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A B S T R A C T

Background and objectives: The severity of HIV-1 infection, measured by set-point viral load (SPVL), is

highly variable between individuals. Its heritability between infections quantifies the control the patho-

gen genotype has over disease severity. Heritability estimates vary widely between studies, but differ-

ences in methods make comparison difficult. Phylogenetic comparative analysis offers measures of

phylogenetic signal, but it is unclear how to interpret them in terms of the fraction of variance in SPVL

controlled by the virus genotype.

Methodology: We present computational methods which link statistics summarizing phylogenetic sig-

nal to heritability, h2 in order to test for and quantify it. We re-analyse data from Switzerland and

Uganda, and apply it to new data from the Netherlands. We systematically compare established and

new (e.g. phylogenetic pairs, PP) phylogenetic signal statistics.

Results: Heritability estimates varied by method and dataset. Several methods were consistently able to

detect simulated heritability above h2 � 0:4, but none below. Pagel’s � was the most robust and

sensitive. The PP method found no heritability in the Netherlands data, whereas Pagel’s � found sig-

nificant heritability only in a narrow subdivision (P = 0.038). Heritability was estimated at h2 = 0.52 (95%

confidence interval 0.00–0.63).

Conclusions and implications: This standardized measure, h2, allows comparability of heritability

between cohorts. We confirm high heritability in Swiss data, but neither in Ugandan data nor in the

Netherlands, where it is barely significant or undetectable. Existing phylogenetic methods are ill-suited

for detecting heritability below h2 � 0:4, which may nonetheless be biologically important.

K E Y W O R D S : HIV-1; heritability; phylogenetic comparative analysis; set-point viral load;

phylogenetic signal; virulence
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BACKGROUND AND OBJECTIVES

HIV has a high mutation rate [1, 2] and daily turnover

[3, 4] and therefore adapts rapidly under local select-

ive pressure from the immune system [5, 6, 7] or

antiretroviral drugs [8, 9]. Increasingly there is inter-

est in the transmission of escape [10, 11] or drug

resistance mutations [12], which may enable viral

adaptation to the host population. The rate at which

a trait evolves in response to natural selection is

determined by its heritability.

Recent work has suggested that virulence may

also evolve at the population level [13] by natural

selection towards a level optimal for transmission

[14, 15]. Variation in virulence has a large impact on

mortality and morbidity, so its evolutionary potential

may present challenges or provide opportunities in

public health interventions [16]. For example, vac-

cines which reduce growth rate or toxicity are pre-

dicted to reduce the costs of virulence, to the

vaccinated host and the pathogen. This potentially

raises the optimal virulence, resulting in poorer out-

comes for the unvaccinated individuals [17].

Virulence in HIV is well approximated by set-point

viral load (SPVL), which refers to the density of vir-

ions in the blood during asymptomatic infection.

SPVL is an early prognostic indicator for AIDS, as it

varies by orders of magnitude between individuals,

with high values having faster CD4 cell decline, pro-

gressing more rapidly to AIDS and death [18, 19, 20].

However, it is relatively stable within the individual

[21] meaning that it can be measured at a wide range

of time points in an individuals’ infection [22].

Many host factors influence SPVL (Human

Leukocyte Antigen (HLA) type (reviewed in [23])),

sex [24], ethnicity [25], age [26], co-infections [27,

28]). Specific human genetic markers have been

identified to which 13% of SPVL variation can be

attributed, with a further 9% explained by age, sex

and population structure [29]. Recently, several

studies have indicated that viral factors play a sub-

stantial role in SPVL variation by measuring its her-

itability between infections (reviewed in [30]). Most

of these quantify the similarity in SPVL within trans-

mission pairs, which are sexual couples in which one

has infected the other [31–34].

The phenotype of any organism is controlled

partly by its genome, and partly by its environment.

