
He et al. BMC Genomics          (2022) 23:617  
https://doi.org/10.1186/s12864-022-08766-4

RESEARCH

Exploring Lead loci shared 
between schizophrenia and Cardiometabolic 
traits
Qian He1, Adam N. Bennett1, Jundong Liu1, Beifang Fan2, Xue Han2, Lu Cheng2, Yan Chen2, Xia Yang3,4,5 and 
Kei Hang Katie Chan1,6,7* 

Abstract 

Individuals with schizophrenia (SCZ) have, on average, a 10- to 20-year shorter expected life span than the rest of 
the population, primarily due to cardiovascular disease comorbidity. Genome-wide association studies (GWAS) have 
previously been used to separately identify common variants in SCZ and cardiometabolic traits. However, genetic 
variants jointly influencing both traits remain to be fully characterised. To assess overlaps (if any) between the genetic 
architecture of SCZ and cardiometabolic traits, we used conditional false discovery rate (FDR) and local genetic cor-
relation statistical framework analyses. A conjunctional FDR was used to identify shared genetic traits between SCZ 
and cardiometabolic risk factors. We identified 144 genetic variants which were shared between SCZ and body mass 
index (BMI), and 15 variants shared between SCZ and triglycerides (TG). Furthermore, we discovered four novel single 
nucleotide polymorphisms (SNPs) (rs3865350, rs9860913, rs13307 and rs9614186) and four proximate genes (DERL2, 
SNX4, LY75 and EFCAB6) which were shared by SCZ and BMI. We observed that the novel genetic variant rs13307 and 
the most proximate gene LY75 exerted potential effects on SCZ and BMI comorbidity. Also, we observed a mixture of 
concordant and opposite direction associations with shared genetic variants. We demonstrated a moderate to high 
genetic overlap between SCZ and cardiometabolic traits associated with a pattern of bidirectional associations. Our 
data suggested a complex interplay between metabolism-related gene pathways in SCZ pathophysiology.
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Background
Individuals with schizophrenia (SCZ) have a 10- to 
20-year shorter life span when compared with healthy 
individuals in the same population [1, 2]. Previous stud-
ies have indicated that cardiovascular disease could 
be a major cause of this shorter life expectancy in SCZ 
patients [1]. The link between the increased incidence 
of cardiovascular and metabolic disorder was previously 
established in SCZ patients when compared with the 

general population [2, 3]. For example, the risk of obe-
sity and type 2 diabetes (T2D) are approximately 3.5- 
and 2-fold higher, respectively, in individuals with SCZ 
[4, 5]. Historically, the increased risk and prevalence of 
cardiometabolic disease (CMD) has been attributed to 
social determinants and lifestyle factors (including poor 
diet, sedentary behaviour and alcohol and substance 
use) and the effects of psychotropic medication [6, 7]. 
Furthermore, several psychopharmacological agents, in 
particular antipsychotics, are obesogenic and contribute 
to adverse events due to metabolic disorders [7] These 
factors suggest that CMD risks are both key risk factors 
and long-term health concerns in patients with SCZ [8]. 
However, for decades, cardiometabolic comorbidity and 
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associated mortality have remained high in these patients 
and have suggested that most patients with SCZ have not 
benefited from clinical advancements [8, 9]. Therefore, 
comorbidity may be a result of other factors hitherto not 
considered. Therefore, a systems biology approach could 
provide new pathophysiological knowledge as indicated 
by recent genetics studies [10, 11].

Recently, the polygenic nature of SCZ and cardiometa-
bolic traits have become increasingly clear [12]. These 
traits are reported with substantial heritability, estimated 
at 79% for SCZ [13], 24–90% for BMI [14], 36–61% for 
waist-hip ratio (WHR) [15], 11% for triglycerides (TG) 
[16], approximately 89% for total cholesterol (TC), 
22–93% for high-density lipoprotein (HDL), 22–91% for 
low-density lipoprotein (LDL), 38–66% for fasting glu-
cose (FG) [17], 47% for fasting insulin (FIN) [18] and 
25–80% for T2D [19]. Several genetic studies have estab-
lished links between CMD and SCZ, and an increased 
CMD prevalence has been associated with treatment 
responses in SCZ [20, 21]. Due to strong associations 
between BMI and SCZ, and also between TG and SCZ 
[22, 23], several neurobiological hypotheses related to 
potential underlying mechanisms have been proposed. 
However, associations are complex, as weight loss [24, 
25] and weight gain [26] are associated with SCZ, and 
inconsistent associations between TG and SCZ have 
been reported [27, 28].

Even though abundant genetic variants are associ-
ated with SCZ comorbidity and cardiometabolic traits, 
understanding the functional consequences of genetic 
variations and identifying pleiotropic genes and pathways 
for both phenotypes remains challenging. Powerful sta-
tistical approaches, specifically designed to analyse the 
polygenic architectures of complex traits, could improve 
gene or loci discovery and replication rates [25–27]. The 
conditional FDR and conjunctional FDR methods, which 
specifically analyse the polygenic architecture of multiple 
disorders, allow for the identification of shared genetic 
variants, and in turn, elucidate common pathobiology 
and molecular mechanisms across different disorders 
[10]. Using this strategy, common associations between 
two phenotypes can be identified by evaluating the con-
tribution from all SNPs from two independent GWAS 
[28–30]. The discovery of shared genetic variants could 
facilitate the development of risk prediction models for 
CMD traits and enabling targeted CMD interventions for 
SCZ patients.

In this study, we analysed GWAS summary statistics 
of SCZ and cardiometabolic traits, including WHR, 
BMI, TG, TC, HDL, LDL, FG, FIN and T2D, using 
pleiotropic-based conditional and conjunctional FDR 

statistics to estimate shared genetic characteristics 
between SCZ and cardiometabolic traits. We hypoth-
esised that these methods could help identify shared 
genetic variants, shared polygenic architecture, and 
potential pleiotropic genes and biological pathways 
shared between SCZ and cardiometabolic traits.

Results
Polygenetic overlap and genetic correlations between SCZ 
and Cardiometabolic traits
As shown (Fig. 1), we performed conditional FDR and 
local genetic covariance analyses to identify pleiotropic 
effects between SCZ and cardiometabolic traits in a 
European ancestry background. Briefly, the conditional 
FDR approach was based on an empirical Bayesian sta-
tistical framework and used GWAS summary statistics 
as a primary trait (e.g. SCZ), together with a condi-
tional trait (e.g. BMI) to estimate the posterior prob-
ability that an SNP had no association with the primary 
trait, given that P-values for that SNP in both primary 
and conditional traits were as small as, or smaller than 
the observed P-value.

