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Equipment parallel simulation is an emerging simulation technology in recent years, and equipment remaining useful life (RUL)
prediction oriented parallel simulation is an important branch of parallel simulation. An important concept in equipment parallel
simulation is the model evolution driven by real-time data, including model selection and model parameter evolution. -e current
research on equipment RUL prediction oriented parallel simulationmainly focuses on a single continuous degradationmode, such as
linear degradation and nonlinear degradation. Under this degradation condition, the model parameter evolution methods in parallel
simulation can effectively predict equipment RUL. However, in practice, most of the equipment degradation processes exhibit a
mixture of continuous degradation and discrete shock. So this requires adaptive selection of simulation models based on real-time
degradation data. In this paper, the hybrid degradation equipment RUL prediction oriented parallel simulation considering model
soft switch is studied. Firstly, under the modeling framework of the state space model (SSM), two kinds of degradation simulation
models are established using theWiener process and Poisson effect. Driven by the real-time degradation data, themodel probability is
calculated by using the forward interactive multiple model filtering algorithm to realize the model soft switch and data assimilation.
On the basis of model soft switch, the expectationmaximization algorithm is utilized to achieve model parameter evolution.-rough
the iteration between model soft switch and model parameter evolution, the simulation fidelity can be effectively improved and the
actual equipment degradation state is continuously approached. According to the full probability theorem and the concept of first
hitting time, the simulated degradation state distribution is integrated into the inverse Gaussian distribution. -en the analytical
expression of the RUL probability density function is obtained to achieve RUL real-time prediction. Finally, a case study was
conducted by using a bearing degradation data. -e results show that the parallel simulation can effectively model the hybrid
degradation process of the bearing. Compared with the single-model method that only considers the model parameter evolution, the
RUL obtained by the method proposed in this paper has higher prediction accuracy and smaller uncertainty.

1. Introduction

As the equipment complexity increases and the time-varying
property of the equipment-operating environment en-
hances, equipment maintenance has become increasingly
complicated. Due to external shock, wear, fatigue, corrosion,
and other reasons, the equipment’s performance will be
inevitably degraded, eventually causing equipment failure or
even causing serious accidents. If we can determine the best
opportunity for equipment maintenance and formulate the
corresponding spare parts management and ordering plan
based on the predicted RUL in the initial degradation stage,
the reliability of equipment will be improved and the op-
erational risks and operating costs of the equipment will be

reduced effectively. In recent years, the prognostic and
health management (PHM) technology has received more
and more attention and has become an active investigation
area in the reliability field [1]. PHM aims to accurately
predict the equipment RUL. Accordingly, the reasonable
maintenance and management of equipment are executed to
guarantee the safety, reliability of equipment operation. -e
main tasks of PHM include RUL prediction and health
management. Pecht and Chinnam [2, 3] both believe that
RUL prediction is the core content of PHM and the RUL
prognostic results provides a scientific basis for maintenance
activities such as maintenance replacement and spare parts
ordering. RUL prediction includes the probability density
function (PDF) of RUL and its mathematical expectation.
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Since the RUL probability density function characterizes the
uncertainty of RUL prediction, the probability density
function is the primary predictor [4]. -e current RUL
prediction approaches can be broadly classified as failure
physical model methods, statistics-based methods, and ar-
tificial intelligence methods [5]. For complex equipment, its
failure mechanism is difficult to obtain, so the latter two
methods get more attention. Statistics-based methods
achieve RUL prognostic results via data fitting on the basis of
statistics models. -e commonly used statistics-based
methods include the Markov chain [6], Bayesian method
[7], inverse Gaussian process [8], Gamma process [9], Wiener
process [10, 11], etc. -e artificial intelligence methods
achieve RUL prognostic results via data fitting mainly in-
cluding machine learning. -e commonly used artificial in-
telligence methods include neural network [12], support
vector machine [13], etc. However, the artificial intelligence
methods are limited by the two deficiencies in the practical
application. One is that it usually cannot achieve the analytical
expression of the probability density function of RUL, which
restricts the real-time application of the methods [14]. -e
other is that it also requires a large amount of training
samples, which usually cannot be satisfied in practice [15].
Contrastively, statistics-based methods do not depend on a
large amount of training samples and are more flexible be-
cause of its independency regarding specific application
objects, making it widely utilized in degradation modeling
and RUL prediction. Among these statistics-based methods,
theWiener process is themost popular method because of the
following advantages. On the one hand, compared with other
methods (e.g., inverse Gaussian process and Gamma process),
the Wiener process can model not only monotonous deg-
radation paths but also nonmonotonous degradation paths.
On the other hand, the Wiener process has excellent physical
interpretation and mathematical property (i.e., its first hitting
time distribution is inverse Gaussian distribution), which is
helpful to obtain the analytical expression of the PDF of RUL.

