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Trimming of sequence reads alters RNA-
Seq gene expression estimates
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Abstract

Background: High-throughput RNA-Sequencing (RNA-Seq) has become the preferred technique for studying gene
expression differences between biological samples and for discovering novel isoforms, though the techniques to
analyze the resulting data are still immature. One pre-processing step that is widely but heterogeneously applied is
trimming, in which low quality bases, identified by the probability that they are called incorrectly, are removed.
However, the impact of trimming on subsequent alignment to a genome could influence downstream analyses
including gene expression estimation; we hypothesized that this might occur in an inconsistent manner across
different genes, resulting in differential bias.

Results: To assess the effects of trimming on gene expression, we generated RNA-Seq data sets from four samples
of larval Drosophila melanogaster sensory neurons, and used three trimming algorithms—SolexaQA, Trimmomatic,
and ConDeTri—to perform quality-based trimming across a wide range of stringencies. After aligning the reads to
the D. melanogaster genome with TopHat2, we used Cuffdiff2 to compare the original, untrimmed gene expression
estimates to those following trimming. With the most aggressive trimming parameters, over ten percent of genes
had significant changes in their estimated expression levels. This trend was seen with two additional RNA-Seq data
sets and with alternative differential expression analysis pipelines. We found that the majority of the expression
changes could be mitigated by imposing a minimum length filter following trimming, suggesting that the
differential gene expression was primarily being driven by spurious mapping of short reads. Slight differences with
the untrimmed data set remained after length filtering, which were associated with genes with low exon numbers
and high GC content. Finally, an analysis of paired RNA-seq/microarray data sets suggests that no or modest
trimming results in the most biologically accurate gene expression estimates.

Conclusions: We find that aggressive quality-based trimming has a large impact on the apparent makeup of RNA-
Seq-based gene expression estimates, and that short reads can have a particularly strong impact. We conclude that
implementation of trimming in RNA-Seq analysis workflows warrants caution, and if used, should be used in
conjunction with a minimum read length filter to minimize the introduction of unpredictable changes in expression
estimates.
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Background
Within the past decade, RNA sequencing (RNA-Seq) has
supplanted microarrays as the preferred technique for
gene expression analysis. A typical workflow for RNA-
Seq analysis involves aligning reads to an annotated gen-
ome followed by estimation of gene-level and/or

isoform-level expression. In many cases, this is followed
by statistical identification of genes that are differentially
expressed between two or more sample groups. How-
ever, RNA-Seq presents unique analytical challenges,
and accurate and robust tools to analyze sequencing data
are rapidly evolving. As a result, analysis workflows can
vary widely between studies.
One initial step of RNA-Seq analysis is to evaluate se-

quence read quality, which can vary substantially based
on factors related to nucleic acid library preparation
(e.g., adapter contamination, polymerase errors) and
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sequencing (e.g., cluster density, optical detection errors,
phasing errors) [1]. For example, during library prepar-
ation, random hexamers are sometimes used as primers
for double stranded cDNA synthesis, which leads to
biases in nucleotide composition at the beginning of
reads [2]. A second, intrinsic problem of sequencing by
synthesis is phasing: different fragments within a cluster
fall out of phase with one another as a result of slight
differences in the timing of polymerization. Errors in
phasing accumulate over time; thus, read quality tends
to decrease toward the ends of sequence reads. Further,
errors have a tendency to co-occur, such that reads with
two errors are more common than would be predicted
based on a model in which errors occur independently
of one another [3].
In the absence of pre-processing, phasing and other

sequencing errors can lead to inclusion of incorrect base
calls and, consequently, to erroneous read alignment.
Current next generation sequencing technologies pro-
duce reads as short as 25 bases up to hundreds of bases;
sequencing errors are less frequent in the shorter read
data sets, but the proportional impact of a single incor-
rect base may be larger. Sequencing-associated errors
are aggregated into a quality score that reflects the prob-
ability that a given base has been called incorrectly. Most
common among these, the Phred quality score (Q) used
in the Illumina platforms ranges from 0 to 40, with in-
creasing scores corresponding to higher quality base
calls; for example, a Q score of 40 represents a 1 in
10,000 chance that a base has been called incorrectly [4].
Similar quality scores are produced with alternative se-
quencing platforms as well. During pre-processing, the
quality score can be used to eliminate poor quality bases
that typically occur at the ends of reads, in a procedure
commonly referred to as “trimming”. This quality-based
trimming is distinct from adapter trimming, which can
be used to remove high quality internal bases matching
the sequencing adapters used in library preparation [5].
Numerous approaches to quality-based trimming exist
[6], all with the end result of retaining high quality in-
ternal bases while removing lower quality flanking bases.
However, as for pre-processing in general, quality-

based trimming of reads is widely, but heteroge-
neously, applied. Thus, the specific algorithms and
parameters used for quality score-driven trimming are
a major determinant of what portions of reads are
retained for further analysis. A broad survey of the
major trimming algorithms currently in use found
that although trimming prior to mapping of RNA-Seq
reads leads to a decrease in the total number of
reads, it concurrently increases the proportion of the
remaining reads that map, suggesting that trimming is
effective in removing reads that could not be mapped
to the reference genome [6].

