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Abstract 

The mystery of aesthetics attracts scientists from various research fields. The topic of aesthetics, in combination with 
other disciplines such as neuroscience and computer science, has brought out the burgeoning fields of neuroaes-
thetics and computational aesthetics within less than two decades. Despite profound findings are carried out by 
experimental approaches in neuroaesthetics and by machine learning algorithms in computational neuroaesthet-
ics, these two fields cannot be easily combined to benefit from each other and findings from each field are isolated. 
Computational neuroaesthetics, which inherits computational approaches from computational aesthetics and 
experimental approaches from neuroaesthetics, seems to be promising to bridge the gap between neuroaesthetics 
and computational aesthetics. Here, we review theoretical models and neuroimaging findings about brain activity 
in neuroaesthetics. Then machine learning algorithms and computational models in computational aesthetics are 
enumerated. Finally, we introduce studies in computational neuroaesthetics which combine computational models 
with neuroimaging data to analyze brain connectivity during aesthetic appreciation or give a prediction on aesthetic 
preference. This paper outlines the rich potential for computational neuroaesthetics to take advantages from both 
neuroaesthetics and computational aesthetics. We conclude by discussing some of the challenges and potential 
prospects in computational neuroaesthetics, and highlight issues for future consideration.

Keywords:  Neuroaesthetics, Computational aesthetics, Computational neuroaesthetics, Brain functional connectivity, 
Machine learning

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

1  Introduction
Aesthetics, defined in the dictionary as “a set of principles 
concerned with the nature and appreciation of beauty” 
[1], plays a fundamental role in human’s history and cul-
ture. The way we appreciate beauty and the way we cre-
ate beautiful things enrich our daily life and fulfill our 
world. However, we still know little about how aesthetics, 
the feeling of being moved and the ability to appreciate 
and judge the beauty, is generated. Aesthetics has been 
a subject of curiosity within philosophy in the eight-
eenth century, but now has extended to other scientific 

disciplines like cognitive psychology, neuroscience, and 
computer science [2–4]. In these fields, researchers seek 
to understand aesthetics from different perspective. The 
widespread interest on aesthetics and the integration 
of aesthetics with researcher’s own background have 
brought out a variety of interdisciplinary research fields 
such as empirical aesthetics, neuroaesthetics, and com-
putational aesthetics [5, 6].

Empirical aesthetics has emerged from the field of 
experimental psychology in the 19th century, where 
Gustav Fechner was attracted by the mystery of aes-
thetics. He developed the initial methodological 
setup to carry out experimental research on aesthetic 
experience [7]. After that, numerous experimental 
researches on aesthetics have been carried out by psy-
chologists who seek to understand the psychological 
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process during aesthetic appreciation and creation. In 
empirical aesthetics, results are usually obtained by 
the observation of behavior and questionnaire from 
participants in well-designed experiments. Findings 
from the experimental results uncovere a series of psy-
chological factors such as perception, knowledge, and 
content, which influence our aesthetic experience of 
art. However, these findings mainly focuse on building 
theoretical models of aesthetics and they are insuffi-
cient to fully reveal the mystery of aesthetics. The lack 
of support by the neural basis of aesthetic experience 
and quantitative computing between different psycho-
logical factors make aesthetics remains a mirage. Neu-
robiological investigation started by neuroscientists 
like Cajal (1852–1934) builds our basic understanding 
of the neural basis of human behavior [8]. With the 
advance of technology, modern neuroimaging tools, 
such as electroencephalogram (EEG), magnetoenceph-
alogram (MEG), and functional magnetic resonance 
imaging (fMRI), have become available for research-
ers. The application of these neuroimaging techniques 
in experimental aesthetics and the goal to understand 
neurobiological basis of our cognitive process dur-
ing aesthetic experience have blossomed into a newly 
research perspective called neuroaesthetics [9]. This 
research field grows fast and important findings in neu-
roaesthetics continue to enhance our understanding of 
neural underpinning of aesthetics.

While the burgeoning neuroaesthetics becomes a 
research enterprise, another field, computational aes-
thetics has also gain increasing interest from research-
ers. Computational aesthetics is defined as “the 
research of computational methods that can make 
applicable aesthetic decision in a similar fashion as 
humans can” [6]. The idea of computational aesthet-
ics can be dated back to Fechner who believed that the 
physical attributes in aesthetic appealing things could 
be measured in a formalistic way. Then, in 1933, Birk-
hoff wrote the book entitled “Aesthetic Measure” and 
proposed a formula to measure aesthetics in a very 
mathematical way [10]. His work is often regarded as 
the beginning of computational aesthetics. Heavy use 
of computers in the modern information society and 
prevalence of aesthetics in our daily life have led to 
motivation for researches in computational aesthet-
ics. As a subfield of computer vision, computational 
aesthetics seeks to build computational models to give 
an aesthetic evaluation on visual stimuli or generate art 
like professional artists automatically. The wide appli-
cation of computational aesthetics in image assessment 
as well as art generation makes it a hot topic in recent 
years [11]. Studies in computational aesthetics not only 
can be the test bed for aesthetic measurements but 

also stretch our understanding on visual attributes that 
affect aesthetic appreciation and art generation.

Both neuroaesthetics and computational aesthetics can 
enrich our understanding on aesthetic appreciation.  And 
these two fields can benefit from each other by proposing 
new theoretical models as well as computational models. 
However, there is still a gap between neuroaesthetics and 
computational aesthetics. Theoretical findings from neu-
roaesthetics cannot be immediately formulized in compu-
tational aesthetics and some computational models from 
computational aesthetics lack of experimental validation 
and theoretical support by neuroaesthetics. With the devel-
opment of neuroaesthetics and computational aesthetics in 
nowadays, to give a comprehensive understanding on aes-
thetics, it is time to integrate findings from the two fields 
and bridge the gap between them.

Computational neuroaesthetics, although still in its 
infancy, seems to be promising to assemble the pieces of 
puzzle from neuroaesthetics and computational aesthet-
ics. It has emerged from three research fields including 
aesthetics, neuroscience, and computer science. It roots in 
neuroaesthetics as well as computational aesthetics. And 
its concept of understanding and modeling neurobiological 
components in aesthetics by computers is partially come 
from computational neuroscience (see Fig.  1). Studies 
measuring brain information flows during aesthetic appre-
ciation and developing computational models based on 
neural activities to make aesthetic evaluation predictions 
should be central to computational neuroaesthetics.