Recent advances about Wiener process-based RUL pre-
diction methods were discussed in the most recent review
paper [16]. In this review, Zhang et al. systematically reviewed
the conventional Wiener process-based RUL prediction
methods and many generalizations and variants from the
conventional Wiener process-based RUL prediction methods
by considering the factors of nonlinearity [17], multisource
variability [18], covariates [19], and multivariates [20]. In the
above numerous applications,Wiener process-basedmethods
showed a flexible modeling capability and has undergone
extensive development. But there still exists a typical issue
deserving further research. -e issue is that it is usually as-
sumed that the equipment degradation mode is a fixed
continuous degradation in the entire degradation period
among the Wiener process-based prediction methods. As a
result, a single and fixed model is used for RUL prediction.
However, besides the continuous degradation, the degrada-
tion mode may present a hybrid of multiple degradation
modes in practice, which requires multiple models. Specially,
the damage caused by the random shock is also an important
reason accounting for equipment failure. In this paper, the
degradation mode incorporating the continuous degradation

and the random shock is called the hybrid degradation mode.
Until now, in order to solve the RUL prediction issue of the
hybrid degradation equipment, several researchers have
attempted to establish the prognostic models on the basis of
the Wiener process.

Si et al. [21] presented a new prognostic model to char-
acterize the hybrid degradation equipment. In the proposed
model, the linear Wiener model is used to describe the
continuous degradation process and a compound Poisson
process is utilized to characterize the randomly arriving shock.
And each randomly arriving shock is described by a random
variable which obeys the normal distribution with two pa-
rameters. Inspired by the research of Si et al. [21], Zhang et al.
[22] regarded the hybrid degradation process as the state
switching process and utilized a nonlinear Wiener process
with state switching depicted by a continuous time Markov
chain (CTMC) to describe the continuous degradation pro-
cess. And also a random variable which obeys the normal
distribution is used to characterize each shock introduced in
the state switching. Regrettably, the model parameters esti-
mation method was not investigated. On the basis of the
previous studies [21, 22], Zhang et al. [23] proposed a hybrid
degradation model with a continuous model described by a
nonlinear Wiener process and a randomly arriving shock
model characterized by a nonhomogeneous compound
Poisson process. -ey not only obtained the approximated
analytical lifetime under the concept of FHT, but also ob-
tained parameters updating formulas by combining the ex-
pectation conditional maximization (ECM) algorithm and
maximum likelihood estimation (MLE). Additionally, a nu-
merical example and a case study of furnace wall were studied.
Furthermore, similar to the previous study [23], Zhang et al.
[24] utilized a specific nonlinear Wiener process with the
power low model to describe the continuous degradation and
the samemethod to describe the randomly arriving shock. On
the basis of the above modeling mechanism, Du et al. [25]
proposed a more generalized hybrid degradation model
consisting of trend term and stochastic fluctuating term. It is
worth noting that all the above latest research studies use one
model to model the hybrid degradation process. Considering
the unknown characteristic of arriving time and the ampli-
tudes for the shock, it is a reasonable choice to construct
multiple models to describe the hybrid degradation process
and replace themodel dynamically throughmodel soft switch.
-erefore, in order to accurately predict the RUL of hybrid
degradation equipment, a novel real-time prediction method
is needed urgently considering both the model soft switch and
online evolution of model parameters. Equipment parallel
simulation has become a possible solution [26, 27]. -is
method is called hybrid degradation equipment RUL pre-
diction oriented parallel simulation.