Our fold-enrichment plots demonstrated that SNPs 
were highly enriched (4.8–25.0 fold) in SCZ, across 
increasingly stringent significance levels, for a BMI 
association (SCZ|BMI) (Fig. 2a), while SNPs were mod-
erately enriched (1.3–4.3 fold) in SCZ, across increas-
ing stringent significance levels, for the SCZ|TG 
association (Fig.  2c). The reverse conditional associa-
tion (BMI|SCZ and TG|SCZ) showed a ~ 2.5–9.0 fold 
and ~ 2.5–34.0 fold-enrichment, respectively (Fig.  2b, 
d). These results supported a moderate to high level of 
polygenic overlap between SCZ and BMI or TG.

We also used the Heritability Estimation from Summary 
Statistics (HESS) package to estimate and visualise local 
SNP-heritability and genetic covariance, to examine if a spe-
cific genomic region was genetically linked to SCZ and cardi-
ometabolic traits. We estimated local genetic covariance and 
correlations in 104 regions between SCZ and BMI, and 32 
regions between SCZ and TG. In analysis between two trait 
pairs (SCZ|BMI and SCZ|TG), we identified four genomic 
regions on different chromosomes: chr11:27020461–
28,481,593, chr12:122007651–124,977,980, chr16:29036613–
31,382,943 and chr16:63691589–65,938,566, which showed 
strong local genetic associations between SCZ and BMI 
(Fig.  2e and Additional  file  1 Supplementary Table  2). We 
identified two genomic regions: chr6:31571218–32,682,664 
and chr7:71874885–73,334,602 which showed strong local 
genetic correlations between SCZ and TG (Fig. 2f and Addi-
tional file 1 Supplementary Table 3).
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Genetic variants and genes identified by conjunctional 
FDR analysis are shared between SCZ and BMI and TG
To identify genetic variants shared between SCZ and BMI 
and TG, we performed conjunctional FDR analysis. This 
approach assessed the posterior probability that an SNP was 
null for either trait or both, given that P-values for both phe-
notypes were as small as, or smaller than P-values for each 
trait individually. Conjunctional FDR is an extension of the 
conditional FDR approach and is defined as the maximum 
of two conditional FDR statistics for a specific SNP. In total, 
144 distinct genetic variants were shared between SCZ 
and BMI at a conjunctional FDR value < 0.05 (Fig.  3a and 
Additional file 1 Supplementary Table 4). Of these, 80 vari-
ants (56%) were not found in the original BMI GWAS [31], 
while 75 (52%) were not found in the original SCZ GWAS 
[32] and 79 (55%) were not reported in similar studies [3, 
31]. Four genetic variants were identified which were novel 
for both phenotypes and, after mapping the most proximate 

genes to associated SNPs, we identified DERL2, SNX4, 
LY75 and EFCAB6 as novel genes in SCZ and BMI asso-
ciations (Table  1). By integrating information from local 
genetic covariance analyses, we identified six SNPs [rs6265 
(chr11:27679916), rs7975482 (chr12:124481690), rs4243232 
(chr16:30514723), rs7953704 (chr12:122625992), rs10744211 
(chr12:122931820) and rs4787491 (chr16:30015337)] and 
six most proximate genes BDNF, ZNF664, ITGAL, MLXIP, 
ZCCHC8 and INO80E at three significant genomic regions 
(chr11:27020461–28,481,593, chr12:122007651–124,977,980 
and chr16:29036613–31,382,943). All genes were previously 
reported as being associated with BMI and SCZ.

In total, 15 genetic variants were shared between SCZ 
and TG at a conjunctional FDR value < 0.05 (Fig. 3b and 
Additional file  1 Supplementary Table  4_1). Of these, 
10 (67%) genetic variants were not previously reported 
in the original TG GWAS [33]; while 10 (67%) were not 
previously reported in the original SCZ GWAS, and 6 

Fig. 1 Work flow of the study design

(See figure on next page.)
Fig. 2 Pleiotropy analysis. a Plot of fold enrichment vs. nominal -log10 P for SCZ below the standard GWAS threshold of P value < 5 ×  10− 8 as 
a function significant of the association with BMI. b Plot of fold enrichment versus nominal -log10 P values for BMI below the standard GWAS 
threshold of P value < 5 ×  10− 8 as a function of significance of the association with SCZ. c Plot of fold enrichment vs. nominal -log10 P for SCZ 
below the standard GWAS threshold of P value < 5 ×  10− 8 as a function of significance of the association with TG. d Plot of fold enrichment of TG 
versus nominal -log10 P values for below the standard GWAS threshold of P value < 5 ×  10− 8 as a function of significance of the association with 
SCZ. e Local genetic correlation and local SNP-heritability between SCZ and BMI. f Local genetic correlation and local SNP-heritability between SCZ 
and TG. For each panel (e&f ), the top section represents local genetic correlation, the middle section represents local genetic covariance, where 
significant local genetic correlation and covariance after multiple testing correction are highlighted in blue; and the bottom part represents local 
SNP-heritability for individual trait
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Fig. 2 (See legend on previous page.)
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(40%) were not previously reported in a similar study [3]. 
One genetic variant rs1472584, when the most proximate 
gene was mapped to the associated SNP, defined HCN1 
as a novel gene for TG, and was associated with SCZ in 
a previous study (Table  1 and Additional file  1 Supple-
mentary Table  4_1). When we integrated information 
from local genetic covariance analysis, we identified one 
SNP rs3130544 and one proximate gene C6orf15 in a 
significant genomic region (chr6:31571218–32,682,664). 
This novel TG gene was associated with SCZ (Table  1). 
By comparing the association direction for the top 
SNPs shared between SCZ and BMI at a conjunctional 
FDR value < 0.05, we identified mixed association direc-
tion patterns, with SNPs having concordant association 
directions in 72/144 genetic variants (50.0%) shared 
between BMI and SCZ (Additional file  1 Supplemen-
tary Table 5–6), while 8/15 genetic variants (53.3%) had 
concordant association directions between TG and SCZ 
(Additional file 1 Supplementary Table 7–8).

Annotating genetic variants shared between SCZ and BMI 
and TG
The functional annotation of SNPs at a conjunctional 
FDR value < 0.05 for SCZ and BMI is shown (Additional 
file  1 Supplementary Table  4 and Additional  file  2 Sup-
plementary Fig. 1). Most SNPs were in intronic (54.29%) 
and intergenic (31.43%) regions, and 12.77% had a Regu-
lomeDB score < 3, predicting potential regulatory func-
tions (Additional file 2 Supplementary Fig. 1a). Details on 
RegulomeDB scores are shown (Additional file 1 Supple-
mentary Table 9).