In our paper, we briefly reviewed the developments in 
both neuroaesthetics and computational aesthetics. Then, 
we introduced findings and challenges in computational 
neuroaesthetics. Our goal is to gain interest from research-
ers in both neuroaesthetics and computational aesthetics to 
the findings and opportunities in computational neuroaes-
thetics. Since computational neuroaesthetics is far from 
mature, studies within its scope should be encouraged 
and wealth findings in neuroaesthetics and computational 
aesthetics could be fertilizer to it. Specifically, our review 
mainly focuses on aesthetic appreciation and aesthetic 
experience of visual images. Topics include theoretical 
models and neural underpinning of aesthetic appreciation 
from neuroaesthetics, automatic image quality assessment 
by computers from computational aesthetics, and finally, 
computational models for measuring and modeling brain 
activities in computational neuroaesthetics.

2 � Developments in neuroaesthetics 
and computational aesthetics

Neuroaesthetics is emerged as an independent discipline 
which investigates biological bases of aesthetic experi-
ence when we appraise objects [12]. Its emergence is 
mainly attributed to the pioneering work from vision 
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researcher S. Zeki. After 20 years of development, this 
nascent field has gained more and more interest from 
researchers in psychology and neuroscience. Numerous 
experiments are carried out to illustrate neural mecha-
nism of aesthetic appreciation and theoretical models 
have been proposed to outline cognitive process of the 
cascading timelines of aesthetic experience. Also, there 
is a range of literatures written by experts in this field 
to review and discuss previous findings in neuroaes-
thetics [13–19]. Hence, we briefly introduce important 

conceptual models and neural systems related to aes-
thetic appreciation.

2.1 � Conceptual models
2.1.1 � Zeki’s model and Ramachandran and Hirstein’s model
Early models mainly concentrated on the visual art and 
its physical properties which reflected in our brain. In the 
20th century, Zeki reviewed thoughts from previous phi-
losophers, neurologists, and artists. Based on their views, 
he proposed that the function of art is an extension of 
the visual brain: a set of parallel processing-perceptual 

Fig. 1  Computational neuroaesthetics has emerged from three interdisciplinary fields: Neuroaesthetics which combines neuroscience and 
aesthetics, computational aesthetics which employs computer science to investigate aesthetics, and computational neuroscience which uses 
mathematical tools and theories to investigate brain function
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systems that distill important information which repre-
sents essential characteristics of objects from the ever-
changing visual world and build up true knowledge [9, 
20]. Zeki’s model links aesthetics to biological functions 
of the brain. And it explains perception of visual art and 
its relationship with visual areas in the brain. Yet, an 
explicit description about the intervention of cognitive 
functions during aesthetic experience seems not to be 
given in Zeki’s model.

Later, Ramachandran and Hirstein combined evolu-
tionary approach with neurophysiological evidence and 
proposed a model to explain aesthetic experience on 
visual art [21]. This model includes several principles 
elaborating how brain processes arts by applying a rein-
forcement mechanism: first, visual objects are discrimi-
nated by peak shift effect; then, features are extracted and 
grouped into unitary clusters by different visual areas; a 
certain feature which is special importance is reinforced 
by activation of both  limbic structures and allocation of 
attentional resources to produce pleasurable rewarding 
sensations. Their model is more elaborated than Zeki’s 
model, although the cognition and emotion during aes-
thetic experience remain elusive.

2.1.2 � Leder’s model
In 2004, Leder proposed a visual aesthetic model based 
on previous findings in psychology and neuroscience, 
and this model was improved in 2014 [2, 22]. Following 
Leder’s model, information processing of aesthetic appre-
ciation is divided into five stages: 1) Context and input of 
the model: visual stimulus first undergoes a pre-classifi-
cation stage in which stimulus is estimated whether it can 
trigger interest and emotional response. 2) Perceptual 
analysis: in this stage, physical attributes of stimulus such 
as complexity, contrast, symmetry, and combination are 
perceived and analyzed. 3) Implicit memory integration: 
analysis results from perception of stimulus are com-
bined with implicit memory effects such as familiarity, 
prototypicality, and other information to give an implicit 
aesthetic judgment. 4) Explicit classification: this stage 
includes discrimination of the type and content of stimu-
lus. And cognitive processing is affected by the expertise 
and knowledge of perceiver to give an explicit classifica-
tion. 5) Cognitive mastering and evaluation: this stage 
includes explaining stimulus from an aesthetic point of 
view and combining stimulus with self-related cognitive 
information to achieve a successful evaluation. In Leder’s 
model, aesthetic evaluation of stimulus includes both 
cognitive mastering of aesthetic properties and satisfac-
tion of emotional state. The former one eventually leads 
to aesthetic judgment, while the later one triggers aes-
thetic emotion.

2.1.3 � Chatterjee’s model
In 2003, Chatterjee has proposed a linear processing 
model on visual aesthetic experience [3]. In his model, 
visual aesthetic experience includes three cognitive pro-
cessing stages: First, early visual processing which takes 
place in different brain regions extracts information 
from visual object and simple components are analyzed. 
Second, pre-processed components are decomposed 
and integrated to form a coherent embodiment. Finally, 
particular brain regions are activated to further analyze 
the embodied elements. In 2014, Chatterjee and Var-
tanian reviewed previous evidence in neuroaesthetics 
and improved their theoretical model [5]. In the recent 
model, aesthetic experience emerges from the interaction 
of three neural systems: sensory–motor system, emo-
tion–valuation system, and knowledge-meaning system. 
This model is useful to connect various aspects of cogni-
tive processing stages of aesthetic experience to particu-
lar brain structures.

2.1.4 � Redies’ model
Redies proposed a model of aesthetic experience for the 
cognitive process on visual pictures [23]. In his model, 
stimulus acquires its form from a visual aspect, which is 
necessary for sensory perception and content informa-
tion. The sensory input triggers perceptual processing, 
which causes an emotional reaction and generates an 
aesthetic of perception. Content information, however, 
passes through cognitive communication and requires a 
combination of memory retrieval to generate a cognitive 
processing that produces aesthetic cognition for an aes-
thetic experience. In Redies’ model, aesthetic perception 
is a fast, bottom–up, universal process; aesthetic cogni-
tion is a top–down, cultural, individual process that is 
more associated with the personal experience of beauty 
appreciation.