Throughout this work we define heritability, h2, in the

broad sense as the proportion of total phenotypic

variance (�2P) ascribed to genetic variance (�2G)

[equation (1), [35]]. In the environmental component

of variance, �2E, we conceptually include all host gen-

etic and non-genetic effects, as well as interactions

between host and virus genotype.

h2 ¼
�2G
�2P
: ð1Þ

Alizon et al. [36] used a phylogenetic comparative

approach to identify phylogenetic signal as a meas-

ure of heritability, without requiring behavioural

data. Phylogenetic signal is the extent to which indi-

viduals with similar traits can be observed to cluster

together on the phylogeny. This approach has the

advantage that any sample of well-characterized pa-

tients could be analysed in this way. However, the

authors did not account for cofactors such as age

and co-infections, which influence the SPVL and may

cluster together on the phylogeny. It is also uncertain

exactly how the quantity measured by the two

methods used (Pagel’s � and Blomberg’s K) should

be interpreted in the context of heritability. We

herein propose a new approach which also uses only

the phylogenetic relationships to determine genetic

proximity of viruses, but additionally links the results

to true heritability, and in some cases allows inclu-

sion of the effect of cofactors on SPVL.

The aims of this study were to evaluate the phylo-

genetic approach for estimating heritability, to com-

pare the efficacy of the various statistics available for

quantifying heritability on simulated and real data, to

use these methods to confirm the presence of herit-

ability in previously analysed data, and to measure

heritability in a dataset from the Netherlands which

has not been previously analysed for this purpose.

METHODOLOGY

Data

Data from Rakai, Uganda
The study population was enrolled in the Rakai

Community Cohort Study in the rural Rakai District

of south-western Uganda. The study methods for

this cohort have been outlined elsewhere [34, 37,

38]. We used those individuals who were sampled

at a single time point in April 1995 (n = 332).

Characteristics of the cohort are shown in

Supplementary Table S1. Serum samples were used

to measure SPVL, with most individuals providing a

single measurement.

The phylogenetic analysis was conducted in

RAxML [39] using the General Time Reversible
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substitution model [40], the � model of rate hetero-

geneity with four distinct rate categories and a pro-

portion of invariant sites [41] (GTR+�+I), which had

the best score when the alignment was analysed with

ModelTest [42]. The alignment was also analysed

using the Recombination Analysis Tool (RAT [43]),

which found no apparent recombination within the

studied genes (data not shown).

A Simian Immunodeficiency Virus (SIV) outgroup

was included (accession number: AB177846.1). The

phylogeny was constructed from either the gp41

(env) or p24 (gag) sequences (Supplementary Figs

S1 and S2), which were analysed separately because

they have different substitution rates [44]. We also

performed the phylogenetic and heritability analysis

on the subtype A and D sequences separately, due to

apparent imbalance in the joint trees.

Data from Switzerland
The Swiss data were taken from the Swiss HIV

Cohort Study and its integrated genotypic drug re-

sistance database which has been described else-

where [45, 46], and the specific selection has been

analysed in previous work [36, 47, 48]. The phyl-

ogeny, constructed from the reverse transcriptase

and protease components of the pol gene

(Supplementary Fig. S3), had been inferred in this

previous work [36] using PhyML [49] from subtype B

infected individuals for whom at least three viral load

measurements were available after primary infection

and before anti-retroviral therapy (n = 661).

Characteristics of the cohort are shown in

Supplementary Table S2.

Note that PhyML was used for the Swiss data,

compared with RAxML in the other two datasets.

However, we expect the methods to produce very

similar results as both use a hill-climbing algorithm,

likelihood scores are well matched when using the

same nucleotide substitution model, and there is no

evidence for systematic differences in the results [50].

We analysed four subdivisions of the data as in

previous work [36]. The entire dataset (‘All’) fit the

Liberal definition for viral load variability, meaning

that at least three consecutive viral load measure-

ments within the asymptomatic window (6–36

months after first positive viral RNA) remained

within a one-log band of one another. The ‘Strict’

subdivision included only those individuals for

whom the measurements in the asymptomatic win-

dow all sat within the one-log band. Excluding all but

men who have sex with men (MSM) led to the further

subdivisions, ‘MSM’ and ‘MSM Strict’.

Data from Netherlands
The study cohort was provided by the ATHENA na-

tional observational cohort (seroconverters from

1996 or onwards) and the Amsterdam Cohort

Studies (seroconverters before 1996) [51]. We

included only individuals infected with subtype B

between 1985 and 2008, for whom appropriate gen-

etic data and SPVL were available [52] (n = 416).

We define SPVL as the mean of all log10 viral load

measurements taken 6–24 months after the mid-

point between the last negative and the first positive

diagnosis. The phylogeny was reconstructed using a

sequence of length 2064 containing the same elem-

ents of the pol gene as for the Swiss data.

We excluded codons strongly associated with

drug resistance mutations (for details, see

Supplementary Fig. S4). Four subtype C individuals

from the same cohort were used as the outgroup.

