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Abstract

We present the software platform 2CALM that allows for a comparative analysis of 3D locali-

sation microscopy data representing protein distributions in two biological samples. The in-

depth statistical analysis reveals differences between samples at the nanoscopic level using

parameters such as cluster-density and -curvature. An automatic classification system com-

bines multiplex and multi-level statistical approaches into one comprehensive parameter for

similarity testing of the compared samples. We demonstrated the biological importance of

2CALM, comparing the protein distributions of CD41 and CD62p on activated platelets in a

3D artificial clot. Additionally, using 2CALM, we quantified the impact of the inflammatory

cytokine interleukin-1β on platelet activation in clots. The platform is applicable to any other

cell type and biological system and can provide new insights into biological and medical

applications.

Author summary

Single-molecule localisation microscopy (LM) became more accessible over the past

years. Companies and research facilities developed instruments for 3D/2D LM, but there

is a lack of comparison methods for LM-images. Our tool offers a new comparative analy-

sis of LM data. Our system is capable of showing the difference on the level of single mole-

cule clusters and provides information on differences between images on various scales.

We determine if clusters formed of molecule localisations are comparable. We display the

difference on density or the shape of these formed clusters for a certain dimension. Since

the comparison is performed for all dimensions, the differences between cluster properties

are observed very precisely. Thereby, we learn if clusters of molecules are formed and how

they differ in both samples. For a fast/concluding comparison, we have added tools which

derive a percentage of equality of both images based on all comparison results. The tool is

useful for comparison of images of molecules in cells, which are expected to differ from
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each other (exemplified with platelets). The differences might be caused by drug treat-

ment, different disease progress or other environmental/genetical issues. The analysis is

performed at a single cell level as well as cell cluster level.

This is a PLOS Computational Biology Methods paper.

Introduction

LM has progressed immensely over the last decade [1–5], however only a few of the

approaches towards a comparative analysis of the resulting data have been achieved [6–9]. Pri-

marily, these studies utilised comparative analyses of single molecules in the context of co-

localisation in cells [10–14], with the majority visualising the 2D and 3D arrangement of pro-

teins [10, 12, 13, 15, 16].

First attempts for cluster analysis for LM data, developed by Owen et al. [17], were based on

Ripley’s K-function, which quantifies the global distribution and heterogeneity of proteins at

the cell plasma membrane. Alternatively, analysis systems like SR-Tesseler [18] or ClusterVisu

[19] based on Voronoi tessellation were developed. These methods were well suited for visuali-

zation and rendering of localisation density distribution in a sample or colocalization between

molecules primarily for 2D data.

Clustering–the formation of micro- and nano-domains within plasma membranes–is now

a widely recognized feature that ensures hierarchical organisation of many proteins. The func-

tions of these clusters are diverse [20, 21] and impaired integrin clustering for example has

been shown to be involved in thrombasthenia [22]. However, there is a general lack of methods

that enable a comparative analysis of localisation microscopy data on protein distributions and

clustering.

Mainly, the presented analysis extracts spatial descriptors (spatial features), which allow

the determination of the similarity of 3D localisation microscopy data of two samples,

regardless of their rotation, translation and quantity. The basis for the feature extraction is

multiple resampling of both samples with a given number of localisations (typically

between 2 000 and 10 000) which increases the amount of data for statistical analysis and

reduces the calculation time to minutes for very large samples (> 200 000

points = localisations). Furthermore, our method does not require transformation of the

coordinate system, synchronisation of the region of interest (ROI) size or possible normali-

zation for both samples.

For each pair of such bootstrap sub-samples, sequential hierarchical clustering of localisa-

tions is performed. To characterise clusters with a specific size, two crucial parameters have

been derived–density and curvature distribution. For these distributions we perform nonpara-

metric 2-sample statistical tests (such as Kolmogorov-Smirnov test, Wilcoxon rank sum test)

and build a p-value-map (for each pair of samples and each cluster size, forming a first level of

analysis). These p-value maps are directly used among other parameters (aggregated p-values)

from second level of analysis to train the multilayer perceptron (MLP) neural network. In

addition, in order to build a more robust analytical measure of similarity, we average over the

generated distributions and their aggregations and generalizations. To aggregate the results of

the 2-sample statistical tests, the weighted AND operator of fuzzy membership functions is

used. The generalisation is performed by applying statistical tests on average values of density

and curvature distributions and on values of the Ripley’s K-function. The maximum Ripley’s

H function is used primarily to establish the parameters for the random sample generator.
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Currently, global comparative analyses of clot formations have only used diffraction-limited

fluorescence microscopy to characterise morphological changes (e.g. shape change upon acti-

vation) and the cytoskeletal organisation of platelets (e.g. actin and tubulin reorganisation)

[23–29]. Nanoscopic localisation microscopy analyses have only been performed for single

platelets characterising the content of α-granules [30], the arrangement of actin filaments [31,

32], various actin associated proteins (e.g. P4 or vinculin), and mitochondria [33, 34]. There-

fore, an artificially formed clot presents a proficient system to characterise environmentally-

induced protein redistributions on a nanoscopic scale.

In this study, we present a software tool that quantitatively compares and classifies two bio-

logical samples based on the protein distributions at the nanoscale using 3D localisation

microscopy data. Our tool– 2-sample Comparative Analysis of 3D Localisation Microscopy

Data (2CALM)–is an analysis pipeline, which organizes LM data into protein clusters of differ-

ent dimensions and calculates the samples’ statistical parameters using various numerical

methods. The images obtained from LM can be regarded as a 3D cloud of points. A compara-

tive analysis of such clouds requires the extraction of features representing their geometrical

structure without losing accuracy. Several deep machine-learning algorithms, especially con-

volution neural networks (CNN), have been applied to single 3D point cloud analysis. A com-

mon approach is to rasterize the 3D point data into a 3D voxel grid [35–37]. This approach,

however, suffers from a trade-off between its computational cost and its approximation accu-

racy. Thus, we employ a different concept and propose a new representation of a LM-derived

cloud of points. This representation is based on empirical distributions of the density and the

curvature of the point’s clusters within point-clouds having a predetermined maximal dimen-

sion, yielding density and curvature distributions for each sample. These distributions are

compared with non-parametrical statistical tests such as Kolmogorov-Smirnov or Wilcoxon

test. The results of the tests create a features-array of the similarity of both samples that is not

dependent on their size and location in space. Our system uses the constructed feature-arrays

to determine the analytical similarity measure between samples and to train the fully-inte-

grated MLP neural network for automatic classification of samples similarities. Generally, the

system can be used to compare any 3D and 2D cloud of points regardless the origin of the sam-

ples and primarily provides a comparison between two LM images. The results directly show

the comparison between the densities/curvatures of molecular clusters and do not directly pro-

vide information’s on cellular structures.

For demonstration of the biological importance and applicability of 2CALM, we quantita-

tively analysed the nanoscopic distribution of CD41 and CD62p proteins on activated platelets

within an artificial clot using 3D dSTORM. As changes in protein distribution during platelet

activation and thrombus formation can impact further downstream signalling, the effect of the

pro-inflammatory molecule interleukin 1-beta (IL-1β) on the CD62p distribution in platelets

within an artificial clot was analysed.

CD41 (integrin α-IIb) is a protein that is present in the cell membrane as well as in the α-

granules of platelets [38]. As part of the fibrinogen receptor GPIIb/IIIa it binds fibrinogen and

von Willebrand factor (vWF). Upon activation, CD41 molecules from the granules are incor-

porated into the cell membrane. Platelet aggregates, which are formed by GPIIb/IIIa-fibrino-

gen interaction, are stabilized by the interaction of CD62p (P-selectin), which binds P-selectin

glycoprotein ligand-1 and platelet sulfatides [39–41]. CD62p is a cell adhesion molecule and is

transported upon activation from its location in the α-granules to the cell membrane [26, 42–

46]. Activation of the coagulation system (i.e. clot formation) is heavily influenced by pro-

inflammatory molecules such as IL-1β. These molecules have been shown to increase the

response of the platelets towards elevated aggregation [47, 48].
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The performance of 2CALM was tested by analysing the distributions of two protein types

(CD41 and CD62p), which are known to exhibit different clustering behaviour upon activa-

tion. The detailed analysis of 2CALM shows the protein distributions of CD41 and CD62p at

the nanoscopic level. Furthermore, 2CALM was tested on a system, which changes the protein

(CD62p) distribution upon external treatment. We show that CD62p distributes diversely

within untreated and IL-1β-treated clots providing different clustering-based statistical param-

eters. The data obtained from LM experiments on CD62p distribution in platelets were com-

pared to simulated datasets. The presented experimental and simulated data showcase the

software´s utility to support researchers in advanced two-sample comparisons of heteroge-

neous LM data. It will therefore advance the thorough investigation and ultimately the under-

standing of the nanoscopic organization of proteins in complex tissues.

Results

We developed a software system capable of a two-sample comparison named 2CALM (MatLab

environment). In several experiments, artificial clots were stained, imaged using 3D dSTORM,

and analysed. The resulting analysis is comprised of information on the sub-diffractional as

well as on the bulk level, obtained in one measurement. The features of the 2CALM software

system are depicted in Fig 1A. This platform contains a two-level statistical analysis of 3D spa-

tial cluster features. The 1st-level analysis directly compares the properties of spatial clusters

(cluster density and/or cluster curvature distributions) derived from LM datasets with different

clustering dimensions [49–52]. The 2nd-level statistical tests are performed on averaged cluster

features to assess their randomness and the distribution of the average cluster’s curvature

(shape) and density. The obtained sample features can then be compared pairwise using the

methods of a statistic tools module, relying on a comparison of averaged statistical values (e.g.

average cluster density or curvature distributions) of bootstrapped re-samples. The determined

features are based on the relative cluster’s density distributions for each clustering dimension

and their individual curvature distribution and are independent of cluster positions and orien-

tations. A detailed workflow of the features extraction and aggregation is depicted in S2 Fig.

Biological test system and image acquisition

In order to show the applicability of 2CALM, we designed an artificial clot [53]. After mixing

thrombin, fibrinogen and platelets, the cells coagulate on a glass slide, which yields a viscous

3D clot. For visualisation purposes, we immuno-stained platelets within the protein matrix

with fluorescently labelled antibodies that target CD41 and CD62p proteins. In all clot experi-

ments, CD41 was labelled with Alexa488-conjugated anti-CD41-antibody, and CD62p was

labelled with Alexa647-conjugated anti-CD62p-antibody. For imaging, we applied direct sto-

chastic optical reconstruction microscopy (dSTORM) [54]. We used an oxygen scavenger sys-

tem (OxEA) [55], which allows for two-colour imaging without buffer exchange. To adjust the

blinking rates of both fluorophores, an additional UV-laser illumination was utilized. A cylin-

drical lens in the optical detection pathway of the microscope introduced astigmatism and an

axially dependent deformation of the point spread function (PSF) of individual emitters. The

single-molecule positions were determined using customized software with fitting routines

derived from rapidSTORM [56]. Automated tools for extraction, characterization and com-

parison of the protein distributions at the nanoscopic level were implemented.