After functional annotation using ANNOVAR, we iden-
tified four novel SNPs (rs3865350, rs9860913, rs13307 
and rs9614186) and four most proximate genes (DERL2, 
SNX4, LY75 and EFCAB6) shared between SCZ and BMI. 
Ten candidate SNPs, in strong linkage disequilibrium 
(LD) (r2 ≥ 0.8) with rs3865350 (DERL2) at 17p13.2, were 
extracted using the HaploReg v4.2 tool (Additional file 1 
Supplementary Table  10). We observed that rs3865350 

Fig. 3 Common genetic variants jointly associated with SCZ and BMI (3a) and TG (3b) at conjunctional false discovery rate (conjFDR) less than 
0.05. Manhattan plot showing the –log10 transformed conjFDR values for each SNP on the y-axis and chromosomal position along the x-axis. 
The dotted horizontal line represents the threshold chosen for reporting shared associations (−log (FDR) values of 1.3 corresponds to a cFDR 
≤0.05). Independent lead single-nucleotide polymorphisms are highlighted with a black outline. The significant shared signal in the major 
histocompatibility complex region (chr6:25119106–33,854,733 and chr8:7242715–12,483,982) were deleted in the analysis. Further details are 
provided in Additional file 1 Supplementary Table 4 and Supplementary table 4_1



Page 6 of 17He et al. BMC Genomics          (2022) 23:617 

Ta
bl

e 
1 

N
ov

el
 s

ha
re

d 
ge

ne
s 

re
ac

hi
ng

 s
ta

tis
tic

al
 s

ig
ni

fic
an

ce
 b

et
w

ee
n 

SC
Z 

an
d 

ca
rd

io
va

sc
ul

ar
 ri

sk
 tr

ai
ts

 (B
M

I a
nd

 T
G

) (
co

nj
FD

R 
≤

 0
.0

5)

N
ot

es
: A

1 
Eff

ec
t a

lle
le

, A
2 

A
lte

r a
lle

le
, C

H
RC

hr
om

os
om

e 
nu

m
be

r, 
BP

 B
as

e-
pa

irp
os

iti
on

, c
on

jF
D

R 
Co

nj
uc

tio
na

l f
al

se
di

sc
ov

er
y 

ra
te

, A
N

N
O

VA
R 

Fu
nc

tio
na

lv
ar

ia
nt

 c
la

ss
ifi

ca
tio

n 
ba

se
d 

on
 p

os
iti

on
 in

 o
r o

ut
si

de
 o

f a
 g

en
e,

 R
BD

 
Re

gu
lo

m
eD

B 
sc

or
es

 p
re

di
ct

s 
th

el
ik

el
ih

oo
d 

of
 re

gu
la

to
ry

 fu
nc

tio
na

lit
y 

(lo
w

er
 s

co
re

s, 
le

ss
 th

an
 3

, i
nd

ic
at

e 
ah

ig
he

r l
ik

el
ih

oo
d)

, C
AD

D
 C

om
bi

ne
dA

nn
ot

at
io

n-
D

ep
en

de
nt

 d
ep

le
tio

n 
sc

or
e,

 w
hi

ch
 p

re
di

ct
s 

ho
w

 d
el

et
er

io
us

 
th

e 
SN

Pe
ffe

ct
 is

 o
n 

pr
ot

ei
n 

st
ru

ct
ur

e/
fu

nc
tio

n 
(h

ig
he

r s
co

re
s 

in
di

ca
te

 m
or

ed
el

et
er

io
us

), 
m

in
Ch

rS
ta

te
 M

in
im

um
ch

ro
m

at
in

 s
ta

te
 a

cr
os

s 
12

7 
tis

su
e 

ty
pe

s 
(lo

w
er

 s
co

re
s 

in
di

ca
te

 m
or

e 
op

en
ch

ro
m

at
in

), 
co

m
m

on
Ch

rS
ta

te
 

M
os

tc
om

m
on

 c
hr

om
at

in
 s

ta
te

 in
 1

27
 ti

ss
ue

 ty
pe

s

SN
P

A
1

A
2

CH
R

BP
co

nj
FD

R
Fu

nc
tio

n
A

N
N

O
VA

R
RD

B
CA

D
D

m
in

Ch
rS

ta
te

co
m

m
on

Ch
rS

ta
te

Be
ta

_B
M

I
SE

_B
M

I
P_

BM
I

O
R_

SC
Z

SE
_S

CZ
P_

SC
Z

N
ov

el
 S

N
Ps

 a
nd

 G
en

es
 s

ha
re

d 
be

tw
ee

n 
SC

Z 
an

d 
BM

I

 
rs

38
65

35
0

C
T

17
5,

38
1,

86
7

0.
01

.4
5

in
tr

on
ic

D
ER
L2

6
0.

39
3

4
4

-0
.0

14
2

0.
00

36
8.

00
 ×

  1
0-5

1.
04

14
0.

00
97

25
1

2.
97

 ×
  1

0-5

 
rs

98
60

91
3

A
G

3
12

5,
13

7,
32

6
0.

04
.4

8
in

te
rg

en
ic

SN
X4

5
3.

82
6

5
15

0.
01

81
0.

00
6

2.
56

 ×
  1

0-3
0.

93
51

4
0.

01
61

12
3.

15
 ×

  1
0-5

 
rs

13
30

7
G

A
2

16
0,

65
9,

99
6

0.
02

.2
8

U
TR

3
LY
75

4
3.

73
6

5
15

0.
01

29
0.

00
36

3.
39

 ×
  1

0-4
1.

03
93

0.
00

96
75

6.
75

 ×
  1

0-5

 
rs

96
14

18
6

A
C

22
44

,1
87

,6
87

0.
04

1
in

tr
on

ic
EF
CA

B6
4

4.
52

6
4

15
0.

01
47

0.
00

41
3.

12
 ×

  1
0-4

1.
05

16
0.

01
35

42
2.

02
 ×

  1
0-4

N
ov

el
 S

N
Ps

 a
nd

 G
en

es
 s

ha
re

d 
be

tw
ee

n 
SC

Z 
an

d 
TG

 
SN

P
A

1
A

2
C

H
R

BP
co

nj
FD

R
Fu

nc
tio

n
G

en
e

RD
B

C
A

D
D

Be
ta

_T
G

SE
_T

G
P_

TG
O

R_
SC

Z
SE

_S
C

Z
P_

SC
Z

 
rs

14
72

58
4

G
A

5
45

,2
10

,2
82

3.
95

 ×
 1

0−
-2

in
te

rg
en

ic
H
CN

1
7

13
.2

1
5

15
0.