Equipment parallel simulation is an emerging simulation
paradigm which aims to combine the simulation system with
the actual equipment. It was originally defined at the AsiaSim/
SCS AutumnSim conference in 2016. -e simulation system
benefits from the online acquisition of equipment informa-
tion to update the simulation model. Conversely, the
equipment benefits from the simulation results of the sim-
ulation system to improve the equipment performance.
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Particularly, the simulation system running in this mode is
called the parallel simulation system. -e equipment parallel
simulation diagram is shown in Figure 1. In the equipment
parallel simulation, the actual equipment and simulation
system exchange information through sensors and actuators.
-e sensor provides the actual equipment information to the
parallel simulation system, and the actuator lets the parallel
simulation system to perform control and other operations on
the actual equipment. -e actual equipment information
provided by the sensors can be divided into two categories,
namely, observable state information St and behavior in-
formation Bt at time t. Equipment can be controlled by the
control information Ct sent by the parallel simulation system.
According to the implementation of control information, it
can be divided into automatic control information ACt and
manual control information MCt.

An important concept in equipment parallel simulation is
model evolution driven by the real-time data, including two
aspects of model adaptive selection and model parameter
evolution. -is is considered to be a typical feature that
distinguishes it from previous simulation techniques. In the
past simulation technologies, the simulation model focused
on one-time construction. After the simulation operation, the
simulation model and model parameters no longer change,
i.e., there is no model evolution process. Although the word
“parallel” in parallel simulation translates as “parallel” in
English, it is essentially different from “parallel” in parallel
simulation proposed for many years. -e former refers to
expand the actual complex problem into the virtual space, and
the actual complex problem is handled by the interaction
between virtual space and actual space. It has the same
connotation as “parallelism” in parallel system theory [28].
-e latter refers to dividing the actual complex problem into
several subproblems handled simultaneously [29].-eoretical
origins of parallel simulation are closely related to parallel
system theory [28, 30], dynamic data drive application system
(DDDAS) [31, 32], symbiotic simulation [33, 34], and online
simulation [35]. -e literature [29] has been reviewed in
detail, but there are also significant differences. Parallel system
theory emphasizes agent-based modeling. DDDAS in-
troduces the idea of control theory into the simulation field,
which stresses utilizing the simulation results to control the
measurement process. Symbiotic simulation underlines using
what-if analysis (WIA) to execute multiscenario simulation.
Online simulation emphasizes the connecting relationship
between the actual system and the simulation system, which is
a contrary concept to offline simulation.

According to its technical principle and typical char-
acteristics, equipment parallel simulation provides an ef-
fective way to solve the RUL prediction issue of hybrid
degradation equipment. In the field of mechanical equip-
ment, components such as bearings and gearboxes are
widely used and they are all critical components. -e failure
of these components will cause the entire equipment to be
shut down. -erefore, the performance degradation process
of these components is often used to measure the RUL of
mechanical equipment. -e degradation process of these
critical components is a typical hybrid degradation process.
In this paper, with the background of RUL prediction issue

of hybrid degradation equipment, the simulation model
construction, model soft switch, model parameter evolution,
and RUL prediction of hybrid degradation equipment RUL
prediction oriented parallel simulation are investigated.

-e structure of the paper is as follows. Based on the
modeling analysis, the proposed simulation model is con-
structed in Section 2. -e evolution method of the parallel
simulation model is put forward in Section 3, which includes
model probability based model soft switch and expectation
maximization algorithm based model parameter evolu-
tion. -en, the RUL real-time prediction method of hybrid
degradation equipment based on parallel simulation is
presented in Section 4.-e parallel simulation method given
in this paper is validated by using a bearing degradation data,
and comparative study is also conducted in Section 5. Fi-
nally, some conclusions and future perspectives are dis-
cussed in Section 6.

2. Modeling of Parallel Simulation

2.1. Modeling Analysis. -e simulation model and its evo-
lution belong to the model theory category of equipment
parallel simulation, and it is also the basic issue in the re-
search of equipment parallel simulation. Due to the strong
field correlation of the model coupled with evolution
characteristic, it becomes a difficult research issue in
equipment parallel simulation. -erefore, it is the primary
basic problem to determine themodelingmethod andmodel
form in hybrid degradation equipment RUL prediction
oriented parallel simulation.