Software features: Dataset pre-processing module

2CALM includes a collection of software tools enabling a pairwise comparative analysis of

independent sets of localisation microscopy data. Datasets usually have a different number of
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localisation events (often gathered into 3D point-clouds), varying noise due to unspecific bind-

ing and/or localisation errors resulting from sample drift during the measurement. Our toolset

enables noise filtration and drift correction. Typically, special convolution algorithms [57, 58]

or fiducial markers [59, 60] are deployed to correct for sample drift; we expanded a developed

drift correction algorithm [32] to support 3D position accuracy of localisation events [61]. The

3D dSTORM images contain single localisation events which are not of interest in cluster anal-

ysis and henceforth are classified as outlier points. Filtering of individual outlier points (or

small group of points) is carried out using a DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) algorithm [62–65]. An additional modified version of DBSCAN [66]

allows for an automatic determination of the ROI. It is used for spatially well-separated

domains with single-molecule localisations (e.g. signals in sparsely distributed individual cells)

(S11 Fig). Both tools–drift correction and outlier filtering–are combined in a dataset pre-pro-

cessing module.

Fig 1. 2CALM workflow. (a) represents the features of the 2CALM platform. Datasets are pre-processed using drift correction and filtering of outliers (optionally: ROI-

extraction). For a full image comparison, dataset sizes are optionally equalized. The default bootstrapping step re-samples the datasets into sub-samples (used for spatial

clustering). Hierarchical spatial clustering enables the extraction of the density-distribution and the curvature-distribution of clusters. For comparison, a two-level, multi-

parameter analysis of different clustering dimensions is performed. Kolmogorov-Smirnov-, Wilcoxon-test and bootstrap confidence interval analysis is used for a

comparison of protein distributions. (b) depicts the structure of the multilayer perceptron (MLP) neural network based machine learning module. The clustering from (a)

provides parameters (feature vectors) which are used to train a MLP (including one hidden layer) network to assign the datasets to their classes (similarity classification).

https://doi.org/10.1371/journal.pcbi.1007902.g001
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Software features: Equalization of data sets (bootstrapping)

Although an analysis of all points in a sample at once is possible, it is rather time-consuming

and less robust to errors. When datasets have a small number of localisation events (up to 50

000), a 1st-level statistical analysis–after equalization of both samples–can be performed. The

number of points is equalized to the smaller of the pairwise compared data sets. Representative

datasets are shown in S1A and S1B Fig. When larger differences in localisation events are

detected, errors due to a random selection of points from the equalized sample dataset may

lead to an incorrect comparison, even though the samples originate from the same biological

replica. In such instances bootstrapping is used to randomly draw events from the measured

datasets, which yields an equalized data set. In order to improve the robustness of the analysis,

we performed multiple re-sampling (bootstrapping) [67–69] using a defined number of points.

The bootstrap procedure involves choosing random samples (with replacement) from a large

dataset and analysing each bootstrap sample in a similar way. Bootstrapping reduces the risk

of accidental one-time errors (when there are not sufficient points in a subgroup) and allows

for better parameter-estimation for subsequent comparative analyses.

Software features: Statistical analysis of cluster features (Two-level

statistics)

The 1st -level analysis relies on a direct comparison of sample features like cluster density and

cluster curvature distributions for each cluster dimension. For a comparison between the pro-

tein distributions of the two samples, non-parametric statistical tests are used. The 2nd-level

analysis combines the parameters obtained from the 1st-level analysis and compares them

globally. It relies on a comparison of averaged values of localisation densities and curvatures

per cluster dimension and eliminates the influence of noise (disturbance of point localisa-

tions). Additional K-/H-Ripley’s tests [70, 71] show the deviation of the distributions from a

random Poisson distribution.

Software features: Classification of similarity (Two-sample comparison)

Statistical Tools. Various statistical tests are implemented for a holistic two-sample com-

parison at nanoscopic and microscopic level. Non-parametric Kolmogorov-Smirnov (KS)

[72–74] and Wilcoxon (WX) [75, 76] tests were used for a pairwise comparison of cluster fea-

tures. In order to calculate the aggregated p-value (e.g. fusion of results of KS and WX tests)

we applied the weighted t-norm-AND operator [77, 78] on the p-values of the KS-/WX-test

obtained from the bootstrapping process. By introducing appropriate weights for the t-norm-

AND operators the significance of a particular test increases. These tests precisely identify the

cluster parameters necessary for classification of sample similarity/dissimilarity for any cluster-

ing dimension. It is not capable to automatically classify data sets.

To simplify the comparison, we determined a measure for sample similarity combining all

cluster dimensions. We defined two similarity measures, simM and simL. simM is the rescaled

aggregated p-value with an interval of [0,1]. If simM is < 0.5, the parameters describing clusters

are dissimilar (see Fig 2C zoom-in). SimL measures the dependency of the critical area (span-

ning the cluster dimension/sizes interval and the significance level) and lower bound of the

confidence interval of the aggregated p-value and delivers a value within the interval of [0,1].

Machine learning

In order to combine all features necessary for the similarity classification, we use a machine

learning method, a MLP neural network, as a classifier of sample similarity [71, 79–81] (Fig
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1B). The neural net consists of three layers: an input layer, a hidden layer and an output

layer. Except for the input nodes, each neuron uses a nonlinear activation function. The net-

work requires the preparation of input data for characterization; and it applies the previ-

ously determined statistic-based features of the dataset in the training and classification

mode.

We trained the MLP neural network with a data set of CD41/CD62p protein distributions

in an artificial clot. Approximately 262 000 training patterns were determined using this data

set. The trained MLP neural network classifier was tested on ~40 different pairs of data sets,

which were not included in the training set. All of the tests showed a similarity classification

with a probability between 0.75 and 0.95 for a pairwise comparison of similar samples and

<0.2 for a pairwise comparison of dissimilar samples (S2 Table), i.e. the parameter extraction

presented in the analysis sets is a suitable base for machine learning based pattern recognition.

The results on MLP neural network classification for a representative statistical comparison of

sample pairs are presented in Fig 3G. The overall values of further data sets are show in the S2

Table.

Proof-of-principle: Comparison of CD41 and CD62p clusters

In Fig 2, we show a typical reconstructed image of two areas in the central region of the clot,

which visualises the distribution of CD62p (Fig 2A) and CD41 (Fig 2B) upon platelet

Fig 2. Two sample comparison of the CD62p and CD41 distributions in clots. (a) and (b) show reconstructed 3D dSTORM images (approx. 100 000 data points/

image). (a) shows the 3D distribution of CD41 (Alexa488-antibody). (b) represents the 3D distribution of CD62p (Alexa647-antibody). (c) shows the comparison of the

cluster densities for all given cluster dimensions between the two datasets (1st-level comparison). The blue/red lines depict the KS- and WX-test results, respectively. The

aggregated p-value for KS and WX tests (dashed black line) remains within the critical p-value-area (orange) disproving the similarity hypothesis. The zoomed-in areas

depict: a cluster dimension (5 nm—200 nm, simM, simL below 0.5); pairwise KS- and WX-test comparisons of cluster densities for both samples indicate dissimilarity (left)

and a second cluster dimension (800 nm—1000 nm, simM, simL larger 0.5); pairwise KS- and WX-test comparisons of cluster densities for both samples show similarity

(right). (d) shows the 2nd-level comparison of the mean cluster density for all given cluster dimensions. The mean-cross p-value comparison (blue) and lower/upper

confidential bounds (grey dashed line) are shown. (e) and (f) represents 600 clusters localized within the CD41/CD62p distribution respectively, displayed using the

Delaunay-triangulation method (clustering dimension 390 nm). (g) shows two representative clusters from from (e) and (h) from (f).

https://doi.org/10.1371/journal.pcbi.1007902.g002
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activation (~ 100 000 single-molecule localisations each). The reconstructed images have been

compared using the developed statistical tools, proving a dissimilarity of both datasets at a very

detailed level.

1st-level statistics: KS/WX tests of cluster density and curvature

For each pair of data sets (or regions) hierarchical spatial clustering is performed [49–52]; i.e.

we performed a 1st-level analysis for the relative density (Fig 2C) and curvature [82] (compari-

son data: S1A Fig) for all cluster dimensions of a given interval (typically from 5 nm to 1000

Fig 3. Comparison of IL-1β treated and untreated clot samples. (a) and (b) show reconstructed dSTORM images of two clots, untreated (a) and treated with IL-1β (b).

In (c) zoomed images of two regions extracted from (a) and (b) are shown. In (d) two populations of clusters from both images with a cluster dimension of 145 nm are

visualised. (e) shows the comparison of cluster densities for all given cluster dimensions between the two datasets (1st-level statistic). Blue and red lines depict the results of

the KS- and WX-test, respectively [75, 88]. The aggregated p-value between KS and WX tests (black dashed line) remains below the critical p-value area (orange bar) and

thus proves the dissimilarity hypothesis for most of the cluster dimensions. (f) shows the aggregated p-values of averaged density and curvature distribution, determined

via mean-cross analysis (blue) and the average p-value (green, including confidential intervals: black dashed lines) (simM = 0.07 and simL = 0.06). The table in (g) shows the

classification table with MLP neural network classification values for dissimilar and similar samples. The output values of the trained network can be interpreted as a
posteriori probability of similarity hypotheses.

https://doi.org/10.1371/journal.pcbi.1007902.g003
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nm). Samples are typically equalized via the bootstrap method (100 curves for relative density

and curvature of 100 re-samples all including 8000 points). Based on KS and WX tests, a direct

comparison of the clusters density distribution and curvature distribution is performed (Fig

2C and S1D Fig). The determined p-values disprove the hypothesis of both samples being dis-

similar. The aggregated p-value between KS-(blue) and WX-(red) tests = 0.04, and the similar-

ity measures simM = 0.39 and simL = 0.45 indicate a difference in the cluster density

distributions for all clustering dimensions between the two samples. The detailed density com-

parison proves that for clustering dimensions larger than 700 nm both samples have a signifi-

cant similarity (Fig 2C). Further 1st-level analysis results on cluster curvatures (shape) [82] are

presented in S1A–S1D Fig. S1C Fig represents the aggregated data of KS-/WX-test results on

the characterization of cluster curvature for all clustering dimensions. The detailed curvature

analysis indicates a similarity for clustering dimensions larger than 500 nm up to 1000 nm.

For the combination of the results of various tests, the calculated p-values of the individual

ones are aggregated using the t-norm-AND operator (AND operation in fuzzy logic). For the

similarity measure, the p-values are further transformed into simM and simL values by averag-

ing the aggregated p-values and taking into account their confidence intervals. The process of

hierarchical aggregation of individual p-values as shown in S2 Fig.