Although the above study suggested that trimming is
beneficial, multiple lines of evidence suggest that it can
also have detrimental effects. First, while errors in the
assembly of a known transcriptome decrease with in-
creased trimming, there is a concomitant decrease in the
number of matching paired reads mapped, as well as the
number of ORFs that can be identified [7]. Second, the
number of distinct transcripts detected through de novo
assembly decreases with more stringent trimming [8].
Finally, trimming can increase the number of false posi-
tive variant calls in genome sequencing studies [9]. All
of these findings are consistent with increasing difficulty
in unambiguously aligning shorter reads to a reference
genome and/or reconstructing less total sequence into
longer contiguous sequences.
The above studies have all investigated the influence

of trimming on the immediately downstream steps of
read alignment and transcriptome reconstruction [6–9],
but it remains to be determined how trimming impacts
further downstream analyses – for example, expression
estimation and statistical identification of differentially
expressed genes. One might expect that the specificity of
read alignments could impact gene expression estimates
and have vital effects on differential expression predic-
tions. Consistent with this possibility, removing the first
ten bases from all reads, irrespective of quality scores,
led to an approximately two percent decrease in the
number of differentially expressed genes detected in the
D. melanogaster larval central nervous system following
neuronal knockdown of a factor involved in spliceosome
assembly [10]. More generally, one might expect that ag-
gressive quality-based trimming would decrease the like-
lihood of detecting false positives that arise from
erroneous mapping due to sequencing errors, while sim-
ultaneously reducing the sensitivity of detecting differen-
tially expressed genes, since expression estimates would
have reduced precision as a consequence of less sequen-
cing information contributing to their measurement.
Here, we set out to explore the effects of quality-based

trimming on gene expression analysis and report that
multiple forms of bias in gene and isoform expression
levels are apparent when comparing an untrimmed
RNA-Seq data set to the same data set with trimming
applied. Most of this bias can be removed by imposing a
minimum read length requirement following trimming,
suggesting that the gains in base calling accuracy that re-
sult from aggressive trimming are offset by the detri-
mental effects of estimating gene expression from short
reads. However, despite the ability to correct much of
the short read-associated bias by imposing a minimum
length filter, a subset of biased genes remains resistant
to correction. Thus, we caution that aggressive trimming
of RNA-Seq data can introduce bias and unpredictability
into RNA-Seq gene expression estimates, which can
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subsequently impact downstream differential expression
analysis.

Results and discussion
Quality-based trimming of ultralow-input RNA-Seq data
increases mappability
Previous work has shown that quality-based trimming of
RNA-Seq data can lead to greatly increased mappability
of reads (i.e., percentage of input reads that can be suc-
cessfully aligned to a genome) [6]. However, this in-
creased mappability of reads remaining after trimming
comes at the expense of a dramatic reduction in the ab-
solute number of aligned reads, as a consequence of
some reads failing to pass minimum quality criteria dur-
ing trimming. We predicted that this loss of information
would impact analyses downstream of alignment; in par-
ticular, gene expression estimation. To assess this, we
first generated RNA-Seq data from multi-dendritic (md)
sensory neurons from D. melanogaster larvae, which had
not yet been transcriptionally characterized by RNA-Seq
despite their frequent use as a model system for neur-
onal development [11]. This approach was selected over
those based on cells grown in culture to maximize
physiological relevance. In this regard, the influence of
trimming on expression measurement is particularly
relevant to approaches using RNA-Seq for systematic
identification of cell type in the nervous system [12, 13].
Neurons were sorted to high purity using two consecu-
tive rounds of flow cytometry (Fig. 1a, b) and four sam-
ples comprised of 100 cells each were processed by
SMART-Seq and sequenced on a HiSeq 2500. Each sam-
ple comprised at least seven million unpaired 51 base
reads and was of high overall quality (Fig. 1c).
To assess whether trimming improved mappability of

our samples, as has been reported elsewhere [6], we
trimmed our sensory neuron data sets with three different
trimming algorithms and determined mappability. First,
we evaluated SolexaQA, a sliding window trimmer that
offers a balanced tradeoff between mappability and the
number of mapped reads [6, 14]. We also evaluated Trim-
momatic, which was shown to achieve high mappability
with less aggressive trimming [6, 15], and ConDeTri,
which demonstrated high mappability when used aggres-
sively [6, 16]. We varied the quality score threshold from
10, corresponding to a 1 in 10 chance of an incorrect base,
up to 40, corresponding to a 1 in 10,000 chance of an in-
correct base – the highest confidence score assigned in
Illumina sequencing data. After trimming, data were
aligned to the annotated D. melanogaster transcriptome
using TopHat2 [17]. As previously shown with another
high quality RNA-Seq data set [6], mappability increased
with increasing quality requirements, but the absolute
number of aligned reads decreased (Fig. 2, SolexaQA;
Additional file 1, Trimmomatic and ConDeTri). Thus, the

impact of trimming on the mappability of the high quality
reads generated from the small cell numbers employed in
our study was similar to that observed from samples gen-
erated from abundant input RNA [6].