Literatures [27, 36] pointed out that building a state space
model for equipment performance degradation is an rea-
sonable modeling direction for equipment RUL prediction
oriented parallel simulation. In the SSM modeling approach,
the simulation output is a hidden degradation state. -e
equipment degradation SSM includes a degradation state
equation and an observation equation. -e former describes
the relationship between degradation states at adjacent mo-
ments, and the latter describes the relationship between the
observation and degradation state. In the equipment degra-
dation SSM, the dynamic and time-varying characteristics for
the degradation process are both taken into consideration,
which is helpful for the simulated degradation state estima-
tion and RUL prediction. Considering that statistics-based
methods are easier to obtain the analytical expression of the
RUL probability density function, this paper combines the
stochastic process approach with SSM to develop the parallel
simulation model. -e stochastic process is suitable for de-
scribing the randomness and uncertainty of the degradation
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Figure 1: Overview of the equipment parallel simulation.

Computational Intelligence and Neuroscience 3



process. -e Wiener process and Gamma process are the
most commonly used stochastic processes, but the application
conditions of the latter are too harsh. -e Gamma process is
only suitable for describing the degradation processes with
strictly monotonic characteristic. Contrarily, the Wiener
process is suitable for describing the nonmonotonic degra-
dation process, which has a more relaxed application con-
ditions. -erefore, it is an advisable choice to construct the
Wiener state space model (WSSM) by combining the SSM
modeling method and the Wiener process in the parallel
simulation modeling [36]. In particular, in order to describe
the hybrid degradation process with unknown discrete
shocks, a hybrid Wiener state space model (HWSSM) should
be established as the parallel simulation model, which in-
cludes the continuous degradationmodel and the degradation
model with unknown discrete shocks.

2.2. Construction of HWSSM. In order to construct
HWSSM, two equations need to be developed, i.e., hybrid
degradation state equation and observation equation. -e
Wiener process and shock effect are used to construct the
hybrid degradation state equation with two forms, including
the continuous degradation state equation and the degra-
dation state equation with unknown discrete shock. -e
continuous degradation state equation can be formulated as

x(t) � x(0) + ηt + σB(t), (1)

where x(t), t≥ 0{ } is the continuous degradation process
driven by the standard Brownian motion B(t), t≥ 0{ } and
B(t)∼N(0, t); x(0) is an initial degradation state; η and σ are
the drift coefficient and diffusion coefficient of the standard
Brownian motion [37]. -en, equation (1) is transformed by
Euler discretization and the degradation state equation at
discrete time points tk(k � 1, 2, . . .) without considering the
unknown discrete shocks is yielded as

xk � xk−1 + ητk + σ
��
τk

√
ϖk, (2)

where τk � tk − tk−1 is the sensor sampling interval and xk �

x(tk) is the simulated degradation state at time tk. Time tk is
short for time, k and ϖk is the noise sequence which obeys
the standard normal distribution.

-e effect of unknown discrete shocks on equipment
performance can be represented by a shock variable. According
to the discrete characteristic of the shocks, the damage caused
by the shocks is integrated into equation (2), and a degradation
state equation with discrete shocks is obtained by

xk � xk−1 + ητk + σ
��
τk

√
ϖk + D, (3)

where D is the damage caused by the shocks. We assume
that the arrival of the shocks obeys the Poisson process
[38, 39], i.e.,

P M tk + Δt( 􏼁−M tk( 􏼁 � n( 􏼁 �
(ρΔt)n

n!
e
−ρΔt

, (4)

where M(tk) denotes the total number of shocks that appear
from the initial time until the moment k and ρ denotes the
shocks arrival rate. Specifically, considering that the sam-
pling interval of the sensor is small, the probability of more

than one shock occurring within one sampling interval is
very small. In other words, the probability of more than one
shock occurring within one sampling interval can be
neglected, and n is zero or one. In addition, it is assumed that
the Poisson process is independent of the Brownian motion.

