to the development
of AD and PD [42–44]. In 2005, Liu et al. showed for the first
time that GSH metabolism was regulated differently in male
and female AD patients [45].

Furthermore, the reduction of GSH has been reported
in the spinal cord in a mouse model of ALS [46]. GSH
metabolism disorders might be key risk factors for ALS.
Numerous clinical studies have reported an altered redox
cycle in ALS patients, including alterations in the synthesis of
GPx and activities of other antioxidative enzymes. One study
of 35 sporadic ALS patients revealed significantly decreased
activities of both GPx and CuZn SOD in the ALS patients
compared with that of the controls [47], and additional
studies have shown similar results [48, 49]. In postmortem
brain samples from9patientswith sporadicALS,GPx activity
was shown to be reduced in a brain region that is affected in
patients with ALS [50].

Reduced GSH and oxidized GSH (GSSG) levels were also
observed in various brain areas (substantia nigra, putamen,
caudate nucleus, globus pallidus, and cerebral cortex) of
patients with HD, and reduced GSSG levels were observed
in the caudate nucleus (50%) [51]. In another study, the
lipid peroxidation levels were higher and the GSH levels
were lower in the plasma of HD patients compared to age-
and gender-matched controls [52]. Finally, animal models
of HD have shown a significant increase in GSH content
in mitochondria isolated from the cortex, striatum [53],
hippocampus, and cortex [54].
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3. Oxidative Stress in Epilepsy:
Relevance of GSH

Dysregulation of GSH homeostasis and alterations in GSH-
dependent enzyme activities are increasingly implicated in
the induction and progression of neuronal diseases, such
as epilepsy. It has been widely reported that alterations
in the antioxidant system and increases in oxidants are
associated with this condition. Epilepsy is one of the most
common and serious brain disorders, and it affects at least
50 million people worldwide [55]; in addition, approximately
100 million people will have at least one epileptic seizure
during their lifetime.

The brain is particularly susceptible to oxidative stress
because it is the organ that utilizes the greatest amount of
oxygen within the body. A high content of polyunsaturated
fatty acids susceptible to lipid peroxidation, high iron content
capable of catalyzing hydroxyl radical formation, and low
amounts of CAT increase the susceptibility of the brain to
damage from excessive oxidative stress. Oxidative stress is
regarded as a possible mechanism in the pathogenesis of
epilepsy [56]. Furthermore, persistent seizures have been
demonstrated to cause cell damage through increases in
oxidative stress [57–61]. As described below, several ani-
mal models of epilepsy have consistently found significant
increases of ROS after seizures, and important alterations in
the antioxidant system have been found in seizing animals
and epileptic patients.

Clinical studies have also demonstrated that epileptic
patients show a higher lipid peroxidation rate and lower
concentrations of vitamins C andA in plasma compared with
healthy controls. In one study, epileptic patients treated with
phenobarbital and who did not present with convulsions for
one year had higher GR levels comparedwith their pretreated
conditions, suggesting that free radicals may be implicated in
epilepsy [62]. Other studies have found low levels of selenium
(Se) andGPx in patientswith epilepsy [63, 64], indicating that
impairments in the antioxidant system are highly implicated
in seizure generation and recurrence.

3.1. Discovering the Relevance of GSH in Epileptic Seizures
through the Use of Animal Models. Genetically epilepsy-
prone rats (GEPRs) are models of generalized tonic/clonic
epilepsy. GEPRs-9 animals develop severe seizures, resulting
in hind limb extension [65]. In these animals, hippocampal
development is accompanied by oxidative stress, and GEPRs-
9 animals cannot compensate for a breakdown in GPx enzy-
matic activity. These animals show a decrease in GPx and the
GSH/GSSG ratio and an increase inGSSG, lipid peroxidation,
and protein oxidation, suggesting that the enhanced oxidative
burden in GEPR-9s may be caused by their failure to respond
to reduced GPx along with the perturbed GSH status in this
strain [66].