02
18

0.
00

62
5.

23
4 
×

  1
0-4

0.
94

91
0.

01
25

59
3.

18
 ×

  1
0-5

 
rs

31
30

54
4

C
A

6
31

,0
58

,3
40

3.
79

 ×
 1

0−
-8

in
te

rg
en

ic
C6
or
f1
5

3a
2.

90
3

N
A

N
A

-0
.0

43
0.

00
75

4.
84

 ×
  1

0-1
0

1.
18

67
0.

01
51

59
1.

42
 ×

  1
0-2

9



Page 7 of 17He et al. BMC Genomics          (2022) 23:617  

was predicted to alter the binding of two transcription 
factor (TF) motifs GCNF and PLZF in HaploReg, which 
was not confirmed in GVATdb. In total, 42 candidate 
SNPs in strong LD (r2 ≥ 0.8) with rs9860913 (SNX4) at 
3q21.2 were identified (Additional file  1 Supplementary 
Table 11). Using HaploReg, this locus was located within 
an activated enhancer and DNAse site in different cell 
types, but was not confirmed in EnhancerDB. We also 
identified 67 candidate SNPs in strong LD (r2 ≥ 0.8) with 
rs13307 (LY75) at 2q24.2 (Additional file  1 Supplemen-
tary Table 12). The binding site of three TF motifs (Evi-1, 
RPEB-1 and RXR) were affected by this variant in Hap-
loReg, which was confirmed in GVATdb. In total, eight 
candidate SNPs in strong LD with rs9614186 (EFCAB6) 
at 22q13.2 were identified (Additional file 1 Supplemen-
tary Table 13).

The functional annotation of SNPs at conjunctional 
FDR < 0.05 for SCZ and TG are shown (Additional file 2 
Supplementary Fig.  1). Most SNPs were within intronic 
(35.71%) or intergenic (42.86%) regions, and 6.67% had a 
RegulomeDB score < 3 (Additional file  2 Supplementary 
Fig. 1b).

We identified two novel SNPs (rs1472584 and 
rs3130544) and two most proximate genes (HCN1 and 
C6orf15) which were not previously associated with 
TG, but with SCZ. Ninety candidate SNPs, in strong LD 
(r2 ≥ 0.8) with rs1472584 (HCN1) at 5p12, were extracted 
(Additional file  1 Supplementary Table  14). Addition-
ally, the binding site of the TF motif, Sox, was affected by 
this variant in HaploReg, but not confirmed in GVATdb. 
Thirteen candidate SNPs, in strong LD (r2 ≥ 0.8) with 
rs3130544 (C6orf15) at 6p21.33, were extracted (Addi-
tional file 1 Supplementary Table 15). The binding site of 
the TF motifs CEBPα, ERα-a and RORα1 were affected 
by this variant in HaploReg, but this was not confirmed 
in GVATdb.

Pathway analysis of genetic variants shared between SCZ 
and BMI and TG
We performed pathway enrichment analyses for shared 
genetic variants between SCZ and BMI, and SCZ and TG, 
to separately identify overrepresented pathways among 
most proximate genes nearest identified genetic variants. 
For SCZ and BMI, 297 pathways were significantly over-
represented and related to central nervous system (CNS) 
neuron differentiation, brain-derived neurotrophic fac-
tor (BDNF) signalling, positive regulation of growth, 
post synapse and modulation of chemical synaptic trans-
mission (Fig.  4a and Additional file  1 Supplementary 
Table  16). Gene analyses were consistent and opposite 
association directions were separately identified between 
BMI and SCZ and indicated only a minor overlap in over-
represented pathways. Concordant genes were enriched 

in heterocycle catabolic processes, BDNF signalling, 
neuronal cell bodies, the PIP3 activation of AKT signal-
ling, intracellular signalling by second messengers and 
stem cell differentiation. Opposite genes were enriched 
in cellular responses to fluid shear stress, CNS neuro dif-
ferentiation, excitatory postsynaptic potential, chemical 
synaptic transmission, postsynaptic transmission and the 
regulation of postsynaptic membrane potential. More 
results from genetic analyses are shown (Additional file 1 
Supplementary Tables 17 and 18).

Four pathways were significantly enriched in genes 
nearest identified genetic variants which were shared 
by SCZ and TG, including small molecule catabolic 
processes, cellular responses to organo-nitrogen com-
pounds, cell responses to nitrogen compounds and 
inorganic cation transmembrane transport (Fig.  5a and 
Additional file 1 Supplementary Table 19).

GTEx enrichment analysis identified four independ-
ent tissues which were significantly enriched after Ben-
jamini-Hochberg corrections for shared gene expression 
between SCZ and BMI: these included brain, liver, heart 
and kidney (Fig.  4b). The most strongly enriched tissue 
was the brain-anterior-cingulate-cortex. No significant 
tissue enrichment results were identified for shared genes 
between SCZ and TG (Fig. 5b).

eQTL analysis of novel shared SNPs
Our eQTL analysis of novel shared SNPs was performed 
using the GTEx V7 database. DERL2, SNX4, LY75 and 
EFCAB6 expression levels were evaluated in brain, adi-
pose and whole blood tissue in GTEx datasets. The risk 
allele rs13307-A was correlated with higher LY75 expres-
sion levels in adipose, brain and whole blood tissue 
(Additional file  2 Supplementary Fig.  2 and Additional 
file 1 Supplementary Table 20). To identify the posterior 
probability of the LY75 causal gene and phenotype at 
the same genetic variant rs13307, we performed tissue-
eQTL colocalisation analyses and showed that eQTLs for 
LY75 in the brain strongly colocalised with the genetic 
variant rs12469374, a perfect proxy of rs13307 (R2 = 0.90, 
D′ = 0.98) in BMI (H4-Posterior Probability: 81.2%) and 
SCZ (H4-Posterior Probability: 82.1%) (Additional file  1 
Supplementary Table 21).

Both rs1472584 and rs3130544 were not identified 
as HCN1 and C6orf15 eQTLs in brain, adipose, whole 
blood and liver tissue (Additional file 1 Supplementary 
Table 22).