In conclusion, the results of averaging the KS-/WX-test values for cluster densities and cur-

vatures of the bootstrapped re-samples indicate a strong dissimilarity of the samples for the

maximal clustering dimension of an interval of 5 nm-1000 nm.

2nd-level statistics: Mean-cross comparison of cluster density and curvature

distribution

2nd-level statistics were performed solely for the bootstrap derived re-samples (Fig 2D and

S1E–S1I Fig). This relies on a mean-cross p-value obtained from cross-comparison tests (KS/

WX) of the averaged cluster density distributions between all bootstrap resamples. Fig 2D

shows the 2nd-level comparison of the mean cluster density for all given cluster dimensions.

The mean-cross comparison for curvature distributions is presented in S1E Fig with mean-

cross p-values and lower/upper confidential bounds. The mean-cross p-value (KS-/WX-test)

of the density distributions equals 0.049, and simM = 0.49 and simL = 0.30 underlines the nano-

scopic dissimilarity of the two samples. Similar to the results on density analysis, we deter-

mined the behaviour of the cluster curvature (S1E Fig); a mean-cross p-value for curvature of

0.23 and simL = 0.34 indicates a dissimilarity between the two samples. Comparable to the

results of the 1st-level statistics, only for cluster dimensions larger than 700 nm the curvature

as well as density distributions indicated a stronger similarity. The mean-cross p-values of the

cluster curvature show a tendency towards sample similarity for cluster dimensions ~200 nm.

Additionally, the individual clusters can be visualised three-dimensionally using the Delau-

nay-triangulation method [83, 84] or as maximum radius spheres packed at given locations

[85] (Fig 2G and 2H). Fig 2E and 2F show 600 clusters from both datasets (cluster dimension

390 nm). In Fig 2G and 2H two randomly chosen clusters have been depicted from e and f,

respectively. The software feature for cluster visualisation provides detailed information on

localisation of the clusters within the clot for each clustering dimension.

For large clustering dimensions, clusters cover large parts of a platelet (size 1–5 μm, see

S11E–S11G Fig) and can therefore be regarded as ‘bulk signal’ by looking at micrometer-sized

clusters in the nanoscopic scale regime. Hence, the results on a nanoscopic and microscopic

level for dataset comparison are provided simultaneously. Further analysis (S1F Fig) displays

the aggregated p-values of a mean-cross analysis for the cluster densities and curvatures (for all

cluster dimensions). These aggregated p-values remain below the boundary of the critical p-
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value for all clustering dimensions with a dimension smaller than 700 nm. The aggregated p-

values of the mean-cross analysis for the cluster densities and curvatures again indicates a dis-

similarity of the samples.

2nd-level statistics: K-/H-Ripley’s functions

For further 2nd-level statistics we performed a Ripley’s K-/H-analysis [70, 86, 87] (S1G–S1I

Fig) on the bootstrap sample data. The K-/H-Ripley’s function values are determined for each

clustering dimension and are used to additionally prove the diversity of the two samples. The

comparison of the values from the KS-/WX-test applied on the 3D K-/H- Ripley’s function

results for each of the cluster’s dimensions (shown in S1H Fig). The results show an average p-

value of 0.087, simM = 0.71 and simL = 0.14 for the K-Ripley function (left) and an average p-

value of 0.086, simM = 0.71 and simL = 0.22 for the H-Ripley function (right). Additionally, the

mean-cross analysis of the K-Ripley function distributions represented in S1H Fig are shown

in S1I Fig. The overall Ripley analysis (simL) confirms the sample dissimilarity except for a

small interval of the cluster dimension (400 nm– 600 nm). For these samples (Fig 1), the com-

parison based on the Ripley functions confirms the analysis performed with the clustering

methods.

1st-level and 2nd-level statistics: MLP neural network

A multilevel analysis yields a general dissimilarity between CD41 and CD62p spatial distribu-

tions within a clot for the presented data sets. Additional data sets and analysis results are

shown in S3–S8 Figs. We present in detail a pairwise comparison of CD41 distributions and

CD62p distributions in distinct clots. In contrast to the sample presented in Fig 2, some CD41

and CD62p distributions in clots cannot be unambiguously discriminated against by individ-

ual statistical tests. Therefore, multilevel cross-testing is explicitly required. In particular, the

data presented in S7 Fig and S8 Fig show divergent results regarding cluster comparison. For

these technical replicas, a significant difference between the results of the 1st-/2nd-level cluster-

based analysis and the results on K-/H- Ripley’s analysis for all cluster distances is observable

(S8 Fig (cluster analysis) and S8F–S8I Fig (Ripley analysis). The K-/H- Ripley’s analysis indi-

cates a strong similarity for clusters larger than 400 nm, which is not the case for all other 1st-/

2nd-level cluster-based statistics. The calculation of the mean-cross p-value for all the parame-

ters rejects the null hypothesis of similarity, showing that both datasets are dissimilar (S8H

Fig). All statistical p-values are represented in S1 Table. The data comparison confirmed a sig-

nificant dissimilarity for cluster dimensions. First level analysis shows a dissimilarity (simM =

0.006 and simL = 0.5 for density and curvature comparison, respectively). A higher similarity

between the curvatures occurs only for cluster< 150 nm. Second level analysis indicates a gen-

eral dissimilarity (aggregated simM values are 0.6 and 0.3 for density/curvature comparison,

respectively). The mean-cross comparison of all results indicates a strong dissimilarity (simM =

0.3). The Ripley’s K-/H-functions show a higher similarity simM = 0.67/0.69. The MLP neural

network indicates a 0.74 probability for dissimilarity. A comparison of a clot sample (CD41

labelled) and simulated data is presented in S13 Fig. In the last analytical step the MLP neural

network was applied for a comparison of the protein distributions of CD41 and CD62p in the

platelet clots. The MLP neural network analysis showed that the samples were classified as sim-

ilar with a posteriori probability of ~0.95 for a pairwise comparison of similar data sets and

below 0.2 for a pairwise comparison of dissimilar ones. The a posteriori probabilities of the

similarity hypotheses are depicted in S1 Table. The trained MLP neural network clearly dis-

criminates between the two clustered protein populations under investigation within clots.
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Characterization of CD62p clusters after platelet activation by the cytokine

IL-1β
To quantify the effect of IL-1β on platelet activation, our software toolbox has been used to

analyse dSTORM data of CD62p secretion. Various cytokine-treated and untreated samples

were investigated. Due to IL-1β treatment, heterogeneities in clot formation (more sparsely

distributed platelets) are observable. In order to capture the best overall picture of CD62p

membrane incorporation after IL-1β treatment, images with varying cell densities were com-

pared. We observed that the numbers of clusters changes significantly depending on clustering

dimension. Herein, for cluster dimensions of 80 nm, 3620 and 9106 clusters were detected in

total, whereas for cluster dimensions of 145 nm, 1849 and 5205 clusters were detected in

treated and untreated samples, respectively. Furthermore, data obtained from sparse and

dense clot regions were analysed. For a comparison of regions with sparsely distributed plate-

lets, the best results were obtained for segmented images. The DBSCAN-derived segmentation

is crucial for 2CALM analysis, especially in cases of sparsely distributed platelets; the unspecific

signal outside the regions of interest exerts an influence on direct cluster comparison (for full

image comparison). A detailed description of the differences in the comparison between seg-

mented and full images is shown in Fig 3 and S9 Fig. Fig 3A–3D depict overviews and ran-

domly chosen regions (image segmentation) for analysis in a cytokine-treated and untreated

clot, respectively. Fig 3E depicts a direct 1st-level comparison of the clusters density distribu-

tion (curvature distribution is shown in Supplementary S6B Fig) in the chosen regions (S9A

Fig). As can be seen in Fig 3E, untreated and treated samples gain similarity for larger cluster

dimensions (> 800 nm). This difference was observed reproducibly for large as well as small

extracted ROIs.

The 1st-level analysis results of cluster density and curvature indicates that both samples are

in general dissimilar, whereas for clustering dimensions larger than 800 nm, both samples

show a weak similarity. Overall, the simM- and simL-values determined for the 1st-level analysis

are 0.46 and 0.31, respectively. With regards to cluster density, the comparison indicates that

only for cluster dimensions larger than 800 nm a similarity of these two samples can be

observed. The 2nd-level analysis of curvature confirms the dissimilarity hypothesis (simM =

0.46 and simL = 0.45) (S9B Fig). The mean-cross comparison of the aggregated KS-/WX-test

values for density and curvature also shows a dissimilarity (Fig 3F).

The comparison of the averaged cluster curvatures tends to gain similarity for clustering

dimensions larger than 500 nm (S9B Fig). The mean-cross analysis of the combined statistical

data on 1st- and 2nd-level cluster density and curvature comparison is shown in S9C Fig.

Results from the K-/H-Ripley-analysis support the cluster comparison data S9D and S9E Fig

(K-/H-Ripley’s-function (K-left, H-right) comparison for simM/simL are 0.03/0.01 and 0.04/

0.01, respectively). The aggregation values of these data sets show similar tendencies (S9E Fig).

A comparison of CD62p protein distribution and clusters for IL-1β treated and untreated sam-

ples verifies the effect of this cytokine on platelet activation in cluster formation. For clustering

ranges between ten and a few hundred nanometres, the data sets differ most; this effect has not

been observed in such detail before (see S2 Table).

The MLP neural network was used for a comparison of IL-1β treated and untreated clots.

The neural network clearly classifies the samples based on the CD62p protein distribution.

The tests showed a classification with a probability of 0.9 for a pairwise comparison of similar

data sets and below 0.2 for a pairwise comparison of dissimilar ones. The a posteriori probabil-

ity of similarity hypotheses are depicted in S2 Table. The results of the IL-1β treated samples

are remarkable: In general, a larger heterogeneity within the group of treated samples in com-

parison to untreated samples can be observed (similarity probability = 0.67 for MLP
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comparison of cytokine-treated samples; similarity probability > 0.8 for MLP neural network

comparison within the group of untreated samples, Fig 3G).

Discussion

In this study, we demonstrated that 3D LM (dSTORM) with subsequent advanced statistical

analyses can be used as a tool to determine and classify differences in protein distributions

between two datasets. We have successfully used 2CALM for a comparison of CD41/CD62p

distributions in platelets within a clot and for determination of the effect of IL-1β-treated

platelets on CD62p membrane distribution.

The highly abundant CD41 (part of fibrinogen receptor GPIIb/IIIa) primarily binds fibrin-

ogen, which bridges the actin cytoskeleton with the extracellular matrix to provide mechanical

stability. Clustering of this membrane protein is known to be required for full activation of sig-

nal transduction (together with receptor occupancy) and acts as a signalling centre resulting in

formation of focal adhesions [22]. The standard activation marker CD62p stabilizes platelet

aggregates, which are formed by GPIIb/IIIa-fibrinogen interaction. Clustering of this activa-

tion marker has not been analysed previously.