The phylogenetic analysis was performed using

ModelTest [42], RAxML [39] and RAT [43] in the same

way as the Rakai cohort, which also identified the

same nucleotide substitution model as appropriate,

and no recombination was detected (data not

shown).

As with the Swiss data, individuals were

categorized as ‘All’, ‘Strict’, ‘MSM’ and ‘MSM

Strict’. Additionally, two further categories, ‘MSM

NL’ and ‘MSM Strict NL’, were created from the

‘MSM’ groups, which excluded individuals not

originating in the Netherlands in order to further

reduce confounding factors.

Trees for simulations were read and manipulated

using the ape package [53] in R [54], which was also

used to plot the trees.

Methods for calculating heritability statistics

A phylogeny, reconstructed from genetic data, is an

approximation of the transmission network.

Phylogenetic signal is a measure of how well trait

values at the tree tips match their relative positions

on the phylogeny, and several established methods

are available to quantify this signal in terms of a

single statistic: the Mantel test [55]; Blomberg’s in-

dependent contrasts, which give us the Blomberg’s

K and PICv (variance of phylogenetic independent

contrasts) statistics [56]; Pagel’s � transformation

[57]; and the Abouheif–Moran (AM) tests [58], of

which there are five variants (‘oriAbouheif’,

‘sumDD’, ‘nNodes’, ‘patristic’, ‘Abouheif’, with the

latter used by default). We also developed two new

methods which allow control of cofactors, the

Measuring heritability in HIV virulence using phylogenies Shirreff et al. | 211

http://emph.oxfordjournals.org/lookup/suppl/doi:10.1093/emph/eot019/-/DC1
http://emph.oxfordjournals.org/lookup/suppl/doi:10.1093/emph/eot019/-/DC1
http://emph.oxfordjournals.org/lookup/suppl/doi:10.1093/emph/eot019/-/DC1
http://emph.oxfordjournals.org/lookup/suppl/doi:10.1093/emph/eot019/-/DC1
http://emph.oxfordjournals.org/lookup/suppl/doi:10.1093/emph/eot019/-/DC1
http://emph.oxfordjournals.org/lookup/suppl/doi:10.1093/emph/eot019/-/DC1


phylogenetic pairs (PP) method and the hierarchical

clustering (HC) method, which are described briefly

here.

The PP method identifies pairs of individuals on

the tree which are each other’s closest neighbour,

and these are assumed to be transmission pairs.

Analysis of variance (ANOVA) identifies the degree

to which the transmission partner explains an indi-

vidual’s SPVL. Crucially, the ANOVA approach

allows for the inclusion of cofactors. These are age,

sex and genital ulcer disease in the Rakai dataset

(Supplementary Table S1); age, sex and risk group

in the Swiss dataset (Supplementary Table S2); and

age, sex, risk group, region of origin and the type of

assay used to measure viral load in the Netherlands

dataset (Supplementary Table S3). This method also

ignores individuals who are not part of a phylogen-

etic pair.

The HC method is similar but considers larger

clusters of individuals identified on the phylogeny

by a threshold branch length, and examines the

amount of variance in SPVL explained by the cluster.

Because there is no intuitive ideal cluster size, pro-

portion included or number of clusters to use, the

method integrates over the range of clustering

distances.

All established and new methods are described in

detail in the Supplementary data.

Randomization test

The significance of a test statistic can be measured

as in [56] by comparing the statistic derived from the

data with its distribution under no heritability, which

is the null hypothesis. Randomizing the tips of the

tree by randomly reallocating the tips scrambles any

heritability signal. This is performed 1000 times, and

the analysis is repeated for each. The proportion of

randomized datasets that give a statistic higher than

the true value is the one-tailed P-value for presence

of heritability. When the randomization test was per-

formed for the PP and HC statistics the cofactors

remained with their corresponding SPVL data.

Method of simulating SPVL data on a known

phylogeny

This method uses a simple algorithm to simulate

evolution of a continuous trait on a known phylogeny

for a given heritability. This method is similar to that

used in previous work [36] and is a variation on the

Ornstein–Uhlenbeck process [59, 60], which allows

Brownian motion to occur while constraining the

distribution of the population.