Protein‑protein interaction (PPI) network analysis
To identify potential interactions between shared genes, 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) database was used to perform PPI network 
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Fig. 4 Functional enrichment analysis of shared genes between SCZ and BMI. a Pathway enrichment analysis. b Tissue enrichment analysis using 
53 tissues from the GTEx database (version 7). Significantly enriched differential expressed gene (DEG) sets (Bonferroni corrected P < 0.05) are 
highlighted in red. c PPI network of the shared genes between SCZ and BMI. d Significant cluster related to the PPI network (Module1)
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Fig. 5 Functional enrichment analysis of shared genes between SCZ and TG. a Pathway enrichment analysis. b Tissue enrichment analysis using 
53 tissues from the GTEx database (version 7). Significantly enriched differential expressed gene (DEG) sets (Bonferroni corrected P < 0.05) are 
highlighted in red. c PPI network for the shared genes between SCZ and TG. d and e Significant clusters related to the PPI network
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analysis. The PPI network of genes shared between SCZ 
and BMI consisted of 219 nodes (genes) and 535 edges 
(interactions) (Fig. 4c). After using the Molecular Com-
plex Detection (MCODE) plug-in to identify modules 
from the PPI network for shared genes between SCZ 
and BMI, the top central modules with MCODE scores 
> 10 were selected. Module 1, with scores of 12, con-
sisted of 13 nodes and 72 edges (Fig.  4d). From Gene 
Ontology (GO) and Kyoto Encyclopaedia of Gene and 
Genomes (KEGG) pathway enrichment analysis, Mod-
ule 1 was mainly enriched for cyclin-dependent pro-
tein serine/threonine kinase activity, transcription 
regulation of G1/S transition in the mitotic cell cycle, 
mitotic G1 DNA damage checkpoint signalling and 
cell cycle G1/S phase transition. PPI network analysis 
of genetic variants with concordant and opposite asso-
ciation directions identified one module (enriched for 
axon guidance, cellular responses to growth factors and 
cellular responses to oxidative stress) and one module 
(enriched for CNS neuron differentiation and positive 
regulation of peptidyl-tyrosine phosphorylation) for 
highly interconnected nodes, respectively (Additional 
file 2 Supplementary Fig. 3).

The PPI network for SCZ and TG shared genes con-
sisted of 114 nodes (genes) and 699 edges (interactions) 
(Fig.  5c). After using the MCODE plug-in to identify 
modules from this PPI network, the top two central mod-
ules, with MCODE scores > 10, were selected. Module 1 
had a score of 11.79, consisted of 30 nodes and 171 edges 
and was mainly enriched for genes involved in DNA-tem-
plate transcription initiation, regulation of pri-miRNA 
transcription by RNA polymerase II, nuclear receptor 
activity, Huntington disease and RNA polymerase II-
specific DNA-binding TF binding (Fig.  5d). Module 2, 
with a score of 10.4, consisted of 11 nodes and 52 edges, 
and was enriched for cell responses to fatty acids and 
adipocytokine signalling (Fig.  5e). PPI network analysis 
of concordant and opposite genes identified one module 
(enriched for cholesterol transport regulation) and two 
modules (module 1 was enriched for macroautophagy, 
the autophagosome, protein localisation to phagophore 
assembly sites and autophagosome assembly, and module 
2 was enriched for the positive regulation of the mitotic 
cell cycle, top signalling and TOR signalling regulation), 
respectively (Additional file 2 Supplementary Fig. 4).

Mendelian randomisation (MR) analysis
In MR analysis, when cardiometabolic traits were con-
sidered the exposure, no causal associations were 
observed between traits associated with SNPs for SCZ 
risk (Additional file  1 Supplementary Table  23). The 
test for horizontal pleiotropy, estimated using the MR-
Egger intercept between BMI and SCZ, was significant 

(P = 0.049, Additional file 1 Supplementary Table 24) and 
indicated shared genetic variants between exposure and 
outcome. When cardiometabolic traits were considered 
an outcome, no causal relationship for SCZ was identi-
fied (Additional file 1 Supplementary Table 23).

Discussion
In this study, we investigated the polygenic overlap 
between SCZ and two cardiometabolic traits (BMI and 
TG). The MR analysis indicated that genetic liability, the 
heritability of a disease, to SCZ exerted no influence on 
BMI|TG and vice versa, suggesting no evidence identified 
for a causal relationship between SCZ and BMI|TG. We 
identify 144 genetic variants between SCZ and BMI, and 
15 genetic variants between SCZ and TG. Genetic vari-
ants were mainly enriched for neuronal system functions, 
including CNS neuron differentiation, BDNF signal-
ling and the positive regulation of growth. Also, shared 
genetic variants demonstrated a mixture of concordant 
associations and associations with opposite directions 
between trait pairs. In total, 50% of shared SCZ SNPs had 
positive associations with BMI, while 46.7% had positive 
associations with TG. Additionally, we identified four 
novel genetic variants (rs3865350, rs9860913, rs13307 
and rs9614186) shared by SCZ and BMI, and two novel 
genetic variants (rs1472584 and rs3130544) shared by 
SCZ and TG.

Shared genetic variants demonstrated a mixture of 
consistent and opposite association directions between 
trait pairs. This polygenic overlap between SCZ and 
BMI agreed with previous epidemiological association 
evidence [34, 35]. Also, 50% of genetic variants shared 
between BMI and SCZ had negative associations with 
BMI, and furthermore, 57% of genetic variants between 
BMI and SCZ were negatively associated with BMI when 
conjunctional FDR analysis was conducted at the 0.1 
threshold (Additional file  1 Supplementary Table  25). 
These results agreed with genetic correlation analyses; 
we identified a negative correlation between SCZ and 
BMI (rg = − 0.081, P < 0.01, Additional file 1 Supplemen-
tary Table 26). Previous studies [5, 11] on SCZ and car-
diometabolic traits indicated similar results with similar 
conclusions, however, in our study, we provided further 
evidence using different analytical approaches (HESS, 
partional LDSC and MR), thereby confirming associa-
tions may not be causal, but more likely pleiotropic in 
nature [11]. We also identified two chromosomal regions 
(chr11:27020461–28,481,593 and chr12:122007651–
124,977,980; Fig.  2e and Additional file  1 Supplemen-
tary Table 2) with positive local genetic correlations and 
two genetic regions (chr16:29036613–31,382,943 and 
chr16:63691589–65,938,566; Fig. 2f and Additional file 1 
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Supplementary Table 3) with negative local genetic cor-
relations, together with negative genetic correlations 
for DNase I hypersensitivity sites and TF binding sites 
(Additional file 1 Supplementary Table 27). MR analyses 
indicated no causal relationships between BMI and SCZ, 
but the test for horizontal pleiotropy, estimated using 
the MR-Egger intercept between BMI and SCZ, was sig-
nificant (P = 0.049) and indicated shared genetic variants 
between the exposure (BMI) and outcome (SCZ). While 
underlying mechanisms remain unclear, one hypoth-
esis suggests that poor nutrition, though subtle, may 
exert negative effects on neural development, leading to 
a increased incidence of mental health disorders, such 
as SCZ [11]. This observation suggested that variables 
such as antipsychotic treatments, dietary habits, or life-
style may be primary factors contributing to weight gain 
in patients with long-term disease. Moreover, low BMI is 
viewed as a risk factor for SCZ [36], while a recent study 
reported an increased underweight frequency in patients 
with SCZ [37]. Our findings suggest variations in weight 
gain can occur during antipsychotic medication adminis-
tration and may be partly mediated by genetics [38].