As we have seen, a number of theoretical models have 
been proposed. These models try to explain cognitive 
process of aesthetic appreciation from different per-
spective and give a concept on factors which may influ-
ence aesthetic appreciation. However, these models are 
usually unique on their hypotheses and interpretations 
which make them incompatible with each other. Thus, it 
is hard to combine these models and integrate compo-
nents within them to give a comprehensive understand-
ing. Furthermore, some models are well suit for holding 
the evidence from neuroaesthetics. Other models based 
on empirical studies are difficult to illustrate hypotheses 
about specific brain activity, but give a conceptual guide-
line. To take a deep look at aesthetic appreciation, theo-
retical models should be combined with the evidence of 
brain activities during aesthetic appreciation and these 
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models need to be complemented when new findings on 
neural mechanism of aesthetic appreciation are uncov-
ered [24, 25].

2.2 � Activity of brain regions during aesthetic appreciation
Previous neuroimaging studies have found that several 
brain regions and their functionalities are essential in 
constituting our aesthetic experience [17, 19, 26]. During 
aesthetic appreciation, these brain regions are activated 
to process physical attributes of art, link the content 
to the knowledge, and finally give an aesthetic judge-
ment. Investigating engagement of brain regions during 
aesthetic appreciation can unravel the neural mecha-
nism of aesthetic experience. Neuroimaging studies on 
the activity of brain regions, like puzzles, together with 
theoretical models provide us insight to the blueprint of 
neuroaesthetics. Among the existing theoretical models, 
Chatterjee’s model is directly grounded on the evidence 
from neuroaesthetics, which makes it a good candidate 
to integrate findings of brain activity to explain phenom-
ena central to aesthetics. According to Chatterjee’s model 
in 2014, aesthetic experience emerges from the interac-
tion of three neural systems. Each neural system includes 
several brain regions introduced as below (see Fig. 2).

2.2.1 � Sensory–motor neural system
The sensory–motor neural system underlies sensa-
tion and perception of aesthetic appreciation. This neu-
ral system contains several brain regions in visual and 
motor areas. Brain regions in the visual area support the 

function of searching for features from objects, scenes, 
and people during observation of different paintings. 
Among these brain regions, the lingual gyrus and the 
middle occipital gyrus are activated when processing 
various early, intermediate and late visual features of 
paintings such as orientation, shape, color, grouping, etc. 
[27]. According to Luo’s study, the activation of lingual 
gyrus is associated with aesthetic appreciation of moral 
beauty and the middle occipital gyrus is activated when 
appreciating facial beauty [28]. Another brain region, the 
bilateral angular gyrus, is also activated when process-
ing visual features. But it is specific on spatial processing 
strategies such as forms, color, symmetry, and complex-
ity [29, 30]. This brain region demonstrates greater acti-
vation when processing beautiful stimuli.  And it helps 
connect and integrate perception with attention, spatial 
cognition, and episodic memory. The inferior temporal 
cortex is regarded as an important brain region in pro-
cessing visual representation of form and color while 
viewing paintings as well [31]. From the previous stud-
ies on paintings rich in representations of scene, the 
parahippocampal gyrus is activated when viewing scenes 
correlated with pleasure, suggesting that the parahip-
pocampal gyrus is involved in the perception and recog-
nition of specific stimuli such as places [32, 33].

The fusiform gyrus, according to previous studies, is 
correlated with aesthetic ratings and its activation seems 
to  represent detection of visual objects like faces and 
bodies in paintings [34, 35]. In the fusiform gyrus, the 
fusiform body area is activated during the configuration 

Fig. 2  Brain regions from three neural systems. Sensory–motor neural system includes brain regions marked with yellow color: 1. lingual gyrus, 
2. middle occipital gyrus, 3. fusiform face area, 4. fusiform gyrus, 5. parahippocampal gyrus, 6. bilateral angular gyrus, 7. visual motion area, 8. 
extrastriate body area, 9. inferior temporal cortex, 10. superior temporal gyrus, 11. anterior insula bilaterally, and 12. putamen. Emotion–valuation 
neural system includes brain regions marked with red color: 13. medial OFC, 14. lateral OFC, 15. OFC, 16. VLPFC, 17. VMPFC, 18. DLPFC, 19. 
fronto-temporal junction, 20. Posterior cingulate cortex, 21. caudate nucleus, 22. ventral striatum, 23. striatum, 24. nucleus accumbens, and 25. 
amygdala. Meaning-knowledge neural system includes brain regions marked with blue color: 26. Brodmann areas 9/10, 27. dorso-medial prefrontal 
cortex, 28. bilateral anterior cingulate cortex, 29. temporal pole and entorhinal cortex, 30. precuneus, 31. superior and inferior parietal cortex, and 32. 
temporoparietal junction
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of body and fusiform face area is activated when view-
ing attractive faces [36–38]. When viewing dynamic 
paintings and body movement art such as dance and cal-
ligraphy writing, the visual motion area, the extended 
mirror neuron system, and the extrastriate body area 
are activated. The visual motion area evokes subjec-
tive sense of movement [39]. The extrastriate body area 
is associated with viewing pictures or movies with legs, 
arms, or bodies in them. And the mirror neuron system, 
which is engaged in the processing of perception on artis-
tic gestures and consequences of actions, represents an 
embodied element mirroring the movement and emotion 
expressed in artwork [40]. This brain region is crucial to 
understand the processing of our empathetic responses 
and engagement of emotional circuit to visual art [41, 
42]. To process rewarding properties expressed in visual 
art, two brain regions, the putamen and bilateral anterior 
insula, are also engaged [43]. Specifically, the putamen is 
reliably activated when we anticipate rewards.