During the simulation, each node on the tree is

assigned a trait value in log10 SPVL, beginning from

the root, which is assigned the mean of the true SPVL

data. Each daughter node is given a SPVL value de-

pending on that of its parent, and on the SPVL dis-

tribution in the whole population. The higher the

heritability, the more the value depends on the

parent.

The SPVL at each subsequent daughter node,

VD [equation (2)], is derived from the parent

node, VP, the value h2, and the random variable

M which is normally distributed according to the

mean and variance of the population log10 SPVL

(distribution 3).

VD ¼ h2VP+M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðh2Þ2

q
, ð2Þ

M � Nð ��,�2PÞ: ð3Þ

The value h2 is therefore the regression slope be-

tween the trait values at a parent node, VP, and a

daughter node, VD (or an index and secondary case).

This has been demonstrated to be equal to the broad

sense heritability, h2 as defined in equation (1) [61],

and its further implications are discussed in the

Supplementary data. The result is a set of data at

the tips of the tree, simulated with known heritability

h2, which is used for analysis. We have also explored

an alternative method of simulation which allows for

multiple transmission between nodes on the tree,

which is also described in the Supplementary data.

Multiple hypothesis testing to estimating true

heritability and confidence intervals

For each value of h2 between 0 and 1, in increments

of 0.01, 100 simulations are performed and the rele-

vant phylogenetic comparative statistics is

calculated. A hypothesis test for the particular h2 is

then performed with these 100 values. They are

compared with the statistic calculated from the true

data, and the proportion which is lower than the

true statistic becomes the probability P that

the data are consistent with that value of h2. The

values of h2 which produce P-values closest to

0.025, 0.975 and 0.500 become the lower and upper

95% confidence bounds, and the median estimate of

h2, respectively.

A visual distribution of h2 is estimated using

approximate Bayesian computation (ABC), of which

details are given in the Supplementary data.
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Estimate power to detect an effect

To examine the ability of each statistic to detect non-

null heritability, we simulated 100 datasets for each

value of a range (0–1) of h2 values in increments of

0.05. To visualize the relationship between h2 and the

statistic of interest, we calculated the mean and

standard deviation of the phylogenetic comparative

statistics calculated from these 100 simulations. In

order to estimate the power of each statistic to detect

a significant effect at each value of h2, we performed a

randomization test on each simulated dataset, as

described above (see ‘Randomization test’), but with

100 randomizations. For each simulated dataset, the

proportion of randomization tests which find signifi-

cant (P < 0:05) heritability represents the power to

detect an effect at that value of h2.

All methods are available in R code on request

from the corresponding author.

RESULTS

Testing significance in previously analysed data

The significance of heritability from the

randomization test for the Rakai and Swiss data is

shown in Tables 1 and 2, respectively.

A consistent signal was not found in the Rakai

data (Table 1), but in the Swiss data it was more

so (Table 2), and was higher for the smaller subdiv-

isions. We tested the possibility that high signifi-

cance in the smallest group was an artefact of

small tree size, but this was not the case

(Supplementary Table S5). We also tested the ro-

bustness of the results to phylogenetic uncertainty

and found that small levels of perturbation (3%)

have little effect on the results, but as the level of

perturbation increases, the signal weakens accord-

ingly (Supplementary Table S6).

Estimates of heritability in previously analysed

data

Tables 1 and 2 show the medians and confidence

intervals of h2 as estimated by multiple hypothesis

testing (MHT). In the Swiss data, the confidence

intervals exclude zero in several cases. In all of these

instances, the randomization test was also signifi-

cant. However, a significant randomization test did

not always correspond to confidence intervals which

excluded zero, because these are one- and two-tailed

tests, respectively.

The distribution of true heritability was calculated

by ABC using both PP (red) and Pagel’s � (blue) for

each subdivision in the Swiss and Rakai datasets

(Figs 1 and 2). In the Swiss figure, the MSM Strict

subdivision exhibits the distribution of h2 most

removed from zero, which supports the results from

the randomization test and lower confidence

bounds (Table 2). The method using Pagel’s �

exhibits higher heritability in the larger subdivisions.

Similarly in the Rakai cohort, the most significant

result from the randomization test (Table 1) is the

p24 subdivision analysed under Pagel’s �, and this is

reflected in the results from ABC, in which the dis-

tribution of estimated h2 is highly positive.

Interestingly, the PP method finds that the most sig-

nificant distribution visually is instead from the gp41

subdivision which is also confirmed by the

randomization test.