Within this study, we observed apparent differences in the distributions of these two mem-

brane proteins within a clot: While CD41 is distributed over the entire cell surface (see Fig 2A),

CD62p’s differing spatial arrangement can also be found concentrated on cell edges (see Fig 2B)

and in the central region of platelets in the “fried-egg” morphology. This is caused by squeezing

of organelles and granules during spreading [26, 32]. It is important to note that CD41 distribu-

tion at single cells’ edges within the clot are located higher in z (app. 750 nm) than those within

the cell area (Fig 2A), pointing towards the presence of inactivated, discoid cells within the clot–

a phenomenon that has previously been reported in literature about murine thrombus forma-

tion [89, 90]. In Fig 2B, CD62p-positive vesicles of 400 nm– 800 nm in size most likely consti-

tute microvesicles, which are known to be rich in CD62p and have a corresponding size of 100

nm up to 1 μm [91]. CD62p clustering (as clearly demonstrated in this study) may serve the for-

mation of microclusters in order to support cell adhesion. A comparison of the CD41 and

CD62p on a nanoscopic level in a 3D clot has not been addressed previously. Few studies, along-

side other findings, show changes in the distribution of either CD41 or CD62p upon activation

in platelets [46, 92, 93]. In general, our nanoscopic comparative analysis of CD41/CD62p cluster

distributions shows a dissimilarity between the samples. The results on the 1st- and the 2nd-level

statistics are in accordance and correlate well with the obtained Ripley’s statistic. For a compre-

hensive quantification, the detailed comparison results on 1st- and 2nd-level statistics have been

combined to teach a MLP neural network, which automatically classifies the samples. In S3–S6

Figs, we have shown the results of a comparison of two CD62p and of two CD41 labelled sam-

ples. In both cases, a high similarity of comparison levels has been determined. S8 Fig represents

a comparison of different CD41 and CD62p labelled samples. In this experiment, the Ripley

analysis does not match the more detailed results on cluster comparison. These results demon-

strate that an analysis taking into account multiple sample-derived parameters provides a reli-

able input dataset for the MLP neural network.

Previous reports as well as preliminary experiments (S12 Fig) indicate that the spatial pat-

tern of CD62p transported to the plasma membrane from the α-granules changes significantly

upon IL1-β treatment [94]. We used our software platform 2CALM to compare the CD62p

distribution of platelets in clots that are either untreated or treated with the inflammatory cyto-

kine IL1-β. As shown in S9 Fig and Fig 3, results on comparison of cluster density and curva-

ture diverges between the two compared data sets. Our results clearly show that CD62p

distributes and clusters differently upon platelet activation by IL-1β treatment confirming
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previous reports in the nanoscale regime [92]. Herein, we observed a lower cluster number for

clusters of different size (80 nm and 145 nm for example) for cytokine-treated samples.

The 2nd-level statistical results for the pairwise comparison of data in ROI’s yield simM val-

ues of 0.7 ± 0.2 for cluster density and 0.5 ± 0.2 for cluster curvature.

A correlation between ROI size and data set similarity can be observed. This indicates that

CD62p protein clustering is affected when platelets interact with each other (compared to indi-

vidual platelets in a clot) as is expected considering its role in homo- and heterotypic contact

formation.

We showed that CD62p protein distribution in a clot changes upon cytokine-stimulation

(Fig 3). The 1st- and 2nd-level statistical comparison, as well as the Ripley’s statistics show that

densities and curvatures of the formed clusters differ significantly for all cluster dimensions.

The MLP neural network classification allows for determination of the class (treated/

untreated) with a 100% accuracy for all pairwise comparisons of the measured samples (S2

Table). Additionally, we showed that although the analysis indicates a general similarity of

treated samples only, crowded platelets show slightly different clustering behaviour when com-

pared to individual platelets embedded in a clot (S14 Fig).

We have been able to show that our system allows the examination of time dependent

behaviour of platelets induced by external factors, by taking a time series of samples (S13 Fig).

In case at a certain timestamp a dissimilarity is detected, it is possible to further analyse which

cluster sizes interval shows the difference. These clusters can be filtered and further analysed

regarding their dynamic behaviour in time. Cluster visualisation can be seen as performed on

individual clusters and for the whole sample by creating a triangulation image.

Recently, research has been conducted on deep-learning based 3D-point clouds classification

and segmentation [95]. These methods, however, require a multitude of samples for training,

are time-consuming and computationally inefficient for large numbers of points in the clouds

[95]. By employing a MLP neural network, we were able to combine the copious determined

parameters, ultimately allowing for the classification of sample similarity. MLP neural network

simplifies the comparison and extracts a combined measure, determining the probability of two

data sets either being similar or dissimilar. We classified the CD62p distribution on IL-1β-

treated and untreated samples using this particular machine learning approach. The high classi-

fication accuracy of the MLP neural network confirms the efficient parametrisation for the clus-

ter-based analysis. The MLP neural network classifies crowded and individual platelets as the

same class. However, the detailed 1st-/2nd-level statistical comparison precisely identifies the

cluster dimensions, for which both samples show the highest similarity and dissimilarity.

Extracted spatial features based on statistical tests are directly used to create and train MLP

neural networks. As the MLP neural network tests have shown, it is very robust even in case of

controversial results of particular statistical tests. The training set also includes features in

which the Ripley’s K-function test is false as opposed to correct classification by the first statis-

tical level. In neural network learning, if level one retail features are consistent with level 2-fea-

tures, this will increase the probability of correct sample similarity classification. The features

indicate wrong estimations. If the classification acceptance threshold is exceeded (e.g. posteri-

ori probability <60%) this will be a signal of bootstrapped re-sampling repetition with an

increased number of points and possibly filtering the noise.

The presented system has following advantages and limitations: There are no restrictions in

types of samples, various distributions of localisations (e.g. random, concentrated and fibrous)

have been correctly classified by MLP neural network and analytical similarity measures. MLP

neural network is robust for opposite level classifications and can easily be extended to multi-

channel CNN. The analysis gives correct classifications in contrast to often ambiguous classifi-

cations with standard methods, e.g. Ripley’s. Our program allows short calculation time
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regardless of sample size and sample type (resampling of 2000–10 000 points) and the methods

used are suitable for parallel computing.

The limitations of the system concern the global structure of samples. Clouds with a large

number of outlying localisations (noise due to unspecific protein binding) require filtering.

Single outlier points deteriorate cluster density statistics. Samples with multiple separate seg-

ments (cells or cell structures) require regionalisation, which is long-lasting. High calculation

time are required for bootstrapped samples containing above 50 000 localisations.

Clustering based analyses of LM datasets opens up a unique parameter range for sample

classification. We have shown that the designated parameters (like KS/WX p-values for cluster

density and curvature similarity, and mean-cross values of the tests) are sufficient to correctly

classify any data set of a selected population. With this, the newly developed 2CALM platform

is well suited for a pairwise comparison of protein distributions in healthy, pharmaceutically

treated tissues. Moreover, 2CALM is also suitable for a comparison and classification of pro-

tein distributions on any other cell type. The provided statistical tool is versatile, applicable for

any pairwise LM dataset and provides an essential tool for shedding light on protein distribu-

tions, which are detectable only at a high-resolution level.

The sequential calculation of the Ripley’s K-function for an incremental radius as presented

by Owen et al. gives one global characteristic of the density distribution of sample clusters. In

our case, as shown by simulations and exemplary experimental data (S13 Fig) in particular for

samples presenting polarised fibrous structures like actin, such a global approach can give an

ambiguous or false estimation of sample similarity. The Ripley’s functions K and H in our

analysis pipeline can be seen as auxiliary additional features, sharpening estimates for the

probability of sample similarity using machine-learning methods.

Analysis systems such as SR-Tesseler [18] or ClusterVisu [19] are based on Voronoi tessel-

lation show great potential for either visualization and rendering of localisation events density

distribution in a sample or colocalization between two-color localisation events. It has been

demonstrated for 2D datasets with relatively low numbers of localisations. The Voronoi tessel-

lation cell represent the ‘area of influence’ for localisation inside a single cluster. This corre-

sponds to building of density distribution from single-point clusters using hierarchical

clustering with small size radius, e.g. 1 nm or 2 nm with our software. The single point cluster

density determined by our software in nearest proximity to SR-Tesseler, can be regarded as

invers area/volume of Voronoi cell. However, in this case the sample density distribution

becomes very sensitive to the number of localizations. Additionally, the computation time is

high for large samples.

The method proposed by Burguet et al. [96] is based on comparison of the intensities of

points at local spatial positions within the samples [97]. The method requires normalization

and correction of spatial data. That way all localisation positions in the samples are expressed

in the same 2D / 3D coordinate system. Within this normalized coordinate system, the num-

ber of points and their positions may vary depending on the spatial structure of the sample,

which creates variations in the analysis. The proposed solution is based on the local intensity

estimator, which than creates an intensity map for each sample and tests for local intensity dif-

ferences. Secondly, the method has up to now never been used for LM applications. In contrast

to the algorithm developed by Burguet, our software does not require synchronization of the

coordinate system and the size of the observed region (i.e. ROI) or possible normalization of

both samples.

The interpretation of the methods typically requires a multimodal analysis. Nowadays, cor-

relative approaches combining multiple methods are used. The main goal of this work is to

establish a platform which is based on multiple parameters yielding one global answer on two-

sample similarity (regardless of the rotation or shifting of the localizations cloud). The software
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we developed however allows accessing the comparison data on each analysis detail-level and

extract the information on similarity for each cluster dimension. This information can as com-

plement information’s derived from other nanoscopic imaging method like Atomic Force

Microscopy (AFM) or Electron Microscopy (EM).

Methods

Equalization and bootstrap resampling

We use inferential statistics to examine the relationships between the features of two samples

based on a series of smaller samples in order to generalize how those features will relate to the

larger sample [67, 36, 68, 69, 98–103]. For analysis, we chose representative subsets of two sam-

ples, which will be referred to as the bootstrap-resamples. The bootstrap procedure involves

choosing random samples (with replacement) from a large dataset and analysing each boot-

strap sample in a similar way. Sampling with replacement means that each point is selected

randomly from the original dataset. Thus, a particular point from the original dataset may

appear multiple times in a given bootstrap sample. The number of total points included in a

bootstrap sample (including data from both compared samples) is equal. Let N1, N2 be the

number of points in both samples, respectively. We perform M times random resampling of

each sample with the same number of points N<min(N1,N2). Default values for M = 100 and

N is ~2000–10 000 points. These bootstrap-samples (bs1(k),bs2(k))(k = 1,. . .,M) are pairwise

stored for further analysis.

Spatial clustering via hierarchical clustering

Hierarchical clustering (also called Hierarchical Cluster Analysis (HCA)) is a common algo-

rithm, which creates a hierarchy of clusters [49–52]. The agglomerative approach at the begin-

ning declares each point as an individual cluster. Thus, pairs of clusters merge as one-element

cluster moves up the hierarchy. Hierarchical clustering creates a cluster tree or dendrogram.