We performed several analyses, including eQTL, colo-
calisation, and functional annotation to identify a novel 
shared genetic overlap between SCZ and BMI|TG. Our 
eQTL analyses showed that the risk allele rs13307-A was 
associated with LY75 expression in adipose and brain 
tissue. The genetic variant rs13307 for LY75 in the brain 
strongly colocalised with BMI (H4-Posterior Probabil-
ity: 81.2%) and SCZ (H4-Posterior Probability: 82.1%). 
Also, rs13307 may exert effects on the binding sites of TF 
motifs (Evi-1, RPEB-1 and RXR). This evidence suggested 
that the novel genetic variant rs13307 and the most 
proximate gene LY75 exerted potential effects on SCZ 
and BMI comorbidity. A previous mouse study that used 
quantitative complementation, qualitative phenotypic 
and causal analysis, showed that an allele of the LY75 
locus potentially exerted pleiotropic effects on the weight 
of total and inguinal fat pads [39]. LY75 is predominantly 
expressed by dendritic cells [40] and plays critical roles 
in endocytosis and T cell antigen presentation via major 
histocompatibility complex molecules, thereby contrib-
uting to immune function (e.g. antigen processing and 
complement pathways) [41, 42]. Recent studies suggested 
that chronic inflammation may be an important media-
tor linking metabolic abnormalities and severe mental 
illness [42, 43]. For example, elevated pro-inflammatory 
cytokines, including tumour necrosis factor-α and inter-
leukin-6, were observed in patients with psychosis and 
CMD [43]. These findings support a potential role for 
LY75, which is involved in inflammation and immune 
pathways, in the shared genetic architecture of SCZ with 
cardiometabolic traits [44]. The exploration of potential 

mechanisms underlying combined TF motifs and LY75 
functions in SCZ and BMI is warranted.

We noticed that the minor allele frequency (MAF) of 
rs13307-A is 0.27 with the highest population frequency 
(1000 Genomes Phase 3, ESP and gnomAD) could be 
0.49. The MAF of rs3865350-C is 0.26, with the high-
est population frequency (1000 Genomes Phase 3, ESP 
and gnomAD) could be 0.50. This indicates these alleles 
are more common in populations not merely in SCZ 
patients. In the QC process, numerous germline muta-
tions were removed immediately after being gener-
ated, either by selection or randomly [45]. The retained 
variants may expand in the population; however, some 
mutations may cause disease and disorders owning to 
environmental changes over time, known as risk alleles 
[46]. Studies indicated that the deviation from 0.5 in 
the proportion of SNPs in which minor alleles were the 
risk alleles was relatively small (0.591–0.631) when the 
MAF was relatively high (> 0.1), indicating that most of 
the SNPs with those high MAFs were associated with 
diseases resulting from the changes of environment [47, 
48]. Gorlov et al. suggested that environment or lifestyle-
dependent diseases tend to have a higher frequency of 
risk-associated variants [49]. Besides, the analysis of the 
NHGRI-EBI Catalog data demonstrated that complex 
diseases, such as Alzheimer’s disease (late-onset), Parkin-
son’s disease, multiple sclerosis, metabolic syndrome, and 
schizophrenia, were more likely to have a high average 
risk allele frequencies [48]. In our study, the eQTL analy-
ses indicated that the minor allele rs13307-A was asso-
ciated with the expression of LY75 in adipose and brain 
tissue, which may be a risk allele for the comorbidity of 
SCZ and BMI. However, since the rs13307-A with a high 
MAF, we speculate that recent environmental changes 
(including epigenetic changes or other factors) may play 
a crucial role, and these environmental changes should 
be considered for the study of the pathogenesis of comor-
bidity in future research.

Functional annotation of shared genetic variants 
showed that some genes were associated with gene 
expression in the brain and several biological and molec-
ular processes, including CNS neuron differentiation, 
BDNF signalling, positive regulation of growth and the 
modulation of chemical synaptic transmission. A large 
proportion (approximately 67%) of shared genetic vari-
ants were brain-related and suggested that BMI regu-
lation involved brain-related mechanisms [50]. Brain 
functions determine our behaviours as they determine 
lifestyle choices such as diet and exercise, which in turn 
affect BMI [51]. For example, BDNF signalling affects 
neural circuit structure and function and also modulates 
multiple neurotransmitter systems - functions closely 
related to SCZ [52]. Extensive evidence now suggests that 
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BDNF is an essential contributor to food intake and body 
weight control [53]. Heterozygous BDNF knockout mice 
had reduced BDNF expression which led to age-depend-
ent obesity and an insulin-resistant phenotype, and were 
characterised by elevated circulating levels of insulin, lep-
tin and glucose [54, 55]. Critically, similar brain mecha-
nisms may be involved in behaviours related to mental 
health disorders and BMI.

We failed to identify significant genetic correlations 
(rg = − 0.029, P = 0.187, Additional file 1 Supplementary 
Table  26) between SCZ and TG. However, from local 
genetic covariance analysis, two specific chromosomal 
regions were positively genetically correlated with SCZ 
and TG. These data were generally consistent with a pre-
vious meta-analysis on lipid profiles in first-episode psy-
chosis patients, which reported higher TG levels [27]. 
In longitudinal studies [56, 57], dyslipidemia in patients 
with SCZ was typically studied as a side effect of antip-
sychotic medication. However, researchers reported that 
dyslipidemia and other metabolic risk factors may be 
present in early disease stages, before treatment initia-
tion [58]. Thus, sustained elevated TG levels could mean 
dyslipidemia is associated with SCZ and not only due to 
medication [59]. Of note, a previous MR analysis sup-
ported the notion that SCZ was casually associated with 
increased TG levels [3], however, we did not identify a 
causal association between SCZ and TG.

Functional annotation analysis of shared genetic vari-
ants showed that variants contributed to both SCZ and 
TG, and were associated with small molecule catabolic 
processes, cell responses to organo-nitrogen compounds, 
cell responses to nitrogen compounds and inorganic 
cation transmembrane transport. A previous rat study 
reported that an inorganic cation transmembrane trans-
port pathway was enriched in the cortex of rats treated 
with antipsychotic drugs [60]. In mice, cell responses to 
organo-nitrogen compounds and nitrogen compounds 
were involved in liver peroxisomal and mitochondrial 
roles to maintain TG balance and oxidative stress [61]. 
While we investigated pathways putatively involved in 
shared pathophysiology between SCZ and lipid traits, 
further experimental studies are warranted to elucidate 
the exact mechanisms.