We also tested an alternative method of simula-

tion which accounted for differences in branch

length and allowed multiple generations between

two adjacent nodes. We applied this to the Rakai

p24 subtype A data (Supplementary Table S7), and

the alternative gave higher estimates of h2 but wider

confidence intervals.

Heritability was also measured in the Rakai and

Swiss data using a phylogenetic mixed model, which

assumes that the trait is determined by independent

viral and host effects [62]. These results are given in

Supplementary Table S4.

Testing the sensitivity of each statistic

The sensitivity of each phylogenetic comparative

statistic to simulated heritability was explored by

visualizing the relationship between them, and

measuring the power of the statistic to successfully

detect an effect of that size, in the entire Swiss

dataset and the MSM Strict subdivision (Figs 3 and

4, respectively). None of the statistics had substan-

tial power to detect heritability below h2 = 0.4 on any

subdivision, but most had the power to detect an

effect above that level. The Mantel test performed

poorly throughout. Blomberg’s K performed well in

the MSM Strict subdivision, but was insensitive

when applied to the entire Swiss dataset, with only

values above h2 = 0.6 being consistently detected. In

the entire Swiss dataset, the AM statistic appeared

the most sensitive, but in the MSM Strict subdiv-

ision its performance matched that of Pagel’s �.

We also tested the power of variants of the HC and

AM tests compared with their default methods
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(‘ward’ and ‘Abouheif’, respectively)

(Supplementary Figs S5 and S6). The default

methods performed equally well or better than any

of the variations.

Application to data from the Netherlands

Supplementary Figure S4 shows the shape of the

phylogeny inferred from the Netherlands data.

These data have not been previously analysed for

heritability, and so to reduce the problem of multiple

testing only two methods, Pagel’s � and PP, were

used to detect and measure heritability in each sub-

division of the data.

Significant heritability was found only in one

subdivision (MSM from the Netherlands

with Strict viral loads) and using one statistic

(Pagel’s �), which gave a heritability estimate of

h2 = 0.52 (Table 3). No effect was found when the

PP method was used. None of the confidence inter-

vals on h2 excluded 0. The estimated distributions of

h2 are shown in Fig. 5.

DISCUSSION

In this study, we developed new methods for detect-

ing and measuring heritability of SPVL using phylo-

genetic relationships and compared them with

established methods on real and simulated data.

Which cohorts exhibit heritability?

Heritability was detected consistently in the MSM

Strict subdivision of the Swiss cohort (Table 2), sup-

porting the previous study of these data which found

significant and high heritability in that subdivision

[36]. Note that in that study, the level of significance

was detected by randomizing the PICv rather than

the K statistic, hence the strong result for PICv in the

MSM Strict subdivision. We also found that several

statistics uncovered significant heritability in all of

the subdivisions of the Swiss data. In many such

cases, the confidence intervals of h2 also excluded

zero, and the estimates for h2 were high (0.44–0.68).

Table 2. The statistics (Z), P-values from a randomization test, medians and confidence intervals of h2

from MHT on the Swiss data

Type of test All (n = 661) Strict (n = 230) MSM (n = 404) MSM Strict (n = 134)

Z P h2 95% CI Z P h2 95% CI Z P h2 95% CI Z P h2 95% CI

PP �0.089 0.817 0.08 (0.00,

0.48)

0.376 0.020 0.61 (0.01,

0.77)

0.009 0.492 0.18 (0.00,

0.53)

0.595 0.005 0.68 (0.12,

0.82)

HC complete 0.008 0.214 n.d. n.d. 0.045 0.038 n.d. n.d. 0.020 0.096 n.d. n.d. 0.049 0.032 n.d. n.d.

HC single 0.006 0.159 n.d. n.d. 0.030 0.038 n.d. n.d. 0.008 0.175 n.d. n.d. 0.034 0.040 n.d. n.d.

HC average 0.004 0.315 n.d. n.d. 0.039 0.043 n.d. n.d. 0.016 0.113 n.d. n.d. 0.046 0.024 n.d. n.d.