The administration of systemic of trimethyltin (TMT) in
rat models results in a pattern of damage in the CA3 hip-
pocampal region [67] and dentate gyrus [68]. TMT admin-
istration generates phenotypes that are similar to phenotypes
in certain human epileptic patients, including seizure sus-
ceptibility, hyperactivity, and aggression [69]. TMT decreases

the ratio of GSH to GSSG, GSH-immunoreactivity, and GPx
and GSH protein expression levels in rat hippocampi [70].
However, an elevation in GSH S-transferase (GST) activity
has been observed in the hippocampi of mice treated with
TMT, suggesting that GST activation may be responsible
for the reduced levels of GSH found in the hippocampus
[71]. The above data suggest important alterations in the
antioxidant system in seizing animals, specifically the GSH
defense system. Decreased enzymatic activity is observed
after seizures, and if it is restored, seizures can be reduced.

3.2. Antiepileptic Drugs and Oxidative Stress in Epileptic
Patients. Several studies have demonstrated that antiepilep-
tic drugs (AEDs) may impair the antioxidant defense sys-
tem and induce or exacerbate oxidative injury in epilep-
tic patients. Several first-choice AEDs for epileptic syn-
dromes, such as valproic acid, carbamazepine, phenytoin,
and phenobarbital, increase lipid peroxidation and nucleic
acid oxidation in the blood [72–78]. In addition, pheny-
toin decreases the GSH serum levels in adult epileptic
patients, carbamazepine reduces GPx levels, and pheno-
barbital decreases SOD and GPx levels in the erythro-
cytes of adult patients [76]. Carbamazepine has also been
shown to induce fewer disturbances to antioxidant and
lipid peroxidation relative to valproic acid [74, 75] or
phenytoin [76].

Alterations in the antioxidant system induced by AED
therapy can be explained by the metabolism of AED into
reactive epoxide intermediates, which bind covalently to
bimolecular and induce structural and functional impair-
ments [79]. AED treatment has also been associated with
cognitive decline [80, 81], and high doses increase the risk
of cognitive side effects [82, 83]. Therefore, researchers are
now focusing on developing add-on treatments for AED
therapies to counteract the cognitive decline induced by
antiepileptics and seizures. In various studies, a beneficial
effect ofmelatonin as an add-on therapy for epileptic children
was described in a series of clinical trials [84–87]. In addition,
the add-on melatonin treatment was reported to elevate GR
and GPx activities in the blood of epileptic children receiving
valproic acid or carbamazepine monotherapy [85, 86]. These
authors also observed that melatonin improved sleep pat-
terns, behavior, attention, cognition, and memory function
in epileptic children receiving valproic acid monotherapy,
which may reflect a neuroprotective effect of melatonin
against the deleterious effects of epilepsy and AED therapy
[85, 86].

In another study, topiramate (TPM), a new antiepileptic
compound that acts by inhibiting voltage-gated sodium and
calcium channels, blocking glutamate AMPA/kainite recep-
tors and enhancing GABAA receptor-mediated chloride, was
tested as a neuroprotective agent [88]. TPM therapy in
combination with selenium supplementation (TPM + Se)
decreases erythrocyte lipid peroxidation and increases GSH
and GSH-GPx along with plasma vitamins A and C in
refractory epileptic patients [89]. Moreover, in pentylene-
tetrazol- (PTZ-) treated rats, TPM and TPM + Se decreased
lipid peroxidation in plasma and erythrocytes and increased
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Table 1: Evidence of the GSH system in experimental epilepsy models.

Model Procedure model Observations References

Electrical implants in male
Sprague-Dawley rats
(300–500 g)

Insulated stainless steel electrodes were
implanted in the left dentate gyrus and
angular bundle.
During the experiments, video-EEG was
continuously recorded (24 h/day) until the
animals were sacrificed.
Plasma was used by biochemical
determinations.

The glutathione PEGylated (GSH-PEG)
liposomal methylprednisolone (MP)
treatment did not have any effect on SE
duration and subsequent seizure
development. Both the GSH-PEG liposomal
MP-treated and vehicle-treated rats
developed spontaneous seizures, indicating
that GSH-PEG liposomal MP could not
prevent epileptogenesis.