2.2.2 � Emotion–valuation neural system
The emotion–valuation neural system underlies emotions 
introduced by evaluation of aesthetic objects. It includes 
several brain regions associated with the processing of 
reward and emotion. The frontal cortex, the frontal–
temporal junction, and the orbitofrontal cortex (OFC) 
are involved in the evaluative judgment of affective com-
ponents [44]. Among the three brain regions, the OFC 
gains great interest from researchers and profusely men-
tioned in neuroaesthetic studies. This brain region is an 
important area for experience and judgments of beauty 
[45, 46]. According to the studies on the OFC, different 
modalities, including visual aesthetics, auditory aesthet-
ics, olfactory aesthetics, gustatory aesthetics, and moral 
beauty, are processed by the OFC, and each separate 
modality is processed in different areas of the OFC [14, 
47, 48]. These studies suggested that the OFC involved in 
representing the reward value of stimulus irrespective of 
modalities of beauty. The OFC contains two subdivisions: 
the media OFC and the lateral OFC. From an interesting 
study performed by Ishizu and Zeki on investigating sor-
rowful and joyful photos, the OFC had a weaker response 
on sorrowful beauty than joyful beauty, while the media 
OFC was activated by both sorrow and joyful beauties 
[49]. Indeed, the media OFC have its domain specific-
ity during aesthetic appreciation. According to the pre-
vious studies, this brain region is associated with the 
experience of reward and emotion. And it co-activated 
with the visual/auditory sensory and perceptual areas. In 
Tsukiura’s study, both beautiful faces and beautiful moral 
actions activated the media OFC [46]. And in Zeki’s 
study, higher score when participants were rating music 
excerpt was accompanied by stronger activation of the 

OFC [50]. Interestingly, by another study from Zeki et al., 
the media OFC was activated when mathematicians rate 
the mathematical formulas as beautiful; suggesting that 
it is related to engagement with beautiful ideas [51]. The 
lateral OFC, as another subdivision of the OFC, is heav-
ily connected with the media OFC. This brain region is 
found to be selectively activated for facial attractiveness 
[52]. From the previous studies of aesthetic experience, 
the media OFC tends to be a major area, while the lateral 
OFC is related to punishment or overriding of rewarded 
stimuli [53].

Along with the OFC, the ventrolateral prefrontal cor-
tex (VLPFC), the dorsolateral prefrontal cortex (DLPFC), 
and the ventromedial prefrontal cortex (VMPFC) consti-
tute the prefrontal cortex. The VLPFC is considered ana-
tomically synonymous with the OFC, but it has distinct 
neural connections and performs distinct functionality. 
From previous studies on aesthetic appreciation, this 
brain region is supposed to be associated with superior 
attentional loads and it is probably mediated by thalamus 
[45, 54]. The DLPFC is activated in moral beauty con-
dition and when decision takes place [15]. It acts as an 
integrator of signals coming from different visual sources 
and is associated with inherent aesthetic judgment. Spe-
cifically, the left DLPFC is involved in aesthetic experi-
ence as a center linking perception and action in multiple 
brain functions [55–57]. The VMPFC is supposed to be 
involved in the experience of reward value and acts as 
a common currency for preference [52]. It is activated 
when viewing attractive face, when processing the scene 
of nature, and during the experience of moral beauty 
[58]. When viewing both face and place attractiveness, 
posterior and ventral subregions of the VMPFC exhibit 
domain-specific activity [52]. And the media prefrontal 
cortex, parts of the VMPFC, is involved in many cogni-
tive processing like autobiographical memory, experience 
of positive emotion, and decision-making about self.

Other brain regions widely distributed in brain are also 
related to emotion–valuation during cognitive process-
ing of aesthetic appreciation. The right anterior insula, 
a brain region originally deployed for the purpose of 
survival advantage, is found to be associated with vis-
ceral perception and experience of emotions. This brain 
region is in brain’s core affective system and processes 
four forms (visual, auditory, gustatory, and olfactory) of 
beauty [59]. The bilateral insula is activated when sub-
jects perform aesthetic orientation than pragmatic orien-
tation [56]. Other study suggested that it may be related 
to the processing of eudemonic pleasures [60]. The stria-
tum, the amygdala, and the nucleus accumbens are sug-
gested to be associated with hedonic pleasures according 
to previous studies. The striatum integrates perceptual, 
evaluative, and reward components of aesthetic response 
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irrespective of the modality and gives an aesthetic judg-
ment [45]. The amygdala is thought to represent a sub-
jective emotional response for experience of beauty 
according to the studies on sculptures and music [61]. 
The nucleus accumbens is important in reward system 
and influences our experience of pleasure [62]. The ven-
tral striatum is activated by attractive faces and engaged 
in coding the reward probability [45, 63, 64]. Activity 
of the posterior cingulate cortex is related to memory 
retrieval and familiarity [54]. And the caudate nucleus is 
involved in many aspects of our experience of reward and 
plays a general role in evaluative judgment [44, 57].

2.2.3 � Meaning‑knowledge neural system
The meaning-knowledge neural system contains sev-
eral brain regions related to the processing of context. 
The contribution of this neural system is less studied by 
researchers than sensory–motor and emotion–valuation 
neural systems. Partly because of its manifestations are 
widely distributed throughout the brain and some brain 
regions in this neural system are also engaged in the two 
other neural systems during aesthetic appreciation. Stud-
ies on meaning-knowledge neural system provide evi-
dence that our aesthetic experience of art is influenced 
by the form of meaning and knowledge exert through a 
top–down processing [65, 66]. And positive emotion, 
induced by fluent conditions, has a possible causal effect 
on aesthetic preference [67]. According to the previous 
study, dorso-medial prefrontal cortex is a main area for 
social cognition and plays an important role in determine 
facial beauty and moral judgment [68]. The temporal 
pole and entorhinal cortex are activated when contextual 
information triggers memories and in turn modulates 
emotion [69]. The activation of precuneus is related to 
the way objects are labeled and the bilateral anterior cin-
gulate cortex is activated when viewing preferred curves 
[70, 71]. These two brain regions, together with temporo-
parietal junction, show greater activation when viewing 
paintings under the Museum of Modern Art condition 
than under the adult center condition, indicating that 
these three brain regions are associated with distilling 
the semantic information from artworks [72]. Accord-
ing to another study contrasting aesthetic judgments and 
descriptive judgments on graphic patterns, the Brod-
mann areas 9/10 is associated with processing of internal 
information and shows enhanced activation when partic-
ipants perform aesthetic judgments [56, 73].

Findings in previous neuroaesthetic studies provide 
evidence that cognitive processing of aesthetic apprecia-
tion recruits wildly distributed brain regions. Different 
brain region exhibits distinct functionality during aes-
thetic appreciation and the same brain region may play 
a different role in different processing stage. The parallel 

processing and co-working between different brain 
regions accomplish the process of aesthetic appreciation 
and constitute our aesthetic experience. To date, we still 
know litter about how these brain regions work together 
to form our aesthetic experience. Computational aesthet-
ics and information theory may provide additional per-
spective and complement our understanding on aesthetic 
appreciation.