Junction spanning reads decrease disproportionately
following trimming
Although trimming increases overall mappability, it can
also substantially shorten many reads, depending on the
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Fig. 1 High quality RNA-Seq data generated from D. melanogaster
sensory neurons. a Confocal image of Drosophila larval sensory
neurons expressing a nuclear-targeted version of mRFP (magenta)
and a membrane-targeted version of GFP (white). Genotype: w118;
Gal421–7, UAS-mCD8-GFP/UAS-Red-Stinger. Scale bar is 100 μm. b
Representative flow plots of D. melanogaster neurons. Plots show
three progressive gates to identify RFP+ neurons, followed by two
additional re-sorts with the same gates to assess purity. Compensated
fluorescent values are shown. c Box plots generated in FastQC show
average (blue lines) and median (red lines) quality scores across all read
positions for each of the four independent replicate samples

Williams et al. BMC Bioinformatics  (2016) 17:103 Page 3 of 13



aggressiveness of the trimming parameters. We reasoned
that this reduction in information content might intro-
duce one or more forms of bias during read alignment.
In particular, we predicted that there would be a dispro-
portionate bias against reads aligning to exon-exon junc-
tions, since alignment to such sites requires sequences
long enough to span both the splice donor and acceptor
sides of the junction. TopHat2 requires that reads, either
singly or in combination with other reads, align for at
least eight contiguous bases with no mismatches on both
sides of a junction for initial junction detection, though
subsequent reads may span a shorter distance and will
still map to the junction [17, 18]. This is in contrast to
aligning to non-junction locations, which minimally re-
quires twelve contiguous bases with no more than one
mismatch. As predicted, we observe that trimming dis-
proportionately decreases the proportion of reads
mapped to exon-exon junctions. The frequency of reads
aligned to junctions, as a function of the total number of
reads aligned, decreases as trimming quality score
threshold increases, from 8.5 % (4.27 million reads
aligned to junctions per 50.34 million total reads aligned
in all samples combined) without trimming to 3.0 %
(0.14 million reads per 4.54 million total reads) at Q40

(Fig. 3a, b). Interestingly, this is not the case with the
frequency at which junctions are detected, as the number
of junctions detected per reads aligned increases with in-
creasing quality score stringency, from 1.5 junctions de-
tected per thousand reads mapped without trimming (74
thousand junctions detected) to 4.3 junctions detected
per thousand reads mapped at Q40 (20 thousand junc-
tions detected) (Fig. 3c, d). Although the reason for this
is unclear, we speculate that at the read coverage depth
in our data, our ability to detect junctions is not con-
strained by coverage even after trimming, resulting in
the increased frequency of junction detection largely be-
ing driven by the decrease in the total number of aligned
reads.

Bias in expression levels estimated from untrimmed and
trimmed reads
We predicted that the decreased frequency of reads
aligning to junctions would change estimates of isoform
expression levels, since accurate alignment of reads to
junctions contributes to the assignment of reads to spe-
cific isoforms [19]. Such bias would be expected to
manifest as significantly different expression between
trimmed and untrimmed samples, which we tested using
Cuffdiff2 [20]. We note that throughout this work we
refer to bias in the sense that gene expression is different
between the groups, but with limited a priori knowledge
of whether the gene expression estimates based on un-
trimmed or trimmed reads are more accurately reflective
of the true expression levels (discussed in more detail
below).
As predicted, the expression of many isoforms was sig-

nificantly altered by quality score trimming, with hun-
dreds of differentially expressed isoforms detected with
aggressive trimming (Fig. 4a, b). This finding holds even
if novel junction discovery, the default behavior of
TopHat2 mapping, is disabled (Additional file 2), since
only the annotated transcriptome and junctions were
used for modeling by Cuffdiff2. Because Cuffdiff2 esti-
mates gene-level expression as the sum of the expression
of all individual isoforms [19], we further predicted that
in addition to isoforms, genes would exhibit expression
bias following trimming. As expected, we observed a
progressively increasing number of significant differen-
tially expressed genes between our untrimmed data set
and trimmed data sets with increasingly aggressive qual-
ity filtering (Fig. 4a, c). At the most stringent quality
score, Q40, Cuffdiff2 identified 1829 genes, representing
10.5 % of all annotated genes, biased towards higher ex-
pression in either the untrimmed or trimmed data set,
suggesting that trimming can have a substantial effect
on the apparent composition of a sample.
Although the junction-alignment bias described above

might play a role in these differential expression estimates,
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other factors must contribute as well since junction bias
alone was insufficient to explain all of the observed bias.
For example, we found that loss of junction reads did not
uni-directionally decrease expression estimates. Instead,
bias toward higher expression in untrimmed data was de-
tected for some isoforms, but toward higher expression in
trimmed data for others, including comparisons in which
the number of junctions was held constant. Low expres-
sion level was also not a primary factor driving significan-
ce—no significant genes or isoforms exhibited expression
values, measured as fragments per kilobase of transcript
per million mapped reads (FPKM), of less than one in
both the untrimmed and trimmed data sets (Fig. 4). Thus,
it is likely that trimming introduces or corrects multiple
sources of bias in gene expression estimation, relative to
untrimmed reads, and that filtering based on expression
level would not provide a means by which to eliminate
this bias.