HC ward 0.008 0.315 0.36 (0.00,

0.52)

0.060 0.020 0.58 (0.28,

0.72)

0.036 0.036 0.44 (0.00,

0.61)

0.063 0.023 0.62 (0.34,

0.73)

Mantel �0.014 0.712 0.00 (0.00,

0.80)

0.040 0.201 0.91 (0.00,

0.97)

�0.005 0.516 0.00 (0.00,

0.76)

0.050 0.207 0.79 (0.00,

0.91)

Blomberg K 0.002 0.305 0.50 (0.00,

0.67)

0.025 0.366 0.44 (0.00,

0.72)

0.091 0.038 0.71 (0.00,

0.82)

0.593 0.080 0.42 (0.00,

0.54)

PICv 1594 0.307 n.d. n.d. 127 0.345 n.d. n.d. 40.2 0.052 n.d. n.d. 5.58 0.002 n.d. n.d.

Pagel � 0.105 0.016 0.44 (0.16,

0.57)

0.216 0.030 0.44 (0.00,

0.57)

0.153 0.025 0.45 (0.00,

0.59)

0.646 0.016 0.54 (0.32,

0.63)

AM oriAbouheif �0.013 0.680 n.d. n.d. 0.016 0.361 n.d. n.d. 0.038 0.141 n.d. n.d. 0.127 0.023 n.d. n.d.

AM Abouheif �0.014 0.671 0.01 (0.00,

0.32)

0.015 0.338 0.24 (0.00,

0.49)

0.037 0.138 0.31 (0.00,

0.48)

0.126 0.019 0.49 (0.03,

0.61)

AM sumDD 0.000 0.166 n.d. n.d. 0.001 0.168 n.d. n.d. 0.001 0.136 n.d. n.d. 0.013 0.016 n.d. n.d.

AM nNodes 0.000 0.166 n.d. n.d. 0.001 0.168 n.d. n.d. 0.001 0.136 n.d. n.d. 0.013 0.016 n.d. n.d.

AM patristic 0.002 0.320 n.d. n.d. 0.002 0.155 n.d. n.d. 0.005 0.119 n.d. n.d. 0.000 0.054 n.d. n.d.

Individuals were subdivided according to variability of viral load (Strict), risk category (MSM) or both. P-values showing borderline significance (P< 0.1)
are in blue, and formal significance (P< 0.05) is in red, and confidence intervals in which the lower limit is above zero are also in red. n.d., not done.
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In spite of significant heritability being found

in previous work on the Rakai data [34], we did

not consistently find heritability in this cohort.

Although they are not strictly comparable, the

results from the previous studies of the Rakai

and Swiss data suggest that heritability is higher

in the latter cohort, and this may underlie the

differences in our results. However, the best esti-

mate for h2 from the Rakai data was high (0.51)

(Table 1).

Six different subdivisions of the Netherlands data

were analysed using PP and Pagel’s �, and only a

single positive result was found with one statistic

(�) in one subdivision, suggesting that heritability

is close to the detection borderline. It was estimated

at h2 = 0.52 (Table 3), which falls high within the

range of previous estimates [30].

It is interesting that the Swiss cohort shows more

apparent heritability than the Netherlands in spite of

a similar transmission routes and genetic back-

grounds. One potential explanation would be differ-

ences in coverage. The prevalence in Switzerland is

higher (0.4% compared with 0.2%) [63], but so is the

sample size (661 compared with 416) which sug-

gests similar levels of coverage, which are reportedly

high in both cohorts [47, 64]. In the Swiss dataset,

the mean SPVL of the Strict group is significantly

higher than that of the rest (P = 0.0004), and the

same is true of the MSM over non-MSM

(P = 0.003) [36]. The same is not true of these two

categories in the Netherlands cohort (data not

shown), which suggests that viral virulence geno-

types are less structured in this cohort and may

explain lower heritability.

The exclusion of non-Strict individuals generally

increased the level of significance, but this was

dependent on the cohort and the method. In the

Swiss cohort, the exclusion increased significance

when using the PP and HC methods, but not other-

wise (Table 2). In the Netherlands cohort, the exclu-

sion increased significance markedly when using

Pagel’s �, but not as much using PP (Table 3).

Understanding why the Strict population exhibits

higher heritability than whole sample may be an im-

portant step in both estimating and understanding

the mechanisms behind heritability. Simple models
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Figure 1. Heritability estimated by ABC in all subdivisions of the Swiss data. The subdivision is written above the plot. Results

from the PP method are in red, and from Pagel’s � in blue, with the overlap in purple
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fitted to longitudinal viral load data within patients

suggest that fluctuations do not just represent ran-

dom noise [65]. Fluctuating viral load has been

associated with untreated sexually transmitted co-

infections [66] and this or other host-mediated effect

may mask the effect of the viral genotype and justify

the exclusion of individuals with highly variable viral

loads.