This tree is a multi-level hierarchy with clusters of one level being joined to clusters in the next

level. Grouping of the clusters into a tree connects pairs of clusters, which are close together by

using a linkage function. The linkage function uses the distance information between points to

determine the proximity of clusters relative to each other. Next, newly created clusters are

grouped into larger clusters until a hierarchical tree is created. We apply a complete-linkage

clustering function, which uses the maximum of the pairwise distances between points for

clustering [51, 52].

For data partitioning, we cut the hierarchical tree into clusters with a given maximal cluster

dimension/cluster size (maximal Euclidean distance between points inside a cluster); e.g. at

the level of d = dim(i), where dim(i) is a vector of cluster dimensions, by pruning off branches

from the bottom of the hierarchical tree, and assigning all the clusters below each cut to a sin-

gle cluster.

The use of complete-linkage hierarchical clustering guarantees that agglomerated clusters

have a dimension (sizeCluster) no greater than given dim(i). In the hierarchical clustering pro-

cess, cluster sizes dim(i) are ordered sequentially from sizemin to sizemax with a constant Δ step.

In order to find features that allow comparison between two samples, both samples are clus-

tered sequentially with a given maximum cluster size d = dim(i), where dim(i) = sizemin+i�Δ,

and i = 1,. . .,L and L�Δ = sizemax.

For linkage, the sizemax for both clustered samples is assumed to be ~ 40% to 50% of the

minimum dimension of both samples. The dimension of the sample can be defined as the min-

imum length of the 3D box, which includes all points of the sample. We set the sizemin between

5 nm-10 nm and the step Δ to be 10 nm as default values.
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Cluster parameter extraction

The platform allows extraction of 6 sample-independent parameters:

• Cluster density

• Cluster curvature

• Average cluster density

• Average cluster curvature

• Ripley’s K function

• Ripley’s H function

Let Cl(d) be the set of N(d) clusters for one of the samples (1 or 2) with the cluster maxi-

mum size d = dim(i) (for sake of clarity, we will omit the i index from now on).

Cluster density

For each cluster ck (where k = 1. . .N(d)) from the set Cl(d) one can calculate its density

densk ¼ nk
1

Vk
and relative density as densityk = densk/density(sample), where nk is the number

of points in kth-cluster from the set Cl(d), Vk is its volume and the density sampleð Þ ¼ N
V is the

density of the whole sample.

The density of the cluster slightly depends on the method of determining its volume. The

platform allows one to use three different methods to determine the cluster volume:

1. Sum of the sphere volumes with the sphere centre in each point of the cluster and the radius

equal to the half-distance to the nearest neighbour (called bullet-density, S10E Fig) [84].

2. Volume of convex hull spread upon cluster points (called hull-density, S10F Fig).

3. Volume estimated as a volume of a rectangular box including cluster points (called box-

density, S10G Fig).

As default, we use the bullet-density that best reflects the shape of the 3D cluster.

Cluster curvature

The value of the curvature reflects the concave-convex degree of the cluster surface. We use

the method presented by He et al and Williams and Shah [82, 104] to estimate the curvature of

the cluster by analysing the covariance between all cluster points. For a 3D cluster, we deter-

mine the covariance matrix of each point in a cluster based on a centroid calculation.

Let posk = (x,y,z)k be a matrix of the 3D point locations in a cluster ck from the set Cl(d) and

pk be the centroid of these points. The posk is a ck x 3 matrix. The 3D covariance matrix COVk

= ∑j(posk(j)−pk)�(posk(j)−pk)T where j = 1,. . .,nk is a semi-positive definite three-order symmet-

ric matrix. Next, the three eigenvalues of the COVk matrix λ1, λ2, λ3 and its corresponding unit

eigenvectors ev1, ev3, ev3 are calculated. Let λ1� λ2� λ3. Eigenvalue λ1 describes the change of

the value of the surface along the normal direction. The surface variation can be expressed as

τk = λ1/ (λ1+ λ2+ λ3). The curvature curvk of the cluster ck can be approximated as a surface

variation τk [104].

Both features, densities and curvatures of clusters, can be used for first level comparison or

detailed level sample comparison. The relative density and curvature of clusters with a given

dimension d can be considered as empirical distributions with an unknown probability density
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function (pdf). The empirical distributions of both samples can have a different number of ele-

ments (different number of clusters).

Based on these detailed distributions, we can also specify the global features of the clusters

used later in the second level analysis. For each cluster size d = dim(i), the two additional sam-

ple features can be determined:

Average density of clusters: av_density(d) = mean(densityk|k = 1,. . .,N(d))

Average curvature of clusters: av_curv(d) = mean(curvk|k = 1,. . .,N(d))

3D Ripley’s K-function and Ripley’s H-function

Sequential clustering is simultaneously used to calculate the value of the Ripley’s K-function

for each sample [70, 86, 87]. Ripley’s K-function is an intuitive approach for detection of devia-

tions of general assumptions of point distributions within cluster samples. The analysis has a

non-parametric character and is therefore the first step in the characterization of spatial point

patterns. The K-function can be calculated for each size d = dim(i) of clusters between given

sizemin and sizemax.

Let Dist(l,k) denote the Euclidean 3D-distance matrix between each pair of points in the

sample. An extension of the K-function from 2D to 3D is obtained by assuming 3-dimensional

distance measures.

Thus, the K-function for a given distance d = dim(i) is determined as

K dð Þ ¼
V
N2
� ð
Xn

k¼1

X

l6¼k

ekðdÞ � I½Distðk; lÞ � d�Þ ð1Þ

where V is the volume of the sample, N is the number of sample points, ek(d) is the edge cor-

rection term for a sphere of radius d with k point as its center and I[�] is the indicator function

[70]. The expected value of the complete spatial randomness (CSR) is E[K(d)] = 4πd3/3 as well

as the function [86, 87]:

HðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3KðdÞ=4p3

p
d ð2Þ

Finally, for each sample, six features can be determined. The sample is sequentially divided

into clusters with dimensions dim(i) = sizemin+i�Δ. For each size d = dim(i) the sample is repre-

sented by:

• Vector density(d) of the relative density of clusters for size d

• Curvature vector curv(d) of clusters for size d

• Value av_density(d) of average density of clusters

• Value av_curv(d) of average curvature of clusters

• Value K(d) of the Ripley’s function

• Value H(d) of the Ripley’s function

Using H-Ripley as the crucial dimension, representative for the largest difference (cluster-

ing caused) between the sample and complete spatial randomness can be determined.

Sample comparison based on extracted parameters

Regardless of whether comparisons are carried out on full samples or selected ROIs, we derive

the above-described features for each given d = dim(i). For every d, samples are compared

using the results of the Ripley functions K1, K2 and H1, H2, density and curvature distributions
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density1, density2, curv1, curv2 clusters of samples 1 and 2, respectively. Cluster density distri-

bution density and the distribution of cluster curvature curv are two random variables with an

unknown probability density function.

1st-level analysis

For two cluster density distributions density1 and density2 originating from sample 1 and 2

the null hypothesis states that both distribution density1 and density2 belong to the same origi-

nal distribution. To resolve the validity of this hypothesis at a given significance level α, we use

two-sample Kolmogorov–Smirnov test [72–74].

Kolmogorov-Smirnov (KS) test compares empirical cumulative distribution functions

based on their absolute differences. The null hypothesis is rejected at a significance level α in

case the difference exceeds the critical value. The KS-test returns an asymptotic p-value as a

scalar value in the range [0,1]. The p-value is the probability of observing a test statistic more

extreme than the observed value under an assumption of a true null hypothesis. The asymp-

totic p-value becomes very accurate for large sample sizes and is reasonably accurate for sam-

ple sizes N1 and N2, such as (N1 N2) / (N1 + N2)� 4. Therefore, one can accept the p-value pv
(d) = testKS(density1(d), density2(d)) for each size d as one comparative variable.

The second null hypothesis assumes that both distributions density1 and density2 are taken

from continuous distributions with equal medians. To resolve the validity of this hypothesis at

a given significance level α, we can use the Wilcoxon rank-sum test (WX, Wilcoxon–Mann–

Whitney test) [75, 76]. This non-parametric test is used to determine if two independent sam-

ples were selected from populations with equal distributions. The test assumes that the two

samples are independent. A two-sided WX-test returns the p-value as a positive scalar in the

range [0,1]. Data density1 and density2 can have different lengths.

Therefore, in addition to the p-value of the KS-Test, one can calculate the p- value pw(d) =
ranksum(density1(d), density2(d)) for each size d of the WX-test as the second comparative

variable.

After calculating the p-values for both tests, one needs to aggregate both variables pv and

pw for each size d. We apply the weighted t-norm-AND operator, which is often used in

AND-aggregation in fuzzy logic [77, 78]. The weighted t-norm-AND operator calculates

aggregated p-values as pd ¼ pv
V

pw ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wð1 � pvÞ2 þ ð1 � wÞð1 � pwÞ2
q

, where

parameter w is a weight between 0 and 1 and allows to assign more significance to one of the

tests. Default w is ~0.5–0.6.

The same method is applied to the clusters curvature distributions curv1 and curv2 with the

given dimension d. As result, we obtain curves representing p-values pv,pw,pd for relative den-

sity and pcv,pcw,pc for curvature of clusters depending on the cluster size d. Additionally, the

distribution-free multivariate KS-test allows for a comparison of the pair of distribution (den-
sity1, curv1) with the pair of distribution (density2, curv2) [72].

2nd-level analysis

The bootstrap technique provides M pairs of bootstrap samples (bs1(k),bs2(k)|k = 1,. . .,M). For

each resampled pair, features are calculated based on the sequential clustering of both bs for

each cluster size d = dim(i),i = 1. . .L. For extracted features of each pair of bs, the above-

described first level statistic tests are performed and the results are stored in a L×M matrix.

The rows of the matrix are adequate to the cluster sizes and the columns represent the individ-

ual bootstrap samples. The values of the Ripley’s K- and Ripley’s H-functions of the bootstrap

results are assigned to the matrices KR and HR. The p-values of the KS-test and the p-values of
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WX-test for relative densities and curvature distribution in clusters are included in the matri-

ces KD and KC, WD and WC, respectively. Additionally, the bootstrapping method stores the

average values of relative clusters densities av_density and of the clusters curvatures av_curv
into matrices DM and CM, for each dimension d of both samples.