Short trimmed reads are the predominant source of bias
Since bias resulting from differential alignment of
junction-spanning reads could not fully account for the
observed differences in expression estimated from un-
trimmed and trimmed reads, we next hypothesized that
read length might contribute to the observed bias
through other mechanisms. In addition to removing
reads of very low quality in their entirety, trimming also
shortens reads of mixed quality to preserve only high
quality bases. Thus, the trimmed data sets have a distri-
bution of read lengths as compared to the uniform read
length in the untrimmed data set (Fig. 5a, Additional file
3). We predicted that shorter reads would align to more
locations than longer reads, and that this promiscuity in
mapping would drive some of the observed differential
expression estimates. To evaluate this, we removed all
reads below a fixed length in the most heavily trimmed
SolexaQA data set, Q40-trimmed, and compared gene
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expression between these data and untrimmed reads.
Minimum length requirements below 12 bases had no
effect on the number of differentially expressed genes or
isoforms identified by Cuffdiff2, which was expected
since such reads fall below the default threshold for
reads that TopHat2 attempts to align. However, follow-
ing length filtering using longer thresholds, much of the
bias both in isoform and gene expression between un-
trimmed and trimmed samples was eliminated (Fig. 5b-
d). At the highest quality score, Q40, the number of sig-
nificantly biased genes was reduced from 1829 to 150
and the number of significantly biased isoforms was re-
duced from 1269 to 41 when the minimum read length
was increased from 1 to 36. Increasing stringency be-
yond a minimum of length of 36 was not attempted be-
cause few Q40-trimmed reads exceeded this length.
The impact of short reads on trimming-induced bias

was corroborated by results from trimming with Trim-
momatic and ConDeTri. Rather than searching sequen-
cing reads for the longest run of bases over a given
quality, both of these trimmers search from the end of
reads, such that if a stretch of high quality is encoun-
tered near one of the ends, only the bases outside of that
run will be truncated. One consequence of this approach
to trimming is that the retained reads are considerably
longer, with very few short reads retained as compared
with SolexaQA (see Additional file 3). Consistent with
the hypothesis that read length drives bias, even fairly
aggressive application of these trimmers results in con-
siderably less bias than trimming with SolexaQA, with a
maximum of 9 biased genes with Trimmomatic (q = 30)
and 28 biased genes with ConDeTri (hq = 39, lq = 34).
Thus, short reads generated upon trimming are an im-
portant driver of bias in gene expression estimates, but
this can be partially offset by imposing stringent mini-
mum length filters.
Finally, we note that the long reads that remain after

both stringent quality-based trimming and length filter-
ing can be mapped with high accuracy; over 97 % of 36-
mers present in the D. melanogaster genome are unique.
Given that bias is minimized between the full, un-
trimmed data set and this aggressively trimmed and
length filtered high confidence data set, this suggests
that the full, untrimmed data set generates a more faith-
ful representation of true gene expression estimates than
those derived from aggressively trimmed data containing
short reads.

Additional factors contribute to gene expression bias
Although imposing read length requirements counter-
acted bias introduced by trimming, notable differences
remained between the untrimmed and the processed data,
and we next sought to identify additional drivers that
could account for the residual bias. We divided the genes

and isoforms differentially expressed at Q40 without
length filtering into two groups—correctable and resistan-
t—according to whether or not expression bias could be
corrected by length filtering (minimum length = 36), as
assessed using Cuffdiff2.
We assessed five parameters related to read alignment

and transcript structure of the biased genes and iso-
forms. We hypothesized that poorly expressed genes
would be more strongly impacted by promiscuous align-
ment of short reads than highly expressed genes, due to
the proportion of inappropriately aligning reads being
higher for poorly expressed genes. Consistent with this
prediction, the expression levels of resistant genes and
correctable genes differed prior to length filtering, with
the resistant genes exhibiting a median expression of 56
FPKM, as compared with a median expression of 28
FPKM among the biased genes corrected by length fil-
tering (p < 0.05, Mann–Whitney test) (Fig. 6a).
Because short reads are more likely to map to multiple