The same gene pol was used to analyse the Swiss

and Netherlands datasets, whereas the available

genes from the Rakai cohort were env and gag. It

has been shown that env and pol produce similar

trees [67], but there are topological differences,

and our work also demonstrates different results be-

tween gag and env (Fig. 2). The ABC method of esti-

mation by simulation makes estimation of h2 robust

to differences in gene usage and we do not expect

systematic differences between the cohorts. There

are also differences in transmission routes between

the cohorts, and a higher diversity of HLA types in

African than European populations [68]. Although

these differences inhibit direct comparability be-

tween the European and Ugandan datasets, they

add to the general nature of this work.

Figure 2. Heritability estimated by ABC in all subdivisions of the Rakai data. The subdivision is written above the plot. Results

from the PP method are in red, and from Pagel’s � in blue, with the overlap in purple
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Which method is best for detecting heritability?

The principle test of these statistics is the detection

of an effect in real data. Pagel’s � detected heritabil-

ity in every subdivision of the Swiss data (Table 2),

and also produced the strongest result of any statis-

tic applied to the Rakai dataset (Table 1). The PP and

HC statistics performed well on the Swiss data, par-

ticularly on the Strict subdivisions. The AM statistics

were less successful at detecting an effect in the

Swiss data. In the Rakai data, the AM ‘patristic’ vari-

ant found a significant result in two subdivisions.

However, in simulation studies it performed very

poorly (Supplementary Fig. S6).

Testing the detection power by simulation relies

on a simple model of trait evolution, but has the

advantage that heritability is known. It revealed that

the PP, HC, Pagel’s � and AM statistics were com-

parably sensitive, detecting an effect at greater than

approximately 0.4 heritability in the Swiss data, with
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Figure 3. Comparison of the sensitivity of various statistics to
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each statistic to detect heritability at 5% significance. The bars
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Figure 4. Comparison of the sensitivity of various statistics

on the Swiss MSM Strict phylogeny. Left and right side as in

Figure 3
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AM slightly more sensitive (Figs 3 and 4). The K

statistic was as sensitive as other statistics when

applied to the MSM Strict subdivision, but in the

entire Swiss dataset its sensitivity was low.

Simulations suggest that none of the methods

can detect heritability lower than approximately

h2 = 0.4, and this threshold is higher in some

phylogenies. This threshold is confirmed by the

finding that estimates of h2 are always above 0.4

when heritability was found to be significant. Most

studies have estimated lower heritability than this

[30], and previous modelling work has suggested

that such low heritability is enough to produce a

substantial rate of evolution [15]. This suggests that

phylogenetic methods are not adequate to exclude

the possibility of relevant heritability in HIV viru-

lence in these datasets.

Interestingly, another study which took an analyt-

ical and computational approach to comparing be-

tween Blomberg’s K, the AM and the Mantel test

found that K had a higher power to detect an effect

than the AM statistic [69]. They also argue that these

tests should all give the same significance as they are

based on the cross-product of a phylogenetic simi-

larity and trait similarity matrix. In contrast, we

found marked differences between their perform-

ances, with the AM, K and Mantel statistic having

decreasing power to detect an effect. They found that

the sensitivity of these methods was dependent on

the shape of the phylogeny, so differences in the

source of trees (simulated versus inferred) are a pos-

sible source of discrepancy in the respective studies.

This is beyond the scope of this study but deserves to

be the subject of future work.

The PP, along with the HC methods, is able to

account for cofactors of SPVL: ignoring these may

lead to overestimates or underestimates of heritabil-

ity if they associate or dissociate on the tree, respect-

ively. Indeed, an increase in signal when cofactors

were taken into account was seen in previous ana-

lysis of transmission pairs in the Rakai cohort [34].

However, in the absence of a method to include the

effect of cofactors in simulations, this aspect of the

PP or HC methods cannot be harnessed to measure

h2. One possible method would be to calculate the

fixed effects of the cofactors using a linear regres-

sion, simulate only the residuals, and subsequently

add the fixed effects, but this requires treating re-

siduals as data, which is inappropriate in the likely

event that there is correlation between the effects of

cofactors and the SPVL [70]. The PP method pro-

duces a dataset of couples, which is analogous to

other couples studies [31–34]. The lack of sensitivity

of the PP method and the other phylogenetic

methods suggests that the phylogeny cannot (yet)

tell us everything that the epidemiology does about

the transmission network.