3 � Computational aesthetics on image quality 
assessment: mimic human’s aesthetic judgment 
using computer science

Computational aesthetics has emerged with the advance 
of digital technology and fast growth of computer sci-
ence. Since the definition of computational aesthetics has 
been proposed by Hoenig in 2005, computational aes-
thetics grows vigorously in the past 15 years. The aim of 
computational aesthetics is to automatically and aestheti-
cally evaluate visual objects like humans. One of the pri-
mary tasks in computational aesthetics is image quality 
assessment. In this task, new algorithms are developed 
to deal with extracting aesthetic features from images 
to make a judgment (see Fig. 3). Such algorithms have a 
wide application in our daily life like image recommen-
dation system on website, artwork generation, and com-
puter-aid photography.

3.1 � Image quality assessment based on hand‑crafted 
features

Early studies on computational aesthetics mainly focused 
on image quality assessment based on hand-crafted 
features. These studies turned both experience from 
professional artists and existing knowledge of image 
properties from experimental aesthetics into formulas 
[74]. By designing a variety of hand-crafted formulas, 
these studies extracted low-level image features such as 
color, luminance, complexity, symmetry, etc. as well as 
high-level features such as spatial distribution of edges, 
Hue count, etc. from image dataset. Classifiers were con-
structed using machine learning algorithms such as sup-
port vector machines (SVM), naïve Bayes, and K-nearest 
neighbors (KNN). Then, constructed classifiers were 
trained by extracted image features as input and man-
ual image quality assessment results as output to mimic 
human’s aesthetic evaluation. Finally, the whole computa-
tional models were used to achieve image quality assess-
ment on new images by extracting image features using 
hand-crafted formulas and predicting aesthetic evalua-
tion result with trained classifiers [75–78].
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3.2 � Image quality assessment based on Deep Neural 
networks

In recent years, due to the outstanding performance of 
convolutional neural network (CNN) and deep learning 
on computer vision, studies on computational aesthetics 
paid more attention on how to construct deep neural net-
works to automatically learn image features from data-
set than designing hand-crafted features. CNNs, which 
mimic visual processing of human eyes, use convolution 
kernel as receptive field to extract image features. Its 
parameters and prediction result are optimized by train-
ing with a loss function (e.g., the divergence between 
prediction result from neural network and human evalu-
ation) on large image dataset [79]. The frequently used 
neural networks in current deep learning studies on com-
puter vision are LeNet, AlexNet, GoogleNet, VGGNet, 
and ResNet [79–83]. In 2014, Wang et al. proposed a deep 
neural network named RAPID [84]. In their study, a dou-
ble-column deep convolutional neural network (DCNN) 
was constructed and it took global and local information 
from images as input. Then, global and local image fea-
tures were extracted and incorporated by DCNN to give 
an aesthetic evaluation. In addition, Wang et  al. built a 
neural network called style-convolutional neural network 
(SCNN). This neural network extracted both image fea-
tures and style attributes from images and integrated the 
two aspects to give an aesthetic evaluation. Both DCNN 
and SCNN achieved a good performance on a public aes-
thetic visual analysis dataset (AVA Dataset) [85]. Inspired 
by the neural mechanism and theoretical models of aes-
thetic appreciation, Dolcos et  al. built a brain-inspired 
deep network [86]. This neural network contained sev-
eral independent modules and processed input image 
by parallel pathways. Except the first three modules 

that computed simplest features (saturation, hue, and 
value), each module was a fully convolutional network 
and learned a selected feature dimension from image by 
a supervised training with individual labels. Then, image 
features extracted by these pre-trained modules were 
jointly feed to a high-level synthesis network. The high-
level synthesis network integrated these features and 
gave a prediction on the distribution of aesthetic rating. 
In addition, Ge et al. improved the GoogleNet and pro-
posed a neural network called ILGNet, which applied 
neural network architecture differ from DCNN to extract 
and combine local and global image features to predict 
aesthetic rating [87]. Other studies combined neural net-
works with different algorithms including auto-encoder 
technique, expert feature knowledge, feature fusion, vis-
ual attention, etc. to build new neural network architec-
tures [88–92]. These neural networks leveraged distinct 
network architectures to automatically extract different 
image attributes and gave a prediction of aesthetic rating.

In computational aesthetics, to mimic human’s aes-
thetic evaluation on visual objects, numerous approaches 
of aesthetic measurement and neural network architec-
tures were proposed. These researches enriched our 
understanding on the image attributes which an affect 
human’s aesthetic judgment. However, hand-crafted 
feature approaches only capture objective attributes of 
images, while neural networks with deep learning lack 
interpretability on extracted image features, which make 
it difficult for us to understand image features that can 
reflect people’s aesthetic evaluation.

Fig. 3  A workflow for image quality assessment. a The original image. b Hand-crafted features are extracted by computational algorithms and 
subsequently feed to classical classifiers. c Using neural network to automatically extract image features related to aesthetic ratings. d Final 
prediction
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4 � Computational neuroaesthetics: when computer 
science meets neuroaesthetics

New findings in neuroaesthetics provide insight for us 
on the neural mechanism of cognitive processing of 
aesthetic appreciation. And computational algorithms 
proposed in computational neuroaesthetics enrich our 
understanding on both objective attributes of images 
which can affect our aesthetic evaluation and the way we 
extract and process image features. Despite the flourish-
ing of the two research fields, it seems that they are still 
independent from each other and evidence in one field 
cannot be directly applied or interpreted in another filed. 
This causes a huge gap between neuroaesthetics and 
computational aesthetics which hinders our comprehen-
sive understanding on aesthetic appreciation. Computa-
tional neuroaesthetics seems to be a bridge to remedy the 
gap between these two fields. In computational neuroaes-
thetics, researchers analyzed neural activities from brain 
regions with computational algorithms to give a deep 
insight on how dynamic changes between brain regions 
form our aesthetic appreciation. Other studies, aiming 
at exploring features from neural activity related to our 
subjective aesthetic experience, applied computational 
algorithms on neuroimaging data to give a prediction on 
aesthetic preference.