[108]

Hippocampal glutamine
synthetase deficiency by
continuous microinfusion
of methionine sulfoximine
(MSO) in male
Sprague-Dawley rats
(180–220 g)

An osmotic pump was introduced through a
burr hole in the skull and then into the right
hippocampus. The pumps were filled with
MSO to achieve the following drug delivery
rates: 2.5, 1.25, and 0.625 𝜇g/h for
approximately 28 days. Separate pumps were
filled with saline (0.9% NaCl) as a control.
For the GSH determination, the hippocampi
were isolated.
GSH was measured using the
spectrophotometric method with
5-thio-2-nitrobenzoic acid in a reaction
coupled with GR.

Recurrent behavioral seizures occurred with
all doses of MSO.
The intrahippocampal infusion of MSO was
associated with a dose-dependent loss of
neurons in the hippocampal formation and
nearby brain areas.
No decrease in hippocampal GSH was
observed in the lower-dosed animals
(0.625 𝜇g/h), whereas a 21% decrease was
observed in the higher-dosed animals
(2.5 𝜇g/h) 10 days after the onset of MSO
infusion.

[109]

Lithium-pilocarpine in
male Sprague-Dawley rats
(260–300 g)

Lithium chloride (LiCl) (127mg/kg) was
injected intraperitoneally (i.p.) into both the
experimental and control groups. Status
epilepticus (SE) was induced by a
subcutaneous injection of pilocarpine
hydrochloride (25mg/kg) 20 h after the LiCl
treatment. For the GSH determination, the
hippocampus, dentate gyrus, amygdala,
entorhinal, piriform cortices (hippocampal
formation), cerebral cortex, and cerebellum
were removed and evaluated by
high-performance liquid chromatography
(HPLC).

The concentration of GSH was decreased in
the hippocampal formation (22.6%) and
cerebellum (6%) in the epileptic rats.

[110]

Pilocarpine in 7- to
8-week-old male CD1 mice
(25–40 g)

A single dose of pilocarpine was
administered (330–345mg/kg
subcutaneously). All determinations with
pilocarpine and controls were realized
within 3.5–4 weeks after treatment, and the
cerebral cortices, HF, and blood samples
were obtained.
The GSH levels were measured by HPLC.

The level of GSH was significantly decreased
(18%) in the hippocampal formation,
whereas it was not significantly altered in
the cortex in the pilocarpine mice.

[111]

Pilocarpine in 2-month-old
male Wistar rats
(250–280 g)

The control animals received 0.9% i.p.
saline, and in the experimental group, the
animals were treated with a dose of
pilocarpine hydrochloride (400mg/kg, i.p.).
To determine the lipid peroxidation level,
nitrite content, GSH concentration, and
SOD and CAT activities, the rats
(pilocarpine and control groups) were
sacrificed 24 h after the treatment, and the
brains were dissected on ice to remove the
frontal cortex and striatum.

After pilocarpine-induced SE, significant
increases (i.e., 47 and 59%) in the
thiobarbituric acid reactive substance
(TBARS) levels in the striatum and frontal
cortex were observed. Marked increases
were presented in nitrite content: 49 and
73% in the striatum and frontal cortex,
respectively; the GSH concentrations
decreased by 54 and 58% in the striatum and
frontal cortex, respectively; the SOD in
frontal cortex was verified by its increase of
24% after the seizures; and CAT increases of
39 and 49% were observed in the striatum
and frontal cortex, respectively.

[112]
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Table 1: Continued.

Model Procedure model Observations References

Pilocarpine-lithium in 80-
to 90-day-old male and
female Wistar rats

SE was induced by administering
pilocarpine hydrochloride (30mg/kg i.p.)
22 h after LiCl (127mg/kg i.p.). SE was
interrupted after 2 h, and the rats were
sacrificed 24 h later. The piriform and
entorhinal cortices, temporal neocortex,
thalamus, and hippocampus were dissected.
Neurochemical determinations were
performed using spectrophotometric
methods: lipid peroxidation was analyzed by
measuring the TBARS levels; SOD activity
was analyzed with the xanthine-xanthine
oxidase system, and GPx was analyzed by
reducing the cumene hydroperoxide using
GSH as a reducing agent.