Next, bootstrap confidence intervals are calculated. Having multiple realizations of random

variables of density distribution and curvature distribution of clusters enables the estimation

of confidence intervals for p-values generated by the KS- as well as the WX-test. Alternatively,

for estimation of the standard parametric confidence intervals (of known distributions) we use

the semiparametric or nonparametric methods with bootstrap estimates. Hence, the bootstrap-

ping technique estimates the standard error deviation, which is used in a normal approxima-

tion of confidence intervals for significance level α (inaccurate estimation). For α = 0.05 the

normal confidence interval is approximated by pd ± 1.96 � std(pd). Alternatively, nonparamet-

ric bootstrap percentile confidence intervals (BPCI) can be calculated to infer the observed sig-

nificance level of the variable. The bootstrap distributions of the p-values for each cluster size

can be sorted, and α and (1 –α) percentiles of the sorted empirical distribution form the limits

for the BPCI [98, 99, 102].

The comparative analysis of both samples is carried out on two levels: detailed (first level

statistic) and global (second level statistic). At the detailed level, we use in the KD, KC, WD
and WC matrices stored p-values of the KS-test and p-values of the Wilcoxon rank-sum test

for comparison. In cases when L = 1 (whole sample), it is not possible to determine confidence

intervals and the analysis is based only on the pd and pc curves and their aggregation with the

t-norm AND-operator.

Having many realizations of random variables of densities and curvatures (L> 1), it is pos-

sible to carry out cross tests between the realizations as well as between their average values

and Ripley functions. In addition to the previously described tests, we can directly calculate p-

values (empirical p-values) between average values of the chosen variable of resamples from

the first sample with all values of this variable in resamples from the second sample.

For the global level (second level statistic) comparison, we use additional matrices KR, HR
(contain the values of Ripley’s K and Ripley’s H functions) and DM, CM of both series of

resamples. The DM arrays (DM1 and DM2 –matrices of resampling series from sample 1 and

sample 2, respectively) contain the average values of the relative cluster densities within a

given dimension (rows) for each bootstrap sample (column). The CM (CM1 and CM2) matri-

ces contain the average values of the cluster curvature with the given dimension (rows) for

each resample (columns).

In order to compare the samples at this global level, we test two null hypotheses:

• Mean-Cross-Hypothesis: The average value of the mean cluster densities of all resample

series determined from one original sample (mean(DM1)) and all the resample distribution

of mean densities determined from the second original sample (mean(DM2)) originate from

the same continuous distribution.

• Cross-Hypothesis: Randomly k-times chosen density distributions from one series of

resamples (ith-column of matrix DM1) and all the mean density distributions of the second

resample series (DM2) originate from the same continuous distribution.

A similar hypothesis can be made for matrices CM1 and CM2 containing average values of

cluster curvatures. The same hypotheses can be formulated and tested for Ripley’s function

results (KR and HR matrices) for both samples. For both hypotheses, we calculated the empiri-

cal p-value with methods previously described.
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Measure of similarity between samples

We determine one measure for sample similarity [105] using calculated p-value curves (for

each cluster dimension). In cases of an unknown confidence interval (L = 1), we can only use

the simplest method for calculation of a similarity factor between compared samples.

We use the average of the aggregated p-value (mean(p)) in significance level α and trans-

form, it into a similarity measure as follows:

simM ¼
meanðpÞ=2a; meanðpÞ < a

1 � a=ð2 �meanðpÞÞ; otherwise
ð3Þ

(

Based on confidence interval estimates, we can define an alternative measure of similarity:

comparison of the intersection between the area below the critical boundary α and the lower

confidence interval boundary of aggregated p-value curve.

Let dinterval = [sizemin, sizemax] be the full length of the cluster sizes interval. Thus, cr = α �

dinterval spans the critical area of the significant level α. The intersec(p) is the intersection of the

critical area cr and the area above the lower bound of the confidence interval of p. The measure

for the similarity is defined as:

simL ¼ 1 �
intersecðpÞ

cr
ð4Þ

The average value of the aggregated p-value and confidence intervals of p-values for each

size of cluster (matrix rows) are used to calculate simM and simL values. For a simM and simL

value between 0.45 and 0.55, the similarity of the samples is marginal.

Machine learning

We apply a machine learning method, namely MLP neural network as a classifier of similarity

of samples [71, 79, 80] (S10H Fig). We train the MLP neural network with 11 input neurons

and 20 neurons in a hidden layer with a hyperbolic tangent as activation function and two neu-

ronal output nodes with a softmax activation function (S10H Fig). As a network training per-

formance function, we use cross entropy measures [71]. This makes it possible to interpret the

values of both outputs as a posteriori probability of samples similarity. Let us assume that we

have carried out a Ripley functions and bootstrapping-based analysis of two samples and

extracted features and tests on both analysis levels. We transform the results into a set of L � M
vectors, where L is the number of analysed sizes of clusters in dim(i) and M the number of

resampling processes. Each vector represents the result of tests and forms the input and output

pattern of the MLP neural network.

Vector Input = (d,p1,. . .,p10) and Output = [0,1] (similar) or = [0,1] (dissimilar) where d is

the cluster size, p1 = pv(d) is the p-value derived from the KS-test for relative cluster densities,

p2 = pw(d) is the p-value derived from the WX-test for the relative cluster densities, p3 = pcv
(d) is the p-value derived from the KS-test for the curvatures of clusters, p4 = pcw(d) is the p-

value derived from the WX-test for the curvatures of clusters, p5 = mean_cross1 is the p-value

derived from the cross-comparison of the average cluster densities between sample 1 and sam-

ple 2, p6 = mean_cross2 is the p-value derived from the cross comparison of average cluster

densities between sample 2 and sample 1, p7 = c_mean_cross1 is the p-value derived from the

cross comparison of the average curvature of clusters between sample 1 and sample 2, p8 =
c_mean_cross2 is the p-value derived from the cross comparison of the average curvature of

clusters between sample 2 and sample 1, p9 = R_mean_cross1 is the p-value derived from the

cross comparison via the Ripley K-function of sample 1 with sample 2, and p10 =
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R_mean_cross2 is the p-value derived from the cross-comparison of Ripley K-function of sam-

ple 2 with sample 1. Output value is equal to [0,1] if the parameters describing the samples are

similar or is [0,1] otherwise. For extraction of the proper network training set, K-Ripley and

bootstrap tests of both sample groups are required. To get a full training set, we need to know

a priori if the samples are similar or not.

Cluster visualisation

S11A and S11B Fig are showing 3D representations of platelet clusters. To obtain a graphic

representation of 3D objects, the Delaunay triangulation method was used. The Delaunay tri-

angulation allows one to visualise the selected individual clusters in two ways: as shown in

S11C and S11D Fig with a set of spheres with the centre in each point of the cluster and the

radius equal to the half-distance to the nearest neighbour. As the default value for the cluster

dimension (size), the dimension at maximum of the H-Ripley function is chosen. The H-Rip-

ley functions are used to detect the presence of clustering in the data [106, 107]. Since the

H-Ripley function is often used to recognize clustering, a positive value of H(d) indicates clus-

tering over that spatial range whereas a negative value indicates dispersion. The value of d that

maximizes H(d) indicates the radius of maximal aggregation (i.e. the size of clusters which

contains the most points per volume). Therefore, d can be chosen as a neighbourhood radius ρ
in the DBSCAN clustering method. It is used to extract the main (primary) clusters from the

samples. The platform enables display of these primary clusters in 3D (S11E Fig). It is also pos-

sible to determine the empirical probability distribution of densities (S11H Fig) and curvature

(S11I Fig) of primary clusters for both samples and their comparison using the KS-test.

The comparative analysis was performed on a standard PC with CPU i7 Intel, 1.9 GHz, 8

logical processors and 16 GB of RAM. Total analysis time for one pair of resamples and for all

cluster dimensions is dependent on the number of points in a resample: e.g. for 1000 points:

0.86 s, 5000 points: 6.61s and for 10000 points: 18.11s.

Statistics

Statistical analyses were performed using SPSS. All statistical tests are described in the Fig leg-

ends. Statistical significance value: p<0.05.

Supporting information

S1 Methods. Supporting methods.

(PDF)

S1 Fig. Detailed statistical results on the comparison of CD41 and CD62p clusters. This fig-

ure shows the additional results regarding the statistical comparison for the two samples pre-

sented in Fig 2 (sample 1 has> 85 000 points and sample 2 has> 93 000 points). (a) shows the

direct comparison of the full samples (all localisations) via a KS-/WX-test of the cluster densi-

ties (top) and curvatures (bottom). (b) shows the aggregated KS-/WX-test p-values of curva-

ture calculated with t-norm-AND operator of the results represented in (a). (c) displays the

values of the KS-/WX-test and their aggregation via t-norm-AND operator determined from

the cluster curvature distributions received from the bootstrap resampling (comparable to Fig

2C). (d) shows the bootstrapping results for cluster density and curvature (log, and normal

scale). Herein, 100 resamples (all including 8 000 points) were plotted. Using the bootstrap

method allows us to gain multiple testings required for the second level analysis. (e) presents

a part of the 2nd-level analysis and shows results on mean–cross comparison of the density

and curvature distributions of resampled image data, respectively. (f) presents the aggregated
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p-value for curvature and density comparison data at both analysis levels. (g) displays the

results of the K-/H-Ripley functions for all bootstrap samples. (h) shows the KS-/WX-test

results of the K-/H-Ripley data derived from both samples. On the left, the comparison of the

K-functions values and on the right the comparison of the H-functions are presented. (i)

shows the aggregated p-value for comparisons of K-/H-Ripley data.

(TIF)

S2 Fig. Workflow and parameters used for the comparative statistical analysis of the plat-

form 2CALM. The figure depicts the flow diagram of the comparative analysis, including

aggregation of parameters. In the first step, the sample data (full or bootstrap-resampled data

of both samples) are clustered hierarchically for cluster dimensions (size) ranging from 10

nm– 1 000 nm. In the first level analysis of the pairwise resampled data, the Kolmogorov-

Smirnov (KS)-/Wilcoxon (WX)-tests (relative density distribution/ curvature distribution) for

each cluster dimension are performed. The KS- and WX-test results for comparison of cluster

densities and curvatures of both (pairwise) samples are further aggregated using the t-norm-

AND operator for all cluster dimensions. The results of p-value aggregation for density and

curvature are once more aggregated, giving the average result of the comparison on the first

statistical level. Next, the second statistical level analysis is performed. Here, the averaged

density and curvature for each cluster dimension and resample are used to perform the mean-

cross analysis between them. The mean-cross comparison uses KS-/WX-tests for a comparison

between distributions of mean clusters density of all resamples from sample 1 and all individ-

ual density distributions of resamples from sample 2. Hence, an aggregation (t-norm AND

operator) of the mean-cross KS/Wilcoxon-test results (p-values) for density and curvature for

all cluster dimension gives a global p-value of similarity hypothesis. In parallel, in the second

level analysis the K-/H-Ripley functions for all cluster dimensions are calculated. Hence, the

mean-cross comparison on the K-/H-Ripley functions values, (same as for mean density/cur-

vature distributions) is performed. The KS-/WX-Test results on comparison of the K-/H-Rip-

ley function values are combined with t-norm AND, forming an additional set of parameters.