4.1 � Brain functional connectivity and brain networks 
in neuroaesthetics: measuring the information flow 
during aesthetic appreciation

As we have mentioned above, aesthetic appreciation 
recruits activation of widely distributed brain regions 
and communication between these brain regions. Stud-
ies on brain activity tell us the relationship between 
specific brain region and aesthetic appreciation. How-
ever, the neural mechanism about how aesthetic appre-
ciation emerges from the interaction between brain 
regions remains elusive. The interaction between brain 
regions cannot be directly observed from neuroimaging 
data. Functional connectivity is thought to be a useful 
measurement to provide a complementary understand-
ing to the previous studies on brain activity [93]. It is a 
measurement of the information sharing and functional 
dependence between brain regions. Aiming at under-
lining the information flow between two brain regions, 
functional connectivity measures interaction between 
brain regions by applying computational algorithms on 
neuroimaging data recorded during cognitive process-
ing  (see Fig.  4). To date, the correlation analysis, the 
coherence, the phase locking value, the phase lag index, 
and the synchronization likelihood are frequently used 
to measure the functional connectivity. And the Granger 
causality is frequently used to measure the effective con-
nectivity between brain regions.

Using the measurement of functional connectivity, pre-
vious studies found interactions between different brain 
regions during aesthetic processing. Brown reviewed pre-
vious neuroimaging studies on aesthetic appraisal in 2011 
and proposed a functional connectivity model based on 
these studies [14]. In his model, the interaction between 
the anterior insula and the OFC plays an essential role 
in aesthetic processing and this connectivity is not 
restricted to aesthetic processing, but may be related to 
a more general cognitive processing—the assignment of 
valence to objects. Tsukiura and Cabeza studied memory 
encoding of attractiveness of faces and found that attrac-
tive faces were better remembered than other faces, with 
the increased activity of both the right OFC and the left 
hippocampus. Using the correlation analysis, they found 
that functional connectivity between these regions was 
stronger when encoding the beautiful faces, indicating 
that better memory is associated with greater interaction 
between reward and memory encoding [46]. Lacey et al. 
used event-related fMRI to study changes of brain activ-
ity between art images and non-art images. By applying 
Granger causality on fMRI data, they found that the ven-
tral striatum was engaged in contemplation of art images 
[64]. Specifically, activity of ventral striatum was driven 
by visual cortex but not by brain regions related to aes-
thetic preference. In addition, using fMRI with dynamic 
casual modeling, Zhou et  al. investigated the anticipa-
tion and evaluation of facial attractiveness [94]. They 
found bidirectional connectivity between the ventral 
striatum and the ventral medial prefrontal cortex existed 
during evaluation of attractive faces, but weakened for 
unattractive faces. This connectivity might reflect the 
dynamic process for the visual and aesthetic properties 
of faces. In 2018, Iwasaki studied the aesthetic percep-
tion of visual features by comparing sculptures obeyed 
the golden ration (canonical sculpture) with sculptures 
in which golden ratio was impaired (deformed sculpture) 
[95]. They found that the connectivity between the right 
occipital–temporal region and the right parietal region 
was correlated with the presentation of canonical sculp-
tures but not for deformed sculptures, suggesting a neu-
ral pathway between these regions during the processing 
for aesthetic information.

In our brain, interactions between widely distributed 
brain regions and temporal variability of brain activity 
form a complex system [96, 97]. This complex system 
undergoes a dynamic reconfiguration during multiple 
cognitive processing stages of aesthetic appreciation [98–
100]. To study such a complex system, brain functional 
networks, where nodes represent spatial location of 
brain regions and edges represent functional connec-
tions between these brain regions, are constructed from 
neuroimaging data. Once functional networks have been 
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Fig. 4  A workflow from functional connectivity measurement to brain functional network attributes. a. Neuroimaging data recorded from device, 
these data can be EEG, fMRI, or MEG. b Functional connectivity between brain regions is estimated from signals and form a correlation matrix. c 
The correlation matrix produces a binary connectivity graph by thresholding. d The visualization of binary graph. e The binary connectivity graph is 
randomly reconnected to produce a random reconnected graph. f The cluster coefficient (C) and average shortest path length (L) are extracted by 
measuring binary connectivity graph and random reconnected graph to obtain normalized brain functional network attributes



Page 11 of 17Li and Zhang ﻿Brain Inf.            (2020) 7:16 	

constructed, graph theory can provide helpful tools to 
measure properties of networks. Using graph theory, 
local integration which represents functional specific 
modules formed by connections between local brain 
regions, global integration which represents network 
ability to integrate distributed information between 
remote brain regions or modules, and the trade-off 
between activity cost and information process efficiency 
in the brain, can be represented by network properties 
named cluster coefficient, average shortest path length, 
and small world index, respectively [101]. Changes of 
these network properties can provide insights for us to 
study how our brain acts as a dynamic neural system dur-
ing cognitive processing of aesthetic appreciation.

Using fMRI and Pearson correlation analysis, Lin et al. 
studied the effect of long-term artistic training on rest-
ing-state functional connectivity networks [102]. They 
found that the long-term artistic experience did not alter 
the communication efficiency, short-range and long-
range connectedness, and modularity. However, actual 
modules, mainly in the bilateral cerebellum, showed 
significant difference between artistic professions and 
non-artists. This difference showed that even in the rest-
ing state, long-term training could imprint a neural net-
work system in which brain regions are functionally and 
topologically modularized in domain-general as well as 
domain-specific manners. And results also suggested a 
resilient plasticity of our brain. In 2018, Pollick et al. also 
used fMRI to study aesthetic experience when process-
ing diverse sensory input [103]. Using inter-subject cor-
relation analysis, they identified several brain regions 
consistently activated when participants were watching a 
dance video accompanied by a soundtrack. These brain 
regions and their functional connectivity formed into 
a network which was composed of eight subnetworks. 
Six of the sub networks were related to the processing 
of sensory and motor aspects in observation. And the 
remaining two subnetworks appeared to be involved in 
complex cognitive activities. Specifically, one of the eight 
sub networks overlapped with the default mode net-
work (DMN), which is considered being important in the 
access of internal information.

As these studies using fMRI are informative, the 
dynamic nature of aesthetic appreciation cannot be fully 
revealed by relatively slow temporal resolution of fMRI 
signals. Instead, MEG and EEG have relatively high 
temporal resolution and recently were used for brain 
functional network analysis of aesthetic appreciation. 
Cela-Conde et  al. used MEG to acquire neuroimaging 
data when participant decided whether a stimulus was 
beautiful or not. Brain functional networks were con-
structed using phase locking value to analyze functional 
connectivity between different brain regions from MEG 

data [104]. They found aesthetic experience relied on 
two distinctive networks on the time course: (1) an ini-
tial network, where the OFC plays an important role, is 
associated with fast aesthetic perception; (2) another 
delayed network, which encompasses brain regions par-
tially coincide with the DMN, is engaged during cogni-
tive processing of beautiful stimuli and yields an aesthetic 
appreciation. Wu et  al. used Chinese traditional music 
and EEG to study functional network changes during aes-
thetic appreciation [105]. They found that brain networks 
underwent a significant reconfiguration while partici-
pants were listening to music compared with noise and 
silence background. During the reconfiguration of brain 
networks in the alpha2 band, functional connections 
between the frontal–parietal and the temporal–parieto-
occipital regions tend to induce an increasing synchro-
nization and the whole network shifts to a more random 
structure. To investigate aesthetic experience in a realis-
tic scene, Konston et al. used mobile EEG to record brain 
activity when subjects were freely moving and view-
ing exhibition at the Menil Collection in Houston [106]. 
Compared with viewing a blank wall, viewing the most 
aesthetic pleasing art elicited a significant increasing 
in connection strength between posterior and anterior 
areas in the delta and gamma bands.