The TBARS levels in all of the examined
structures were significantly higher in the
rats with SE: approximately 41% higher in
the piriform and entorhinal cortices; 22%
higher in the temporal neocortex; 25.7%
higher in the thalamus and 15% higher in
the hippocampus. SOD activities were
significantly higher in the rats with SE in the
piriform and entorhinal cortices (11.7%) and
temporal neocortex (19.7%).
The GPx activities were significantly higher
in the animals with SE in the piriform and
entorhinal cortices (22.1%) and thalamus
(8.9%). The authors did not observe
significant sex-treatment interactions in the
results in any of the investigated brain
regions.

[113]

Pilocarpine in male Wistar
rats (250–350 g)

The experimental group was injected with
pilocarpine (350mg/kg i.p.), and the control
rats were injected with a physiological salt
solution. The rats were sacrificed by
decapitation 2 h after drug administration,
and the cortical regions were removed.
Neurochemical determinations were
performed by spectrophotometric methods:
lipid peroxidation was analyzed by
measuring the oxidative marker
malondialdehyde (MDA); SOD activity was
measured with the xanthine/xanthine
oxidase system; GPx was measured with
H2O2 as the substrate and GR and NADPH
as the enzymatic and nonenzymatic
indicators, respectively; CAT activity was
measured by H2O2 decomposition and GR
and NADPH as the enzymatic and
nonenzymatic indicators, respectively. The
mRNA expression of the antioxidant
enzymes was determined by real-time
RT-PCR.

Pilocarpine increased the MDA levels
(64%). All enzymatic activities were
measured, and CAT, GPx, and SOD
significantly increased in response to
pilocarpine (28%, 28%, and 21%, resp.).
The GPx gene expression significantly
increased in the pilocarpine group
(1.47-fold), and the Mn-SOD expression also
significantly increased (1.33-fold). The CAT
expression was unchanged.

[114]

Kainite in male
Sprague-Dawley rats
(300–350 g)

The rats were subcutaneously administered
saline or 11mg/kg kainite. The rats were
sacrificed after 1min of carbon dioxide
inhalation and then were immediately
decapitated at 8 h, 24 h, 48 h, 1 week, 3
weeks, and 6 weeks after injection to
determine the acute, latent, and chronic
periods of epileptogenesis. The hippocampal
tissue was prepared for biochemical analysis.
GSH and GSSG were determined by HPLC.

Whole hippocampal tissue GSH decreased
during the acute, latent, and chronic stages
of the experimental temporal lobe epilepsy
(TLE).
Hippocampal tissue GSSG levels increased
substantially at 48 h after kainate treatment.
Acute GSSG was increased at the 8 and 24 h
time points. During the latent period, GSSG
was elevated from 1 to 6 weeks after the
kainite treatment. The GSH/GSSG ratio was
significantly decreased in the kainate
treatment groups from 24 h through 6
weeks.

[115]

GSH levels compared with that of the control group [90].
Therefore, TPM appears to be a promising new AED
that not only ameliorates epileptic seizures but also can
shield the brain from the damaging effects of oxidative
stress.

4. GSH in Temporal Lobe Epilepsy

The evidence for GSH involvement in epilepsy is well known,
and we have provided evidence of such involvement in
experimental models (Table 1) as well as in humans (Table 2).
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5. Potential Use of Antioxidants against
Seizures and Their Epileptogenic Impact
on the GSH

Current research has suggested that antioxidant compounds
may provide some level of neuroprotection against the neu-
rotoxicity of seizures at the cellular level. Epigallocatechin-3-
gallate (EGCG) is the main polyphenol of green tea and pos-
sesses important antioxidant, anti-inflammatory, and anti-
apoptotic properties [91–93]. Recently, it has been demon-
strated that EGCG suppresses the progression of kindling and
ameliorates the cognitive impairment in PTZ-kindled rats
[94]. Moreover, EGCG treatment restores the oxidative stress
induced byPTZ-kindling by increasing brainGSH levels [94].