locations in the genome (referred to as “multi-hits” for
consistency with TopHat2 nomenclature), we next inves-
tigated how this property is associated with the observed
biases. Before length filtering, multi-hit reads mapped to
over 99 % of detected genes, indicating that expression
estimates were broadly influenced by short reads align-
ing to multiple locations. However, this was not the case
after imposing a minimum read length requirement of
36 bases: after filtering, 10 % of genes resistant to bias-
correction, but only 1.8 % of correctable genes, con-
tained any multi-hit reads (p < 0.05, Poisson test). Thus,
mapping of non-unique short reads is rampant in ag-
gressively trimmed data, and may continue to contribute
a small portion of the residual bias even after length fil-
tering. To more directly assess the role of multi-hits in
differential expression following trimming, we repeated
differential expression analysis using only uniquely map-
ping reads. Eliminating multi-hit reads greatly reduced
the number of differentially expressed genes and iso-
forms after trimming at Q40 to 75 and 61, respectively
(Additional file 4). However, as would be predicted based
on the low percentage of non-unique reads present after
length filtering, the effect on differential expression fol-
lowing length filtering was minimal (see Additional file 4),
suggesting that multi-hits are not the primary driver of
the residual bias after length filtering, and that additional
factors may play a role. Although these data indicate that
gene expression estimation from trimmed reads is stabi-
lized by excluding multi-hits, others have found that
allowing multi-hits increases the accuracy of expression
estimates from 36-base RNA-Seq reads [21]. Thus, exclu-
sion of all multi-hits could introduce bias as well; whether
this bias or that associated with promiscuous alignment of
short reads is more tolerable will need to be evaluated on
a case-by-case basis.
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The ability of short reads to align to multiple locations
might be influenced by the intrinsic sequence content of
a given gene or isoform. Specifically, we predicted that
bias-correctable genes might exhibit lower sequence
complexity, which would result in higher rates of multi-
hit mapping, but that could be corrected by length filter-
ing. To examine sequence complexity, we assessed en-
tropy of isoform sequences in the two groups using
Markov models for 1 to 6 base pair oligonucleotides
[22]. Two of the six measures of complexity were signifi-
cantly different between the correctable and resistant
groups, with the correctable group exhibiting lower
complexity in both cases as predicted (Additional file 5).
However, we also noted that length filtering-resistant
isoforms exhibited significantly higher GC content
(Fig. 6b), and that both of the significant complexity
measures were also significantly correlated with GC con-
tent. This observation suggested that GC content, rather
than complexity per se, might be the primary underlying
factor driving resistance to correction by length filtering.
Notably, genes with high GC content exhibit dispropor-
tionately high expression values in RNA-Seq studies

[23], which is also consistent with our observation that
FPKM is associated with resistance to bias-correction
(Fig. 6a). In anticipation of this potential bias, Cuffdiff2
was run with the optional fragment bias correction
protocol [19] enabled; however, as evidenced by the
above findings, some GC content bias remained.
We next evaluated structural properties of transcript

isoforms—specifically, isoform length and number of
exons—as a source of resistance to bias-correction
through length filtering. The distributions of transcript
lengths were not different between the two groups (p >
0.05, Mann–Whitney test) (Fig. 6c). In contrast, the
number of exons, and therefore also the number of junc-
tions, was higher in the correctable group (4.7 exons per
isoform) as compared with the resistant group (3.2
exons per isoform) (Fig. 6d) (p < 0.05, Mann–Whitney
test). In addition, both the frequency of junction detec-
tion and frequency of reads mapped to junctions in-
creased with increasingly stringent length filtering
(Additional file 6). Together, these data suggest that
length filtering of quality-filtered data improves detec-
tion of exon-exon junctions in addition to reducing
spurious multi-hit alignments.

Trimming-induced differential expression is manifest in
diverse analysis pipelines
Although TopHat2 and Cufflinks2 are widely used for
analyzing RNA-Seq data, alternative tools have been
gaining broad acceptance. Different tools vary in their
underlying assumptions about read distribution and in
their approach to handling non-uniquely mapping reads;
therefore, we next examined whether the trimming-
induced biases we identified are generalizable to other
pipelines. Most tools assess differential expression based
on gene-level counts, without discrimination of iso-
forms; thus, we focused our analysis on differential gene
expression. We implemented four additional pipelines
using the read aligners STAR [24] and RSEM [25] in
combination with the differential analysis tools DESeq2
[26] and EdgeR [27]. Consistent with our TopHat2/Cuf-
flinks2 results, significantly differentially expressed genes
were detected with each additional pipeline following
trimming with stringent quality parameters (SolexaQA
with Q = 40), albeit fewer than our original analysis iden-
tified, and these largely disappeared when a length filter
was imposed (Table 1). The differences in the number of
differentially expressed genes between analysis tools may
be due to inherent differences in how liberal or conser-
vative the programs are in calling significant differences,
as previously reported [28, 29]. Despite differences in
the scale of the effect, all of these tools indicated that
trimming affects gene expression estimates in this D.
melanogaster RNA-Seq data set.
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Trimming-induced differential expression is manifest in
diverse RNA-Seq data sets
We next assessed whether the effects of trimming found
in the D. melanogaster RNA-Seq data set were observed
with other independently generated RNA-Seq data. For
these analyses, we chose data sets derived from different
organisms (rat livers [30], yeast cultures [31]) and gener-
ated in different labs using different library preparation
and sequencing protocols. These additional data sets
were comprised of samples with paired 101 base reads;
thus, we anticipated that the negative effects of trimming
would be less severe since longer reads are less likely to
map to multiple locations, and paired reads must map
concordantly. Instead, we found that trimming had a

more pronounced effect on these data than on our ori-
ginal data (Fig. 7). Using the SolexaQA/TopHat2/Cuff-
diff2 pipeline, we found that 54 % of genes (14,470 of
26,689 total) in the rat sample and 78 % of genes (5552
of 7126 total) in the yeast sample were significantly al-
tered in their expression when the most aggressive trim-
ming, Q40, was applied. As in the D. melanogaster data
set, imposing a minimum length filter of 36 bases sub-
stantially reduced the number of differentially expressed
genes, down to 2 % (rat) and 10 % (yeast) of all genes.
We note that smaller fold changes between the trimmed
and untrimmed samples were called as significantly dif-
ferent (visualized as points close to the identity line in
Fig. 7a, b) in these two data sets than in the original data
set, which might be due to lower variance between repli-
cate samples and/or increased accuracy in alignments
due to the use of paired reads. Thus, we expect that
quality-based trimming will alter gene and isoform level
expression estimates across RNA-Seq data sets, though
the extent to which estimates change will depend on
characteristics specific to each data set.