Using computational approaches to measure the inter-
action between brain regions from mesoscale (cortical 
regions) as well as macroscale (brain scalp), previous 
studies investigated changes of functional connectiv-
ity as well as brain networks during aesthetic apprecia-
tion. These studies provided evidence on how our brain 
integrates sensory input with internal state to produce 
an aesthetic appreciation. Nevertheless, since this field is 
young, current studies only precisely identified the inter-
action between small portions of the whole brain. The 
interaction between a large proportion of brain regions 
from the three neural systems underlying aesthetic expe-
rience remains unclear. Much work still needs to be done 
and findings from mesoscale and macroscale should be 
integrated to give a fully understanding on the connectiv-
ity changes of the whole brain during distinct aesthetic 
processing stage.

4.2 � Machine learning in computational neuroaesthetics: 
aesthetic preference prediction based 
on neuroimaging data

From the perspective of computational aesthetics, it is a 
hard challenge to assess aesthetic rating from individu-
als, since visual aesthetic objects only reflect objective 
attributes. Rating score from individuals is the subjective 
outcome of a series of complex cognitive processing on 
visual aesthetic objects. To capture subjectivity of aes-
thetic preference, neuroimaging data which can reveal 
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brain activity during cognitive processing of aesthetic 
appreciation is indispensable. By applying machine learn-
ing algorithms on these neuroimaging data, we can mine 
bio-features which are associated with cognitive process-
ing of aesthetic appreciation (see Fig. 5). Changes of these 
features on one hand provide additional information 
to assess subjectivity of aesthetic preference and on the 
other hand validate findings from neuroaesthetic studies.

To study aesthetic preference prediction on music, 
Stelios et  al. collected EEG signals from subjects listen-
ing to music and used time–frequency analysis method 
to extract features from EEG data [107]. These features 
were further feed to KNN classifier to predict subject’s 
music preference. Their study achieved a good classifica-
tion accuracy, and found that the beta and gamma bands 
played an important role in prediction of music prefer-
ence. Chew and Teo investigated prediction of aesthetic 
preference on 3D shapes. The combination of time–fre-
quency analysis and KNN classifier were applied on EEG 
signals recorded from subjects watching 3D shapes [108]. 
Features were extracted from the frontal region in the 
alpha, theta, and delta bands. Using these features with 
KNN, binary classification accuracy of 3D shapes pref-
erence can be obtained up to 80%. In 2018, Teo et  al. 
recruited more participants to investigate prediction of 
aesthetic preference on 3D shapes [109]. This time, they 
applied a series of classifiers including SVM, random for-
est, Adaboost, KNN, and deep neural network to per-
form a binary classification. From the results, they found 
a combination of features from both widely distributed 
electrodes and frequency bands reached the highest 
accuracy. And deep neural network outperformed other 
machine learning classifiers.

In addition, Guo et  al. recorded EEG and eye move-
ment data when users were watching different styles of 
table lamp picture to predict user’s aesthetic preference 
[110]. The relative alpha power, relative gamma power, 
and average fixation time were extracted from the EEG 

and eye movement data. They found the average eye 
fixation duration was significantly different between 
low and high aesthetic lamps. And low aesthetic lamps 
evoked decreased relative alpha power accompanied by 
increased relative gamma power. By applying SVM, KNN, 
random forest, and XGboost classifiers, they achieved an 
accuracy of 82% for two-class classification (low versus 
high) and an accuracy of 73% for three-class classification 
(low versus middle versus high). Qu et  al. used EEG to 
investigate prediction of aesthetic preference on Chinese 
typefaces [111]. Multiple EEG features were extracted 
from different frequency band and their correlation was 
analyzed by tensor multi-rank minimization. Then aes-
thetic preference of Chinese typefaces was predicted by 
multi-view self-representation clustering on selected 
features. They found that EEG data from different loca-
tion of electrodes were correlated with accurate aesthetic 
preference prediction for different Chinese typeface. Par-
ticularly, central and parietal electrodes were correlated 
with disliked Chinese typefaces and frontal electrodes 
were correlated with liked Chinese typefaces.

Studies using machine learning algorithms on neuro-
imaging data could tell us which bio-feature is important 
to distinguish aesthetic preferred objects from others. 
And these features are helpful to understand neural activ-
ity related to aesthetic appreciation from the perspective 
of computer science. Nevertheless, these studies mainly 
used hand-crafted features and classic machine learn-
ing classifiers on EEG signals to predict aesthetic prefer-
ence. Since neuroimaging data recorded from cognitive 
processing of aesthetic preference are varied on the time 
course, to capture bio-features from the neuroimaging 
data, new machine learning models which are suit for 
extracting features from time-varying signals, such as 
recurrent neural network (RNN), should be taken into 
consideration. And features designed based on empiri-
cal studies in neuroaesthetics such as brain functional 

Fig. 5  A workflow for aesthetic preference prediction based on neuroimaging data. a The original picture. b Neuroimaging data are recorded by 
EEG, MEG, or fMRI when participants are viewing images. c Bio-features are extracted from neuroimaging data and machine learning algorithms are 
applied to give a prediction of aesthetic preference
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connectivity can be helpful to improve the accuracy and 
provide theoretical support.

5 � Challenges and emerging prospects 
for the future of computational neuroaesthetics

In computational neuroaesthetics, several studies have 
been carried out to provide additional perspective for our 
understanding of aesthetic appreciation. As this field is 
still in its infancy, not enough data and findings exist to 
create a complete picture of how the beauty is processed 
to trigger an aesthetic outcome. To build an interdiscipli-
nary research field which can bridge neuroaesthetics and 
computational aesthetics, much work still needs to be 
done and several issues should be addressed in computa-
tional neuroaesthetics.