(TIF)

S3 Fig. Detailed statistical comparison of CD62p cluster distributions within two clots.

CD62p was stained with Alexa647-labelled antibody. Both reconstructed images are depicted

in (a) and (b) (samples include > 93 000 and>120 000 points, respectively). (c) shows an

image of selected clusters (600 clusters per image) with a cluster dimension of 180 nm. For

cluster representation, we used the Delaunay-triangulation method. (d) depicts two randomly

chosen clusters.

(TIF)

S4 Fig. Detailed statistical comparison of CD62p cluster distributions within two clots.

First level analysis is depicted in (a-c). (a) shows the detailed analysis of the full samples. Den-

sity and curvature distributions of all clusters for each cluster dimension were compared at

one time using a KS-/WX-Test. The results indicate a similarity of clusters for all cluster

dimensions. As an indicator, an aggregated p-value is determined using the weighting t-

Norm-AND. The p-value (black dashed line) remains above the critical p-value area (orange

bar) proving the similarity hypothesis for all cluster dimensions. The corresponding similari-

ties are simM = 0.87/0.82 for density and curvature, respectively. (b) depicts the aggregated p-

value calculated with the weighting t-Norm-AND (blue) and confidence interval (black dashed

line). A value of simM = 0.82 is determined. The full-sample analysis does not give the full

parameter range of the analysis, just a brief overview on cluster density and curvature similar-

ity. (d) depicts 100 curves–representing relative density of 100-resamples each including 2000
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points (green)–used for the bootstrap based comparison of the cluster/curvature density distri-

bution for both samples. In black, the averaged values for all dimensions are represented. The

detailed analysis for the bootstrap data shown in (d) was performed similarly to the analysis in

(a). (c) shows the KS-/WX-test compared data regarding cluster density and curvature for all

given cluster dimensions. As for the detailed analysis (d), the KS/WX-tests (blue/red) as well as

the t-Norm-AND aggregated p-values are plotted (black). Additionally, the boundaries of the

confidence interval are displayed (magenta). The comparative analysis of the bootstrap derived

data shows a strong similarity between the samples (simM = 0.93 for cluster density, simM =

0.95 for curvature). (e-i) depict the second level analysis. (e) shows the generalized density/

curvature p-values determined via a mean-cross comparison. Herein, p-values of the mean-

cross comparison (blue) and lower/upper confidential boundaries (black dashed line) are

shown. In general, a significance similarity between the samples is visible (simM = 0.92 for

mean cluster density and simM = 0.94 for curvature distributions). (h) shows the aggregated p-

values for cluster curvature and density distributions (blue). The aggregated p-values show

high similarities simL = 1. (f) depicts the calculated Ripley’s–K/-H function values for the boot-

strapped data (green) for all cluster dimensions. Using H-Ripley´, the crucial dimension (rep-

resentative for the largest difference (clustering-caused) between the sample and the Poisson

distribution) can be determined (for the two images, the largest difference occurs for clusters

sizes of 220 nm). (g) depicts the comparison of the K-/H-Ripley function values at a general-

ized level (second level statistics). The p-values of the mean-cross comparison (blue) and

lower/upper confidential bounds (black dashed line) are shown. The cross-comparison of the

statistical cluster-data analysis also indicates similarity of the samples. (i) shows the result of a

pairwise KS-test on the distribution of average cluster density and distribution of average clus-

ter curvature for both samples. We observe only a slight dissimilarity for cluster dimensions

between 200 nm– 400 nm and 600 nm– 900 nm. This result confirms the similarity of both

samples (simM = 0.58).

(TIF)

S5 Fig. Detailed statistical comparison of CD41 cluster distributions within two clots. In both

samples, CD41 was stained with an Alexa488-labelled antibody. Both reconstructed images

(include>158 000 and>142 000 points, respectively) are depicted in (a) and (b). (c) shows

images of the clusters with the cluster dimension of 245 nm (600 clusters in each image). For

cluster representation, we used the Delaunay-triangulation method. (d) depicts two randomly

chosen clusters.

(TIF)

S6 Fig. Detailed statistical comparison of CD41 cluster distributions within two clots. First

level analysis is displayed in the images (a-c). (a) shows the detailed analysis of the full sam-

ples (both samples reduced to 60 000 points) density (top) and curvature (bottom). In this

case, density and curvature distributions of clusters for each cluster dimensions were com-

pared at one time using the KS-/WX-test (blue/red). The results indicate a similarity of sam-

ples for all cluster dimensions. As an indicator, an aggregated p-value is determined using the

weighting t-Norm-AND. The p-value (black dashed line) remains mostly above the critical p-

value area (orange bar) proving the similarity hypothesis. The corresponding similarities are

simM = 0.57/0.91 for the density and curvature distributions respectively. Remarkably, the

density distribution shows a lower similarity compared to the curvature. A closer look at the

comparison of the density distributions shows, that for small cluster dimensions between 10

nm and 150 nm as well as for large cluster dimensions ranging from approx. 1 400 nm– 1 800

nm, the distributions are within the critical p-value area. (b) depicts the aggregated p-value

(density and curvature) calculated with the weighting t-Norm-AND (blue) and the confidence
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interval (black dashed line). A simM = 0.71 is determined. For such large samples, a faster boot-

strap-resampling is used. (d) depicts 100 curves–representing relative density of 100-resamples

each including 2 000 points (green)–used for the bootstrap based comparison of the cluster/

curvature density distribution for both samples. In black, the averaged curve is represented.

The detailed analysis (first level statistics) of the bootstrapped samples (d) was performed

using similar statistics as used in (e). (c) shows the detailed (first level statistic) comparison of

the distributions of cluster density (top) and curvature (bottom) for all given cluster dimen-

sions (sizes). For this analysis, the KS/WX- tests (blue/red) as well as the t-Norm-AND values

are plotted (black). Additionally, the boundaries of the confidence interval are displayed

(magenta). The bootstrap derived data shows a strong similarity between the samples, simM =

0.91 and 0.95 for cluster density and curvature distributions was determined. (e-i) depict the

second level analysis. (e) shows the p-values determined by the mean-cross analysis of the

average density (left)/curvature (right) values determined via bootstrapping. Herein p-values

of the mean-cross comparison (blue) and lower/upper confidential boundaries (black dashed

line) are shown. In general, as expected a huge similarity between the samples is visible, simM

= 0.92 for the mean cluster density distribution and 0.97 for the mean curvature distribution

was determined. (h) shows the aggregated p-values for the cluster mean cross comparison of

curvature and the mean cross of density distributions (blue). The aggregated p-values show a

high similarities; simM = 0.91 and simL = 1. (f) depicts the calculated K/-H-Ripley’s-function

values for the bootstrapped data (green) for all cluster dimensions. (g) depicts the comparison

of the K-/H-Ripley function values (K-left, H-right). The p-values of the cross comparison

(red), mean-cross comparison (blue) and lower/upper confidential bounds (black dashed line)

are shown. This cross-comparison of the cluster-data also indicates a similarity of the samples

for Ripley’s function analysis. The aggregated p-value of the results of the K-/H-Ripley func-

tions comparison (i), indicates a slight dissimilarity of the results for cluster dimensions (sizes)

between 200 nm– 600 nm.

(TIF)

S7 Fig. Comparison of CD41 and CD62p cluster distributions within a clot. In one clot

sample, CD41 was marked with an Alexa488-labelled antibody; in the other sample, CD62p

was marked with an Alexa647-labelled antibody. We used our software platform to compare

the two distributions of CD41 and CD62p molecules determined from the centres of two bio-

logical replicas of clots. Both reconstructed images are depicted in (a) and (b) (both recon-

structed from approx. 300 000 localisation events). (c) shows the image of clusters with the

cluster dimension of 235 nm (600 clusters in each image). For cluster representation, the

Delaunay-triangulation method is used. (d) depicts two randomly chosen clusters.

(TIF)

S8 Fig. Comparison of CD41 and CD62p cluster distributions within a clot. First level

analysis is displayed in the images (a-c). (a) shows the detailed analysis of the full samples. In

this case, density (top) and curvature (bottom) distributions of all clusters for each cluster

dimensions were compared at one time using a KS-/ WX-test (blue/red). The results indicate

the dissimilarity of clusters for all cluster dimensions. As an indicator, an aggregated p-value

of KS- and WX-test is determined using the weighting t-Norm-AND. The p-value (black

dashed line) remains mostly below the critical p-value area (orange bar) disproving the simi-

larity hypothesis. The corresponding values for (dis)similarity simM = 0.01/0.68 for the density

and curvature distributions were determined respectively. A closer look at the KS-/WX-Test

results on curvature comparison indicates that for cluster dimensions approx. 600 nm– 800

nm the distribution is above the critical p-value area (indicating similarity). (b) shows the

aggregated p-value of density and curvature calculated with the weighting t-Norm-AND
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(blue) and the confidence interval (black dashed line). A simM = 0.36 is determined. The full-

sample analysis was only, additionally performed, in order to show the full software capabili-

ties (results are typically not used for a multilayer analysis). For such large samples, the fast

bootstrap resampling is used. The graphs (c-d) clearly show a general dissimilarity of the sam-

ples. (d) depicts 100 curves–representing relative density of 100-resamples each including

2000 points (green)–used for the bootstrap based comparison of the cluster/curvature density

distribution for both samples. In black, the averaged curve is represented. The detailed analysis

of the bootstrapped samples (d) was performed as described in (a). (c) shows the statistical

comparison of the cluster density (top) and curvature data (bottom), determined from the

bootstrap results. For such detailed analysis (c), KS/WX- tests (blue/red) as well as the t-

Norm-AND values (black) are plotted. Additionally, the boundaries of the confidence interval

are displayed (magenta). The statistical comparison of the bootstrap derived data shows a

simM = 0.21/0.76 and simL = 0.11/0.4 for cluster density and curvature comparison, respec-

tively. The data on cluster density as well as curvature however, shows a general dissimilarity

of the samples. A similarity for cluster curvatures for the dimension ranges of approx. 200

nm– 400 nm and approx. 600 nm– 800 nm is observed. (e-i) depicts the second level analysis.