The � statistic has the advantage that it incorpor-

ates both topology and branch lengths, and analyses

the entire sample. It is notable, therefore, that the PP

method is relatively successful in spite of its

analysing only a subset of individuals who form ap-

parent transmission pairs (60%), and in particular

ignores deep relationships within the phylogeny.

Table 3. The statistics (Z), P-values from a randomization test, medians and confidence intervals of h2

from MHT on the Netherlands data, when analyzed with PP and Pagel’s �

All Strict MSM MSM Strict MSM NL MSM NL Strict

n 416 246 348 211 286 174

PP

Z �0.0627 0.2193 0.0763 0.2047 0.0633 0.2277

P-value 0.703 0.111 0.272 0.128 0.327 0.130

h2 0.02 0.01 0.08 0.09 0.29 0.40

95% CI (0.00, 0.45) (0.00, 0.56) (0.00, 0.53) (0.00, 0.47) (0.00, 0.63) (0.00, 0.67)

Pagel’s �

Z 0.0001 0.0978 0.0001 0.0323 0.0001 0.2628

P-value 0.824 0.086 0.827 0.200 0.718 0.038

h2 0.19 0.44 0.01 0.38 0.10 0.52

95% CI (0.00, 0.50) (0.00, 0.60) (0.00, 0.51) (0.00, 0.60) (0.00, 0.55) (0.00, 0.63)

Individuals were subdivided according to variability of viral load (Strict), risk category (MSM) or whether they were from the Netherlands (NL). P-values
showing borderline significance (P< 0.1) are in blue, and formal significance (P< 0.05) is in red, and confidence intervals in which the lower limit is
above zero are also in red.
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This suggests that most signal lies in the recent

phylogenetic relationships. However, in unpub-

lished work, Hodcroft et al. found SPVL heritability

using pedigree analysis on UK data [71]. In contrast

to our work, they found that collapsing poorly sup-

ported nodes in the tree and thereby ignoring some

of the shallow relationships in the phylogeny had a

negligible effect on their results for some datasets.

The AM method is also successful, which (with the

exception of the ‘patristic’ variant) ignores branch

lengths, indicating that topology may be more im-

portant. Rigorously identifying which clades or levels

of the phylogeny are responsible for heritability

would be an interesting direction for future research.

This may differ for phylogenies which are less star-

like than HIV. The use of longer sequences and bet-

ter sampled datasets is likely to result in better

detection and estimation of heritability, as poorly

resolved trees scramble the heritability signal.

However, the detection threshold is unlikely to

change even with improved sampling, as it was

based on simulations which were blind to uncer-

tainty in the tree.

It is noteworthy that the PP and Pagel’s � each

have their strengths in estimating the distributions

of h2 in the different Rakai subdivisions. The PP

Figure 5. Heritability estimated by ABC in all subdivisions of the Netherlands data. The subdivision is written above the plot.

Results from the PP method are in red, and from Pagel’s � in blue, with the overlap in purple
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method identifies a more strongly positive distribu-

tion in subdivision gp41, which Pagel’s � does not,

but the latter detects a more positive distribution in

p24 and subtype A gp41. This suggests that an ap-

proach which combines these methods may be

appropriate.

CONCLUSIONS AND IMPLICATIONS

In this study, we compare several phylogenetic com-

parative methods to detect heritability, h2. Many

methods detect heritability successfully in real and

simulated data, but sensitivity drops off below

h2 = 0.4. We recommend the PP method and

Pagel’s � for use in detecting and estimating herit-

ability, the former for its consideration of co-factors,

and the latter for its marginally higher level of

sensitivity.

Estimates of heritability were consistent with pre-

vious studies on the Rakai and Swiss data, and con-

firm that heritability can be very high, which has

clinical and evolutionary implications. When applied

to the Netherlands data, heritability was found only

in the most homogeneous subdivision, MSM who

originate in the Netherlands with Strict viral

loads. Differences in heritability between cohorts,

subdivisions and methods for estimation carry

implications for the biology of heritability,

which offer interesting avenues for future modelling

work. Experimental and epidemiological research

are also required to directly identify viral factors

which contribute to variance in SPVL, as well as

exploring the impact of treatment on virulence

evolution.

supplementary data

Supplementary data are available at EMPH online.
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