5.1 � Measuring the dynamic information flow 
during aesthetic appreciation

To give a comprehensive understanding of aesthetic 
appreciation in computational neuroaesthetics, one 
challenge is to measure the dynamic information flow 
between precise brain regions during aesthetic apprecia-
tion. Aesthetic appreciation is influenced by multi-fac-
tors, including sensory attributes of visual objects such 
as complexity and symmetry, the way features of visual 
objects are represented in our perceptual system, context 
and embodiment of visual objects in our cognitive sys-
tem, external context, internal state, top–down expecta-
tion, etc. [69, 112–116]. These factors alter connectivity 
between brain regions in the three neural systems during 
different processing stages of aesthetic appreciation.

To date, several studies have begun to scratch the sur-
face on the impact from these factors, but they are still 
far from describing dynamic interactions between brain 
regions during aesthetic appreciation. For example, we 
still know litter about how the reward circuit triggered by 
dynamic projections from sensory and cognition system 
to create different types of appreciation and emotions. 
Moreover, during different processing stage of aesthetic 
appreciation, dynamic changes of the information flow 
between specific brain regions are still unknown and 
hard to be investigated. Low spatial resolution and vol-
ume conduction effect in EEG technology make it dif-
ficult to capture the information flow between precise 
brain regions. And low temporal resolution of fMRI can-
not precisely reveal temporal changes of functional con-
nectivity between brain regions. To measure the dynamic 
information flow between precise brain regions during 
aesthetic appreciation, multi-modal data need to be col-
lected from both EEG and fMRI to reveal brain network 
changes with high temporal and spatial resolution. And 
more computational models should be developed to 

integrate brain connectivity changes from EEG and fMRI 
data and analyze how information flow will be affected by 
multi-factors.

5.2 � Predicting subjective rating of aesthetic appreciation: 
inter‑group and intra‑group difference

Another challenge is to predict subjective aesthetic 
rating of visual objects. Although studies in computa-
tional aesthetic can achieve a good performance when 
predicting aesthetic rating from a group of participants, 
these studies are not well enough to predict aesthetic 
rating from individuals. That is because when predict-
ing aesthetic rating from individuals, both subjectivity 
and objectivity should be taken into consideration. Sub-
jectivity has a close relationship with individual differ-
ence, which includes personality, culture, expertise, and 
observer’s sex. Individual difference is another impor-
tant factor to influence aesthetic emotion and appre-
ciation. It shapes the way we appreciate visual objects, 
produce unique aesthetic emotion, and determine 
outcomes of a subjective aesthetic appreciation. Thus, 
linking objectivity of visual objects with subjectivity 
of beholders is essential to give a precisely predicting 
on individual outcomes of aesthetic appreciation. And 
this is a crucial way to explore how multiple factors can 
influence our aesthetic appreciation.

It is hard to capture individual difference on aesthetic 
appreciation. Although several studies in neuroaesthet-
ics have investigated influence of expertise, culture, 
and sex difference on aesthetic appreciation [117–121]. 
These studies are carried out by large samples and find-
ings in these studies are uncovered mainly by statistical 
analysis based on inter-group comparison. Studies based 
on machine learning and neuroimaging data in compu-
tational neuroaesthetics will likely change this situa-
tion, but these studies are still coarse on extract features 
related to individual difference and subjective rating. To 
precisely predict aesthetic rating from individuals, one 
possible way is to find robust biomarkers related to sub-
jective aesthetic appreciation. Previous studies predict-
ing individual difference on creativity and attention may 
provide helpful ideas for us [122–126]. These studies per-
formed correlation analysis on the relationship between 
activity of neural substrates and individual outcomes 
on creativity or attention. Changes of neural substrates 
which could robustly reflect individual outcomes were 
regarded as biomarkers and subsequently used to predict 
outcomes from new subjects. Recently, using the combi-
nation of machine learning and biomarkers, Vessel et al. 
investigated the domain-specific and domain-general 
coding of aesthetic appeal in the DMN and the ventral 
occipitotemporal cortex (VOT). fMRI data were collected 
when participants were making aesthetic judgments on 
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images about art, architecture, and natural landscapes. 
Multi-voxel fMRI response patterns from the DMN and 
the VOT were subsequently used to train classifiers to 
predict participant’s aesthetic judgment (high versus low 
aesthetic appeal) from the same kind of photographs 
or from different kind of photographs. They found that 
activity pattern from the DMN was related to the predic-
tion of aesthetic appeal across domains and extreme rat-
ings to images were correlated with better predictions. 
Evidence from their study supports a model of aesthetic 
appreciation in which the DMN represents domain-gen-
eral coding of visual aesthetic appeal [127].

6 � Conclusions
In conclusion, as an emerging interdisciplinary research 
field, computational neuroaesthetics plays an impor-
tant role to bridge findings of neural substrates from 
neuroaesthetics and computation algorithms from 
computational aesthetics. Taking advantage from both 
methodological advances in computational aesthetics 
and theoretical advances in neuroaesthetics, computa-
tional neuroaesthetics can learn much from these two 
fields and gain increased momentum. We have seen 
that a series of recent works have ventured to study 
aesthetic appreciation from the point of machine learn-
ing and functional brain networks. Findings emerg-
ing from computational neuroaesthetics not only can 
increase our understanding on the neural mechanism 
of aesthetic appraisals, but also improve performance 
of computational models on predicting aesthetic rating. 
However, due to the complex processing and subjective 
nature of aesthetic appreciation, there are still difficul-
ties and challenges exist in computational neuroaes-
thetics. The interaction of cognitive and emotional 
processing to produce aesthetic appreciation remains 
unclear and the computational architecture to mimic 
aesthetic appreciation still needs to be improved. As 
such, based on multi-modal data, a close tie between 
computational methodology and theoretical knowledge 
appears to be fruitful to advance our study in compu-
tational neuroaesthetics. Therefore, much work is nec-
essary to employ new computational models such as 
Graph Neural Network to analyze brain connectivity 
and conceptualize changes of brain connectivity during 
aesthetic appreciation to improve computational mod-
els. A future direction relates to the integration of brain 
connectionist in neuroscience and neural network in 
machine learning may unravel how aesthetics emerge 
from the interaction of brain regions and build brain-
inspired computational model which could truly mimic 
human’s aesthetic appreciation.
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