(e) shows the p-values determined by the mean-cross analysis of the average density (left)/cur-

vature (right) values determined via bootstrapping. Herein, p-values of the mean-cross com-

parison (blue) and lower/upper confidential boundaries (black dashed line) are shown. The

simM = 0.01 and 0.61 and simL = 0.005/0.1 for cluster density and curvature comparison are

determined respectively. In general, the data emphasizes the dissimilarity hypothesis, however,

the data for curvature comparison indicates a significant similarity for approx. 400 nm– 500

nm and>900 nm cluster density ranges. (h) shows the aggregated p-values for cluster curva-

ture and density comparison (blue). The aggregation of the p-values results in simL = 0.24,

indicating a general dissimilarity. (f) depicts the calculated K-/H-Ripley function values for the

bootstrapped data (green) for all cluster dimensions. Using H-Ripley as the crucial dimension,

representative for the largest difference (clustering caused) between the sample and complete

spatial randomness, can be determined (for the two images the largest difference occurs for

clusters sizes of 210nm). (g) depicts the comparison of the K-/H-Ripley function (K-function

left, H-function Right) values at the second statistical level. The p-values of the cross compari-

son (red), mean-cross comparison (blue) and lower/upper confidential boundaries (black

dashed line) are shown. In contrast to all the data presented on single molecule clustering, the

cross-comparison on the global analysis via Ripley’s function indicates sample similarity (for

clustering dimensions ranging between approx. 400 nm– 1 000 nm). Similar to the individual

distributions, is the aggregation of the K-/H-Ripley functions results (i). The respective simM

values for the Ripley’s functions comparison are 0.86 (K-/H-Ripley) and 0.55 (aggregated).

The values are contrary to the previously shown results obtained on direct cluster comparison,

thus a similarity is indicated. The varying result emphasizes the importance of a multilevel sta-

tistical analysis.

(TIF)

S9 Fig. Detailed statistical comparison of interleukin-1β-treated and untreated platelets

within a clot. Cells were labelled with Alexa647-labelled anti-CD62p-antibody. Images were

taken at the edge of an artificial clot, where platelets are more sparsely distributed than within

the clot. Therefore, segmentation (ROI extraction) is required. Here, we present a statistical

comparative analysis of the full image, with sparsely distributed platelets and we compare the

extracted regions. The full (not regionalized) sample analysis is depicted in the left column of

the Fig (a’-e’), the ROI analysis on the right ((a-e); parts of the ROI analysis are included in Fig

3 in the main text). From the analysis, the advantage of segmentation (region extraction) is
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clearly visible. The first level analysis of the comparison of the KS/WX- tests presented in (a)

(and Fig 3E) and (a’) indicates a significant similarity for full images. For ROI-based compari-

son, density and curvature of the clusters shows similarity solely for cluster dimensions >700

nm (simM/simL = 0.47/0.31 and 0.45/0.24 for cluster density/curvature distributions, in con-

trast: simM/simL = 0.87/0.75 and 0.87/0.80 for a full sample). Fig 3C (main text) depicts two

extracted regions of an untreated (upper) and IL-1β treated (lower) clot; a difference in the

CD62p distribution can be observed. The divergence of the results between ROI and full

image analysis is due to numerous small clusters, which are homogenously distributed in the

images; in particular in the platelet-free area of the interleukin-1β treated clot. Not-cell-related

signals add a significant additional cluster population, which is less significant within a ROI.

For full image analysis, clusters for a specific cluster dimension originate from various regions

due to hierarchical clustering, which influences the overall cluster density/curvature distribu-

tion. This is not the case for ROI-based analysis. Similar results can be observed for the second

level analysis: the mean-cross comparison of the statistical data on cluster density and curva-

ture show divergent results. As before, a dissimilarity for the ROI comparison is shown (simM/

simL = 0.07/0.07 (Fig 3F) and 0.91/0.50 (b, c) for aggregated cluster density/curvature compar-

ison, in contrast: simM/simL = 0.54/0.2 and 0.85/0.35 for cluster density/curvature comparison

on a full sample (c’)). The results are confirmed by the K-/H-Ripley’s statistics. The mean-

cross analysis of all values, shown in (d, d’), indicates that many platelets within the extracted

clot regions are sparsely distributed. Again, solely K-/H-Ripley statistics determined for the

extracted ROI’s indicate a difference in CD62p protein secretion after interleukin 1β treatment

(simM/simL = 0.03/0.01 and 0.04/0.01 for K-/H-Ripley comparison (ROI analysis), in contrast:

simM/simL = 0.94/0.78 and 0.94/0.79 for K-/H-Ripley comparison on a full sample).

(TIF)

S10 Fig. Filtering of 3D dSTORM images using DBSCAN, ROI extraction, graphical repre-

sentation of protein clusters. Images are reconstructed from approx. 60 000 single localisa-

tions. Images are shown before (a) and after (b) filtering using DBSCAN. Reduction from 59

393 points to 51 323 points (red: negative z values, yellow: positive z values) was achieved by

using ρ = 2 and minP = 3. Points defined as outliers are filtered. (c) represents the sample

image shown in (a) before region extraction (white box: large regions, red box: small regions).

(d) shows the extracted region (region includes all points from original image). Cluster volume

was calculated as sum of spheres (e), convex-hull volume (f) and box volume (g).

(TIF)

S11 Fig. Comparison of different visualisation methods of clusters. Visualisation of clusters

with a maximum size of 210 nm. (a) shows the 600 densest clusters of sample 1 and (b) the 600

densest clusters of sample 2. (c) depicts the triangulation-based representation of a cluster

from the inset in (b). (d) shows the sphere packing-based representation of the chosen clusters.

Visualisation of the primary clusters of sample 2, created with a neighbourhood radius of 250

nm. (e) depicts the largest primary clusters, (f) the triangulation-based representation of the

largest cluster and (g) the sphere packing-based representation of the largest cluster. (h) shows

the empirical probability density function (pdf) for density distribution of primary clusters. (i)

shows the empirical pdf for curvature distribution of primary clusters. The red and blue curves

in (h,i) represent the samples from (a) and (b), respectively.

(TIF)

S12 Fig. Comparison of CD62p expression (mean cell intensity) of untreated and cytokine

treated platelets. CD62p expression (detected as mean cell intensity (int.) of cells labelled with

anti-CD62p-Alexa647) was significantly lower after 30 minutes of 10 ng/mL interleukin-1β
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treatment (mean: 5219 +- 1856 counts; n = 88 compared to 3565 +- 1246 counts; n = 83;

power: 0.94). These data show a statistically significant lower CD62p expression for IL1-β
treated cells in 2D (i.e. on single spread platelets). The boxplot depicts the median and the first

and third quantile and outliers.

(TIF)

S13 Fig. Comparison of randomly distributed (simulated) localisation events, platelets of

different morphologies and the CD41 protein distribution in a reconstructed dSTORM

image. (a) shows the distribution of CD62p labeled with Alexa647-antibody. (b) represents a

randomly distributed point cloud (approx. 85 000 data points/image). (c) shows the compari-

son of the cluster densities distribution to Ripley’s K-function distributions for all cluster

dimensions between the simulated and CD62p datasets (black/blue line for cluster density/K-

function, respectively). The lines depict the aggregated p-value of KS- and WX-test results.

The test based on the Ripley’s K-function classifies the samples as similar (similar for cluster

sizes ranging from 5 nm to about 400 nm). In contrary, our classification estimates the samples

as dissimilar, with the test based on the density distribution of clusters (similarity measure = 0).

The MLP neural network classifies samples as dissimilar with a posteriori probability of 88%.

(d) and (e) show a simulated polarized (randomly distributed) and unpolarised image respec-

tively. (f) shows the comparison of clusters density/curvature distributions and Ripley’s K-

functions for all cluster dimensions between the simulated polarized and simulated unpolar-

ized datasets (black/blue line for cluster density/K-function, respectively). The lines depict the

aggregated p-value of KS- and WX-test results. The test based on the Ripley’s K-function clas-

sifies the samples as dissimilar (similar for cluster sizes ranging from approx. 150 nm– 180

nm). Our classification estimates the samples as dissimilar, with the test based on the density

distribution of clusters (similarity measure = 0). Three additional pairs of polarized and unpo-

larised samples have been compared, rendering a dissimilarity of 78.5%, 88.5% and 95.1%. (g)

and (h) show reconstructed dSTORM images of Alexa647-phalloidin labelled actin skeleton of

two individual platelets activated on a glass surface. The two platelets are comparable, in an

early activation state. (i) depicts the comparison of the cluster densities and the Ripley’s K-

function distributions for all cluster dimensions between the datasets representing platelet

cytoskeleton at a similar activation stage (black/blue line for cluster density/K-function respec-

tively). The lines depict the aggregated p-value of KS- and WX-test results. The test based on

Ripley’s K-function classifies samples as strong dissimilar. Our analysis provides a correct clas-

sification of samples as similar, based on the density distribution of clusters (similarity mea-

sure = 0.86). The MLP neural network classifies samples as similar with a posteriori

probability of 87%. (j) and (k) show reconstructed 3D dSTORM images of Alexa647-phalloi-

din labelled actin skeleton of two individual platelets activated on a glass surface. The two

platelets are in two different activation states, (j) a late activation state and (k) an early activa-

tion stat. (l) shows the comparison of the cluster densities and of Ripley’s K-function distribu-

tions for all cluster dimensions between the datasets representing localisation microscopy

images of platelets in early and late activation state (black/blue line for cluster density/K-func-

tion respectively). In this case both tests based on the Ripley’s K-function as well as on the clus-

ter density distribution correctly classify the samples as dissimilar (similarity measure = 0.1).

The MLP neural network classifies rather samples as dissimilar with a posteriori probability of

64%. The results clearly prove that our method is also capable to compare protein distributions

that change over time induced by external factors at a single cell level. The axial range is repre-

sented by two colors: blue is below the focal plane and yellow above. The axial range is ± 500

nm.

(TIF)
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S14 Fig. Comparison between the CD62p distribution in interleukin treated clots (large

clot on the left side and a chosen region of interest on the right). First level statistics yields for

the two samples similar cluster densities for all cluster dimensions (simM = 0.85) and for clus-

ter curvatures (simM = 0.32). Similar values are obtained for a comparison of aggregated den-

sity and curvature values (simM = 0.76 and simM = 0.85). Dissimilarity for the H-/K-Ripley

analysis can be observed (simM< 0.2). An MLP value of 0.66 proves the similarity of the sam-

ples. The detailed analysis directly shows the crucial dimensions and parameters, which best

describe the differences between both samples. The results prove that the differences between

large clusters as well as small ROIs (size ranges of individual cells) can be very precisely deter-

mined.

(TIF)

S1 Table. Statistical comparison (p-values) of CD41/CD62p pairwise comparisons. The

table displays all statistical p-values determined from several chosen pairwise compared distri-

butions of CD41/CD62p proteins in clots. Samples 1–4 are samples where CD41 has been

stained with Alexa488-labelled anti-CD41-antibody and samples 5–6 are samples where

CD62p was stained with Alexa647-labelled anti-CD62p-antibody.

(XLSX)

S2 Table. Statistical comparison (p-values) of CD62p upon IL-1β treatment. The table dis-

plays all statistical p-values determined from several chosen pairwise compared distributions

of CD62p proteins in IL-1β treated/untreated clots. Samples 1–3 display the comparison of

CD62p from IL-1β untreated samples (stained with Alexa488-labelled anti-CD41-antibody)

and samples 4–5 show the comparison of CD62p from IL-1β treated samples.

(XLSX)
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