Aggressive trimming decreases concordance with
microarray expression estimates
Given that trimming causes substantial changes in gene
expression estimates across multiple RNA-Seq data sets,
we next investigated whether trimming improved or
reduced the accuracy of expression estimates. As a

Table 1 Differentially expressed genes detected by multiple
analysis pipelines

Mapping tool DE tool DE Genes, Q40 DE Genes, Q40 L36

TopHat2 Cuffdiff2 1829 150

TopHat2/HTSeq DESeq 289 2

STAR DESeq 812 2

RSEM/STAR DESeq 79 53

STAR EdgeR 321 0

The number of significantly differentially expressed genes detected, using 5
different analysis pipelines, when comparing the untrimmed data set to the
same data set trimmed with SolexaQA, using a quality score of 40 (Q40), or
with a quality score of 40 and a minimum length requirement of 36 bases
(Q40 L36). DE Tool, differential expression tool. DE Genes, differentially
expressed genes
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biological standard for gene expression, we used the rat
and yeast data sets described above, in which the same
RNA libraries were subjected to genome-wide gene ex-
pression analysis both by RNA-Seq and by hybridization
to microarrays [30, 31]. Specifically, we reasoned that if
trimming reduced the accuracy of RNA-Seq based ex-
pression estimates, we should observe decreased con-
cordance between the RNA-Seq and microarray
expression values in trimmed RNA-Seq data sets. This is
precisely what we observed (Table 2). In the two inde-
pendent RNA-Seq/microarray data sets, expression esti-
mates from untrimmed RNA-Seq data were most highly
correlated with microarray expression estimates, though
even moderately aggressive trimming, up to Q30, min-
imally reduced these correlations. By contrast, aggressive
trimming led to substantially reduced correlations with
microarray data. Length filtering slightly improved the
correlations with microarray estimates for the heavily
trimmed rat data; however, length filtering of the yeast
data further decreased correlations, suggesting that this
additional filtering may not universally counteract
trimming-induced bias. Thus, by validation with an in-
dependent technique, we conclude that no or low trim-
ming thresholds are most likely to result in the highest
accuracy for RNA-Seq based expression estimates.

Conclusions
The data we present here provide evidence that aggres-
sive quality-based trimming can strongly influence esti-
mation of gene and isoform expression levels, which
subsequently impacts identification of differentially
expressed genes. A considerable source of the observed
differences can be attributed to the alignment of shorter
reads that result from trimming. Imposing minimum
read length requirements reverts gene expression esti-
mates to values closer to estimates produced from un-
trimmed reads, suggesting that untrimmed or trimmed,
length-filtered reads—the latter of which likely represent
the highest quality reads within a data set—may most
accurately reflect the actual library composition.
Because different experiments have different goals, in-

dividual researchers must determine whether or not
trimming will be beneficial for their particular applica-
tion. For example, in genome sequencing or for RNA-

Seq experiments where extremely large numbers of
reads are available, modest trimming may provide bene-
fits. Further, in data sets with low average base calling
quality, or in library preparation protocols that are sus-
ceptible to adapter contamination, trimming may allow
the recovery of reads which would otherwise be detri-
mental to expression estimation. Both of these attributes
were more common in early RNA-Seq studies, so trim-
ming may be particularly useful when re-analyzing such
data. One potential improvement may be to use longer
sequencing reads, such as 100 or 150 bases, so that lon-
ger reads remain after trimming low quality bases from
either end, though our results demonstrate that this
alone will not prevent the introduction of trimming-
induced expression changes. However, we re-iterate pre-
viously voiced concerns [7, 8] that mappability should
not be used as the sole criterion for performance. Fur-
thermore, our results suggest that aggressive trimming
adversely affects the accuracy of expression estimates.
Therefore, if trimming is applied, extreme care should
be used, and other measures such as length filtering
should be considered in the pre-processing pipeline to
minimize the introduction of unwanted bias.

Methods
Fly stocks
The following lines were used in this study: Gal421–7

[32], UAS-RedStinger [33], UAS-mCD8GFP [34].

Flow cytometry
Third instar larvae were filleted by microdissection in
PBS. Internal organs and thoracic segments were re-
moved, and the remaining body walls were digested in
500 μl 0.9 mg/ml (200 U/ml) collagenase in PBS for
18 min at 37 °C with mechanical agitation (1000 rpm on
a 3 mm orbit diameter shaker, with trituration every
6 min). Debris was removed by filtering cell suspensions
through a 70 μm nylon filter, and cells were isolated to
high purity using two successive rounds of sorting on a
FACSAria II (BD Biosciences, San Jose, CA). Four sam-
ples of 100 cells each were captured into 2 μl of SMAR-
Ter lysis mix (described below) and were immediately
processed for RNA-Seq.