Data from other phenotype pairs (TC|SCZ, HDL|SCZ, 
LDL|SCZ, T2D|SCZ, FG|SCZ and FIN|SCZ) (Addi-
tional file 4 Additional Tables and Additional file 5 Addi-
tional Figures) go beyond standard genetic association as 
shown by the findings in the conditional FDR and con-
junctional FDR analyses that can evaluate the directions 
of association of the shared genetic variant. For example, 
despite the lack of genetic correlations for TC and SCZ 
(rg = − 0.0294), we identified 160 shared genetic variants 

(Additional file 3 Additional datasets). The shared genetic 
variant discovery could facilitate risk predictions for 
comorbid SCZ, thereby generating targeted interven-
tions for cardiometabolic symptoms or similar diseases 
in patients with SCZ.

We failed to identify shared genetic variants between 
WHR, a measure of abdominal or visceral adiposity and 
SCZ, despite BMI being moderately correlated with 
WHR in adults (rg = 0.3) [62]. Some studies [12, 62] 
reported that SNPs related to body composition and fat 
distribution (WHR = waist and hip circumference) were 
also associated with mental disorders, and simultane-
ously associated with BMI, inconsistent with our study 
data. A possible explanation could be that our GWAS 
summary statistics for WHR were adjusted for BMI, and 
there is no or little isolated effect of body fat distribution 
on SCZ, as corroborated by several clinical and epidemi-
ological studies [62–64].

Our study had some limitations. Firstly, our analy-
ses were based on large-scale GWAS studies, which 
primarily consisted of Caucasian participants, thus in 
future work, we will extend our research remit to other 
ethnic groups. Secondly, in analyses using paired sum-
mary results, we could not control for other clinical 
factors, e.g., BMI when studying lipid traits. Thirdly, it 
was challenging to assess small effect sizes and specu-
late on molecular mechanisms underlying effective 
variants when examining potentially overlapping phe-
notypes. Overall, our methods enhanced the discovery 
of additional shared polygenic architectures and identi-
fied potential pleiotropic genes and biological pathways 
between two complex traits.

Conclusions
We demonstrated a moderate to high genetic overlap 
between SCZ and BMI|TG, with a pattern of bidirec-
tional associations, indicating a complex interplay of 
metabolism-related gene pathways in SCZ pathophysiol-
ogy. Furthermore, we identified four novel SNPs and four 
most proximate genes which were shared by SCZ and 
BMI, and also two novel SNPs and two most proximate 
genes shared by SCZ and TG. Our findings contribute to 
a better understanding of the shared biological mecha-
nisms underpinning SCZ and BMI|TG, and may facilitate 
reduced BMI and TG comorbidities among SCZ patients.

Methods
Study design, data summary and quality control (QC)
The overall study design is shown (Fig. 1). We retrieved 
summary statistics from publicly available GWAS stud-
ies, including SCZ [32] from the Psychiatric Genomics 
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Consortium (N = 105,318 of European ancestry), BMI 
[65] (N = 236,231 of mixed ancestry) and WHR [66] 
(N = 348,501 of European ancestry) from the GIANT 
Consortium, T2D from the DIAGRAM Consortium 
[67] (N = 159,208 of European ancestry), fasting glu-
cose (FG) [68] (N = 58,047 of European ancestry) and 
fasting insulin (FIN [68]) (N = 51,750 of European 
ancestry) from the MAGIC Consortium, and blood 
lipids (HDL [N = 99,900], LDL [N = 95,454 of European 
ancestry], TC [N = 100,184 of European ancestry] and 
TG [N = 96,598 of European ancestry]) [33] from the 
ENGAGE Consortium [69]. Dataset details are shown 
(Additional file 1 Supplementary Table 1).

We applied standardised GWAS summary data to 
minimise potential biases due to different array plat-
forms and QC procedures. Firstly, we compared the 
md5 code of GWAS summary statistics and reported 
total SNPs to check data quality. Secondly, we used 
the LiftOver tool (http:// genome. sph. umich. edu/ wiki/ 
LiftO ver) to convert all GWAS summary data to the 
GRCh37/hg19 reference genome. Thirdly, we filtered 
out variants with a minor allele frequency (MAF) < 1% 
and removed SNPs with duplicates by keeping the first 
one. Lastly, we deleted SNPs with any missing values of 
OR/beta, SE, or P-values. Additionally, we restricted 
our analysis to autosomal chromosomes and Euro-
pean ancestry. The original number of SNPs and those 
remaining after QC are shown in Additional file 1 Sup-
plementary Table 1.

Pleiotropy analysis
Our pleiotropy analysis strategy was based on conditional 
FDR. Fold-enrichment plots are described elsewhere [70, 
71]. Briefly, the conditional FDR method establishes an 
empirical Bayesian statistical framework and uses GWAS 
summary statistics from the trait of interest (e.g. SCZ) 
together with statistics for a conditional trait (e.g. BMI), 
to estimate the posterior probability that an SNP has no 
association with the primary trait, given that the P-value 
for that SNP in both primary and conditional traits are 
as small as, or smaller than the observed P-value. Fold-
enrichment plots graphically depicted pleiotropy by 
showing fold-enrichment in terms of SNP numbers on 
the ordinate, and nominal -log10(P) values for associa-
tions with SCZ on the abscissa [7]. Separate curves were 
established for SNP subsets which reached specific sig-
nificance levels for associations with SCZ.

Our analyses followed two directions; firstly, with SCZ 
as the primary phenotype A and cardiometabolic traits as 
the conditional phenotype B, then vice versa for the sec-
ond direction. We also generated a fold-enrichment plot 
to assess polygenic overlap between SCZ and cardiomet-
abolic risk traits.

Local genetic covariance analysis
To investigate if a local genetic correlation existed 
between SCZ and cardiometabolic traits, the HESS [72] 
package was used to estimate local genetic correlations 
between a pair of traits at each LD-independent region 
in the genome. Approximate independent LD blocks, 
averaging 1.5 Mb in length, were used to calculate each 
local genetic heritability trait and genetic covariance. 
A total of 1685 approximate LD-independent genomic 
regions (excluding the major histocompatibility complex 
region) were used for analysis. Genomic regions were 
also excluded if the estimated local single-trait heritabil-
ity was negative due to insufficient study power.