Equipment degradation observation data y(t) are ob-
tained by sensor measurement. -e random relationship
between the simulated degradation state and the observation
data can be described by the observation equation, i.e.,

y(t) � x(t) + π(t), (5)

where π(t)∼N(0, ϕ2) and ϕ2 denotes the variance of the
measurement noise. It is also assumed that π(t) is in-
dependent of the Brownian motion. -en, equation (5) is
transformed by Euler discretization, and the observation
equation at discrete time points tk(k � 1, 2, . . .) is yielded as

yk � xk + ϕζk, (6)

where yk � y(tk) denotes the degraded observation data at
time k and ζk is the noise sequence that obeys the standard
normal distribution. Furthermore, ζk is independent of ϖk.

According to equations (1)–(6), the HWSSM at the
discrete time point can be formulated as

xk �
xk−1 + ητk + σ ��τk

√ ϖk, if M tk( 􏼁−M tk−1( 􏼁 � 0,

xk−1 + ητk + σ ��τk

√ ϖk + D, if M tk( 􏼁−M tk−1( 􏼁 � 1,

⎧⎨

⎩

yk � xk + ϕζk.

⎧⎪⎪⎨

⎪⎪⎩

(7)

3. HWSSM Evolution

HWSSM belongs to the state space model with hidden
degradation state. -e parallel simulation system realizes the
evolution of HWSSM by the following two ways. -e first is
the model soft switch based on the interactive multiple
model (IMM) filtering [40, 41]. -rough the IMM filtering,
the probabilities of different simulation models are calcu-
lated dynamically, and the data assimilation between the
observation data and the simulation output is achieved. As a
result, the simulation output is updated and the estimation
of the simulated degradation state is obtained. Another way
is the model parameter evolution based on parameter online
estimation. -e model parameters are updated by utilizing
the latest observation data via the parameter evolution. -e
model soft switch and parameter evolution are not executed
in isolation, but they are iterative to each other. -rough the
iteration of the two ways, the simulation output is contin-
uously approaching the equipment’s actual degradation
state. Finally, a high-fidelity simulation model is provided
for accurately predicting the equipment RUL.

3.1. IMMFiltering-BasedModel Soft Switch. In the HWSSM,
the unknown characteristic of the shocks make it impossible
to know whether there is a shock arrival from the observed
data, which leads to no way to inform the conditions of
switching the simulation model. Consequently, it is necessary
to calculate the probabilities of different simulationmodels. In

4 Computational Intelligence and Neuroscience



the SSM modeling method, the IMM filtering provides an
effective way for calculating the probability of different
models, and the Kalman filter is utilized in IMM filtering.-e
simulation model soft switch includes four stages, i.e., model
input interaction, Kalman filtering, model probability cal-
culation, and model output interaction.

For convenience, the following definitions are given. Yk �

y1, y2, . . . , yk􏼈 􏼉 and Xk � x0, x1, x2, . . . , xk􏼈 􏼉 represent the
observation data vector and simulated degradation state
vector until time k, respectively. m represents the number of
simulationmodels. μu

k represents the probability of simulation
model u at time k. pvu represents the transition probability
from the model v to the model u. P � [pvu]m×m represents the
Markov probability transition matrix. Cu

k denotes that the
valid model is model u in time interval (k− 1, k]. 􏽢xu

k|k denotes
the estimated mean of the simulated degradation state at time
k conditioned on Cu

k and the previous k measured values. Pu
k|k

denotes the estimated covariance of the simulated degrada-
tion state at time k conditioned on Cu

k and the previous k

measured values. 􏽢x0u
k|k denotes the hybrid estimated mean of

the simulated degradation state at time k conditioned on Cu
k+1

and the previous k measured values. P0u
k|k denotes the hybrid

estimated covariance of the simulated degradation state at
time k conditioned on Cu

k+1 and the previous k measured
values. N(x; 0, κ) denotes the Gaussian distribution with
value x, mean 0, and variance κ.

3.1.1. Input Interaction (Model u). At this stage, the hybrid
state estimation 􏽢x0u

k−1|k−1 and the covariance estimation
P0u

k−1|k−1 are obtained by the state estimation 􏽢xv
k−1|k−1 and

model probability μv
k−1 of model v at time k− 1. 􏽢x0u

k−1|k−1 and
P0u

k−1|k−1 are both used as the initial state of the Kalman
filtering at the time k. -e specific steps are as follows.