RNA-Seq
Total RNA from lysed cells was converted to pre-
amplified cDNA libraries using template-switching re-
verse transcription [35, 36] as implemented in the
SMARTer Ultra-low input kit (Clontech, Mountain
View, CA), but with modified procedures for low cell
number analysis (Fluidigm, South San Francisco, CA).
Pre-amplified cDNA libraries were diluted to 0.25 ng/ul.
Fragmentation was performed enzymatically using a
Nextera XT DNA kit (Illumina, San Diego, CA), and

Table 2 Correlations between RNA-Seq gene expression
estimates and microarray intensities

Data set Untrimmed Q10 Q20 Q30 Q40 Q40 L36

Rat 0.855 0.853 0.851 0.848 0.744 0.751

Yeast 0.891 0.891 0.889 0.887 0.863 0.785

Values represent correlation coefficients between gene expression values
determined by microarray data sets and RNA-Seq data sets that were trimmed
with SolexaQA with quality scores as indicated, followed by mapping and
modeling with TopHat2 and Cuffdiff2

Williams et al. BMC Bioinformatics  (2016) 17:103 Page 10 of 13



barcoded samples were multiplexed, pooled, purified
using Agencourt AMPure XP beads (Beckman Coulter
Genomics, Danvers, MA), and quality controlled on a
Bioanalyzer 2100 using a high sensitivity dsDNA assay
(Agilent Technologies, Santa Clara, CA). Quality-
controlled libraries were sequenced as 51 base single
end reads on a HiSeq 2500 running in high-output mode
at the UCSF Center for Advanced Technology (San
Francisco, CA). Reads were demultiplexed with
CASAVA (Illumina), and read quality was assessed using
FastQC (http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/). One library was sequenced twice in order
to increase sequencing depth. In total, the four replicate
samples were comprised of 7, 13, 14, and 21 million
reads passing sequencing filters.

Trimming with SolexaQA
Trimming was performed with SolexaQA version 3.1.2
[14], which scans for the longest contiguous run in the
sequence with quality scores at or above the user-
provided value. To perform filtering on read lengths, the
lengthsort command was run following the initial trim-
ming command. Example commands for these and all
other tools can be found in Additional file 7.

Trimming with Trimmommatic
Trimming was performed with Trimmomatic version
0.33 [15]. We used the quality filtering functionality of
this tool with a sliding window, which scans through
reads from the 5′ end, and removes following bases
from the 3′ end once the average quality score within
the window drops below a user-specified value.

Trimming with ConDeTri
Trimming was performed with ConDeTri version 2.2
[16]. For each instance, both a high quality and a low
quality score were provided as parameters; the low qual-
ity scores were held either five or ten below the high
quality scores for all combinations tested. Briefly, Con-
DeTri removes bases from the 3′ end of reads that are
below the high quality score. Once a base is encountered
that surpasses the high quality score, bases are retained
so long as the bases between the low quality score and
high quality score, as a fraction of total bases, does not
rise above a default threshold of 0.2. All bases distal to a
base below the low quality threshold are discarded.
Aside from the quality scores, the only other parameter
that was altered from the defaults was the minimum
length, which was removed rather than using the default
value of 50 to accommodate the 51 base sequencing
reads used in this study.

Alignment to the transcriptome
After trimming, reads were aligned to the D. melanoga-
ster genome, FlyBase genome release 6.04, to the Rattus
norvegicus genome, Ensembl release 5.0, or to the Sac-
charomyces cerevisiae genome, Ensembl release R64-1-1.
TopHat2 version 2.0.14 [17] and Bowtie2 version 2.2.3
[17, 37] were used for alignment using two threads, but
otherwise with all default parameters. The aligned reads,
alignment summary, and junction alignment files were
used in further analysis. In addition to the above, several
other alignment/expression estimation approaches were
employed. In one case, gene-level counts from the
TopHat2 output were determined using HTSeq version
0.6.0 [38]. All standard parameters were used in the gene
counts mode for the aligner STAR version 2.4.2a [24].
RSEM version 1.2.22 [25] was used in combination with
STAR version 2.4.2a [24].

Gene expression analysis
Differential gene expression analysis was performed
using Cuffdiff2 version 2.2.1 [20]. In each case, the three
(yeast) or four (fly, rat) trimmed samples were compared
to the three or four samples without any trimming. A
reference transcriptome was provided, and as such any
novel junctions detected by TopHat2 were not modeled.
All other parameters were their default. The gene_exp.-
diff and isoform_exp.diff output files were used to deter-
mine the significantly differentially expressed genes and
isoforms as well as expression values in both trimmed
and untrimmed samples. For diverse pipeline analysis,
differential gene expression analysis on counts data was
performed using the R package DESeq2 version 1.10.0
[26] or the R package EdgeR version 3.13.4 [27].