Conjunctional FDR analysis
To determine if genetic variants were likely to be shared 
by two phenotypes, we computed conjunctional FDR 
statistics. The conjunctional FDR is an extension of the 
conditional FDR and is defined as the maximum of two 
conditional FDR statistics for a specific SNP. The con-
junctional FDR estimates the posterior probability that an 
SNP is null for either trait or both, given that the P-val-
ues for both phenotypes are as small as, or smaller than 
the P-values for each trait individually. More details are 
provided elsewhere [73–75]. In our study, we included 
shared SNPs with conjunctional FDR < 0.05. Manhattan 
plots were constructed based on the conjunctional FDR 
to show the genomic location of shared genetic variants. 
Traits were selected based on two criteria: 1) genetic plei-
otropy existed in two phenotypes and 2) local genetic 
covariance analysis was significant in at least one region. 
Two trait pairs met these criteria: SCZ vs. BMI and SCZ 
vs. TG.

Functional annotations
We mapped SNPs identified by conjunctional FDR to 
promising genes using ANOVAR software [76] and 
described the distribution of shared SNPs. We extracted 
novel shared SNPs with strong LD (r2 ≥ 0.8) with the 
index variant based on the 1000 Genomes Phase 1 Euro-
pean individuals from the online HaploReg v4.2 tool 
[77]. Using data from ENCODE [78] and Roadmap [79] 
databases, we predicted regulatory elements (promoters 
and enhancers, etc.) using histone modification markers 
(H3K4me3, H3K4me1 and H3K27ac), chromatin state 
segmentation and DNase I hypersensitivity sites (DHS) in 
125 cell types.

Functional Mapping and Annotation of GWAS (FUMA 
https:// fuma. ctglab. nl/) was used to annotate significantly 
shared lead SNPs with functional categories using com-
bined annotation dependent depletion scores (CADD) 
[80], RegulomeDB scores and chromatin states. A CADD 

http://genome.sph.umich.edu/wiki/LiftOver
http://genome.sph.umich.edu/wiki/LiftOver
https://fuma.ctglab.nl/
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score > 12.37 indicated a deleterious protein association 
with outcomes. The RegulomeDB score indicated the 
regulatory functionality of SNPs, based on the expression 
of quantitative trait loci (eQTL) and chromatin markers. 
The chromatin state indicated the accessibility of genomic 
regions using 15 categories as predicted by ChromHMM 
and based on five chromatin markers for 127 epigenomes. 
GTEx tissue enrichment analysis was based on 53 gen-
eral tissue types and conducted using FUMA [81]. The 
Genetic Variants Allelic TF Binding Database (GVATdb) 
was used to search for SNPs with differential TF binding 
(http:// renlab. sdsc. edu/ GVATdb/ search. html) capabili-
ties and was also used to characterise the allelic binding of 
common human SNPs (MAF > 1% in European and Asian 
populations) to distinct TFs. The transcriptional regula-
tion in the context of enhancers (EnhancerDB) resource 
was used to define tissue-specific enhancers by setting 
threshold scores for tissue-specific enhancers (http:// lcbb. 
swjtu. edu. cn/ Enhan cerDB/).

Bioinformatics analysis
To understand the biological role of genes nearest 
the shared genetic variants between SCZ and cardio-
metabolic traits, we performed multiple post-GWAS 
functional analyses in shared genes identified by con-
junctional FDR. We used the Metascape tool [82] (http:// 
metas cape. org), with default parameters, to assess the 
overrepresented enrichment of shared gene sets between 
SCZ and cardiometabolic traits (BMI and TG) in KEGG 
pathway analyses (www. kegg. jp/ kegg/ kegg1. html), GO 
Biological Processes, GO Cellular Components, GO 
Molecular Functions, WikiPathways, Hallmark and Reac-
tome gene sets.

To evaluate the possible effects of genetic variants on 
transcriptional activity, we performed an eQTL analy-
sis using the GTEx V7 database [83]. Previous studies 
indicated that SCZ and BMI-associated genetic variants 
showed strong gene expression enrichment in brain tis-
sues [84, 85]. As for other cardiometabolic traits, includ-
ing obesity and blood lipids, these were reportedly stored 
in subcutaneous adipose tissue [84]. The liver is related 
to fat metabolism and secretes TG [86]. Considering 
that genetic variants may affect gene expression in a tis-
sue-specific manner, eQTL analyses were performed on 
brain, adipose and whole blood tissue to identify shared 
SNPs between SCZ and BMI, while the GTEx database 
was used for the same tissue and liver to identify shared 
SNPs between SCZ and TG.

Colocalisation between GWAS and eQTL signals
Colocalisation analysis was performed to test the prob-
ability of genetic variant the same one of GWAS and 

tissue-specific eQTL using GTEx dataset. Summary sta-
tistics for SNPs (regardless of GWAS P-value) within 
200 kb of significant lead SNPs and common to both 
GWAS and eQTL studies, were inputted into coloc under 
default parameter settings [87]. This approach tested the 
probability of five hypotheses (H0–4), of which  H4 tested 
the hypothesis that the same causal variant was shared 
between GWAS and tissue-specific eQTLs. Genetic vari-
ants with 80% or higher probability for  H4 were compared 
to understand the LD structure and the most prominent 
variant being shared by GWAS and eQTL [88].

Protein‑protein interaction (PPI) networks
PPI networks of shared genes were generated using the 
STRING 11.0; https:// string. embl. de/) database, with a 
confidence score = 0.7 (high confidence) [89]. The PPI net-
work was visualised using Cytoscape 3.8.2 software, and 
network modules were screened using the MCODE plug-
in with MCODE scores > 10 [90]. The connectivity cut-off 
degree = 2, node score cut-off = 0.2, k-core = 2 and a maxi-
mum depth of 100 was permitted [91]. Pathway enrich-
ment analysis of genes in modules was performed and 
P < 0.05 was considered a statistically significant difference.

MR analysis
To test for causal relationships between SNPs identified 
by conditional analysis, we performed MR analysis [92] 
using cardiometabolic trait GWAS SNPs as instrumen-
tal variables in the ‘TwoSampleMR’ package. For the 
exposure, default parameter settings of a P threshold of 
5 ×  10− 8, LD R2 = 0.001 and clumping distance = 10 kb 
were used [93]. We conducted MR using five approaches: 
inverse variance weighted (IVW), MR-Egger, weighted 
median, simple mode and weighted mode methods.

In the main analysis, we reported IVW estimates, how-
ever, if Egger’s method identified horizontal pleiotropy 
(e.g., SNPs associate with exposure but influence the out-
come through pathways not specific to exposure), then 
MR-Egger results were used.
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