During the last decade, curcumin has been the focus of
attention in the field of antioxidant and anti-inflammatory
research because of its promising effects in several diseases.
Curcumin is a low molecular weight polyphenol found in
the dried ground rhizome of the perennial herb Curcuma
longa [95]. Recently, it has been tested for its neuroprotective
properties in neurodegenerative diseases, such as AD [96],
and it has also been tested as an anticonvulsant and cognitive
enhancer. As previously mentioned, AED treatment has been
associatedwith cognitive decline, and Reeta et al. investigated
the neuroprotective effect of curcumin against phenytoin-
induced cognitive impairment in rats [97]. These authors
observed that curcumin produced a dose-dependent reduc-
tion of phenytoin-induced brain malondialdehyde (MDA)
and dose-dependent increase in GSH brain levels. These
effects were accompanied by positive effects on retention
transfer latency in an elevated plus maze test and the passive
avoidance paradigm. Moreover, curcumin alone (adminis-
tered for 21 days) decreased oxidative stress levels, which
was indicated by a significant decrease and increase in brain
MDA and GSH levels, respectively [97]. Several studies have
focused on the antiepileptic actions of curcumin, which has
also been shown to have anticonvulsant properties against
seizures induced byKA [98, 99] and FeCl

3
[100] and an ability

to elevate the seizure threshold in the maximal electroshock
model [101]. In addition, curcumin can reduce the incidence
of status epilepticus induced by pilocarpine [102] and inhibits
amygdala-kindled seizures in rats [103]. Moreover, curcumin
restores pilocarpine-induced decreases in hippocampal GSH
and SOD levels [102], indicating that enhancing the antioxi-
dant system may be a potential strategy to combat epileptic
seizures.

6. Other Antiepileptic Therapies That
Regulate GSH Levels

The classic ketogenic diet (KD) is a high-fat/low-carbohy-
drate diet (most often in a 4 : 1 fat : nonfat ratio) that is used
to treat intractable seizures in children and adolescents. Our
understanding of the metabolic effects of a KD originates
from the pioneering work of Cahill and colleagues in the
1960s, but the importance of these diets from a clinical
perspective was acknowledged in the early 1920s with their
successful use in the treatment of epilepsy.

Several theories have focused on the potential protective
role of ketone bodies that accumulate during ketosis; recently,
an alteration in mitochondria bioenergetics caused by the
application of a KD has been suggested. GSH levels are an
important indicator ofmitochondrial and cellular health, and
as mentioned above, mitochondrial dysfunction has been
implicated in seizures and epilepsy.

Mice fed a KD for 10–12 days have been shown to
produce less ROS [104]. In addition, rats maintained on a
KD for at least 4 weeks have been found to have significantly
more mitochondria in their hippocampi compared with
that of controls, suggesting that mitochondrial biogenesis is
stimulated by the consumption of aKD [105]. Severalmarkers
of redox status, such as increases in the GSH/GSSG ratio,
have shown improvement in the hippocampi of rats fed a
KD [106]. Furthermore, the increased activity of glutamate
cysteine ligase (GCL), the rate-limiting enzyme in GSH
biosynthesis, has been shown in the hippocampi of rats fed
a KD. In addition, rats fed a KD produce less H

2
O
2
than

controls, suggesting functional improvements as a result of
consuming a KD. It has been suggested that activation of
the Nrf2 transcription factor plays an important role in the
enhanced biosynthesis of GSH by KDs [107]. Although the
exact mechanism by which a KD provides neuroprotection
remains unclear, the previously mentioned results suggest
that restoring the antioxidant system may be linked to the
anticonvulsant properties of a KD.
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and J. Y. Bauzá, “Oxidative stress markers in surgically treated
patients with refractory epilepsy,” Clinical Biochemistry, vol. 40,
no. 5-6, pp. 292–298, 2007.
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