Gene and isoform parameter analysis
Gene and isoform parameters were generated from the
Cuffdiff2 output (gene expression) and the FlyBase re-
lease 6.04 transcriptome (isoform length, number of
exons per isoform). Significance in comparisons of these
parameters was assessed using a Mann–Whitney U test.
The number of genes to which multi-hit reads mapped
was determined by identifying multi-hits using the
TopHat2 output, followed by using these reads as input
to Cufflinks version 2.2.1 [19]. All genes which showed
non-zero expression from any of the four multi-hit sam-
ples were considered to be a target of multi-hit reads.
Significance was assessed using a Poisson test. GC con-
tent and Markov entropy scores were calculated as pre-
viously described [22, 39] using a publicly available Perl
package (https://github.com/caballero/SeqComplex.git).
Significance was assessed using a two-tailed Student t
test assuming unequal variances. An adjusted p-value of
0.05 after Benjamini-Hochberg correction was deemed
significant.
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Correlations with microarray expression data
Microarray intensity values were retrieved from the NCBI
Gene Expression Omnibus (GEO) with the R package
GEOquery version 2.37 (https://github.com/seandavi/
GEOquery). Probes were mapped to the same genome to
which RNA-seq reads were aligned, and any probes map-
ping to more than one gene were discarded. The normal-
ized intensity values were averaged across all samples and
all probes mapping to each gene to calculate gene-level in-
tensity values. Pearson’s correlations were used to measure
the correlation between the average gene expression based
on microarray intensity data and the estimated gene ex-
pression based on RNA-Seq data, after imposing a lower
expression cutoff of 1 FPKM.

Availability of supporting data
The fly data set generated in this article is available in the
NCBI Sequence Read Archive (SRA) and in the Gene Ex-
pression Omnibus (GEO) under accession number
GSE72884. The rat RNA-Seq data sets used were obtained
from the SRA under accession numbers SRR1178065,
SRR1178067, SRR1178068, and SRR1178069 and the corre-
sponding microarray data sets were obtained from GEO
under accession numbers GSM116428, GSM1161435,
GSM1161439, and GSM1161443. The yeast RNA-Seq data
sets used were obtained from the SRA under accession
numbers SRR453569, SRR453570, and SRR453571, and the
corresponding microarray data sets were obtained from
GEO under accession numbers GSM923093, GSM923094,
and GSM923095.

Additional files

Additional file 1: Influence of trimming with Trimmomatic and
ConDeTri on mappability. (a) The total number of input reads (light
bars) and reads aligned to the transcriptome (dark bars) from four RNA-Seq
data sets trimmed at a range of quality scores with Trimmomatic. Q scores
are 5 apart from 5 to 25, and every Q score from 25 to 34 is shown. No
reads survived at or above a Q score of 35. (b) The mappability, or number
of aligned reads per total input reads, per sample trimmed with Trimmo-
matic. (c) The total number of input reads (light bars) and reads aligned to
the transcriptome (dark bars) from four RNA-Seq data sets trimmed with
ConDeTri. The high quality (HQ) score for trimming is indicated under the
first of each pair of bars, and a low quality (LQ) score five (red bars) or ten
(orange bars) below was used. (d) The mappability per sample trimmed
with ConDeTri. Input reads shorter than 12 bases were not included in the
mappability calculations, as these are discarded by TopHat prior to
alignment. Error bars represent standard deviations. (PDF 116 kb)

Additional file 2: Influence of novel junction discovery on isoform
and gene expression levels. Comparison of the expression estimates of
isoforms and genes between the SolexaQA Q40-trimmed and the
untrimmed data set, after aligning reads to the transcriptome using
TopHat2 with novel junction discovery disabled. Red dots represent
statistically significant differential expression between data sets.
(PDF 642 kb)

Additional file 3: Distribution of read lengths after trimming.
Density plots show the distributions of read lengths at multiple Q scores
following trimming with SolexaQA (a), Trimmomatic (b), and ConDeTri (c).
(PDF 156 kb)

Additional file 4: Influence of multi-hits on isoform and gene ex-
pression levels. Comparison of the expression estimates of isoforms and
genes between the SolexaQA Q40-trimmed without (a) or with (b) a
minimum length requirement and the untrimmed data set, after aligning
reads to the transcriptome using TopHat2 with multi-hits excluded. Red
dots represent statistically significant differential expression between data
sets. (PDF 1130 kb)

Additional file 5: Relationship between length-filtering resistant
bias and sequence complexity measures. The distribution of
complexity scores for length filtering-correctable and -resistant isoforms,
assessed with a Markov model for entropy of oligonucleotides of length
one (a), two (b), three (c), four (d), five (e), or six (f). *, p < 0.05 following
Benjamini-Hochberg adjustment. Bars represent the mean. For clarity, not
all data points are depicted. Cor, correctable. Res, resistant. (PDF 152 kb)

Additional file 6: Influence of minimum length requirements on
junction alignment and detection. (a) The average number of reads
aligned to junctions per sample with increasing minimum read length
requirements after trimming with SolexaQA, Q = 40. (b) The average
frequency of reads aligned to junctions (number of reads aligned to
junctions per total reads aligned). (c) The average number of junctions
detected per sample. (d) The average frequency of junction detection
(number of junctions detected per total reads mapped). For all panels,
data were normalized to the Q40 value with no minimum length filter,
on a per sample basis. Error bars represent standard deviations.
(PDF 114 kb)

Additional file 7: Example commands used for analysis tools. Table
showing example commands for all analysis tools used. (PDF 57 kb)
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