-e prior probability Gu of the simulation model u is
defined and calculated by

Gu �
Δ

p C
u
k |Yk−1( 􏼁 � 􏽘

m

v�1
p C

u
k | C

v
k−1,Yk−1( 􏼁p C

v
k−1 |Yk−1( 􏼁

� 􏽘
m

v�1
pvuμ

v
k−1,

(8)

where pvu �
Δ

P(Cu
k | Cv

k−1,Yk−1).
-e hybrid probability μv|u

k−1|k−1 transferred from the
model v to the model u is defined and calculated by

μv|u
k−1|k−1 �

Δ
p C

v
k−1 | C

u
k,Yk−1( 􏼁

�
p Cu

k | Cv
k−1,Yk−1( 􏼁p Cv

k−1 |Yk−1( 􏼁

p Cu
k |Yk−1( 􏼁

�
pvuμv

k−1

Gu

.

(9)

-e hybrid state estimation 􏽢x0u
k−1|k−1 of simulation model

u is determined by

􏽢x
0u
k−1|k−1 � 􏽘

m

v�1
􏽢x

v
k−1|k−1μ

v|u
k−1|k−1. (10)

-e hybrid covariance estimation P0u
k−1|k−1 of simulation

model u is determined by

P
0u
k−1|k−1 � 􏽘

m

v�1
μv|u

k−1|k−1􏼔P
v
k−1|k−1 + 􏽢x

v
k−1|k−1 − 􏽢x

0u
k−1|k−1􏼐 􏼑

· 􏽢x
v
k−1|k−1 − 􏽢x

0u
k−1|k−1􏼐 􏼑

T
􏼕.

(11)

3.1.2. Kalman Filtering (Model u). Kalman filtering can be
divided into two steps, i.e., the prediction step and the
updating step. 􏽢xu

k|k−1 and Pu
k|k−1 express the simulated

degradation state estimation and covariance estimation,
respectively, conditioned on Cu

k and the previous k− 1
measured values. -en, the prediction step refers to achieve
the predicted results 􏽢xu

k|k−1 and Pu
k|k−1 according to the

degradation equations and the results of input interaction.
-e prediction step can be expressed as

􏽢x
1
k|k−1 � 􏽢x

01
k−1|k−1 + ητk, (12)

􏽢x
2
k|k−1 � 􏽢x

02
k−1|k−1 + ητk + D, (13)

P
u
k|k−1 � P

0u
k−1|k−1 + σ2τk. (14)

-e updating step refers to obtain the posterior state
estimation 􏽢xu

k|k and covariance estimation Pu
k|k of model u

based on the prognostic results in the prediction step
and the observed data yk. -e updating step can be
expressed as

􏽥yu
k � yk − 􏽢xu

k|k−1,

Su
k � Pu

k|k−1 + ϕ2,

Ku
k � Pu

k|k−1 Su
k( 􏼁
−1

,

􏽢xu
k|k � 􏽢xu

k|k−1+Ku
k 􏽥yu

k,

Pu
k|k � I−Ku

k( 􏼁Pu
k|k−1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where 􏽥yu
k denotes the new information, Su

k is the variance of
􏽥yu

k , K
u
k is the Kalman gain, and I represents one-dimensional

unit matrix.

3.1.3. Model Probability Calculation. At this stage, the
likelihood function Λu

k of the model u is used to calculate the
model probability and is defined as

Λu
k �
Δ

p yk | C
u
k,Yk−1( 􏼁 ≈ N yk; 􏽢x

u
k|k−1, P

u
k|k−1 + ϕ2􏽨 􏽩. (16)

Furthermore, according to equation (16), Λu
k can be

given by

Λu
k �

1
(2π)1/2 | Su

k | 1/2
exp −

1
2

􏽥y
u
k( 􏼁

T
S

u
k( 􏼁
−1

􏽥y
u
k􏼔 􏼕. (17)

-en, the probability of the simulation model u is

μu
k �
Δ

p C
u
k |Yk( 􏼁 �

Λu
kGu

Gu

, (18)
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where Gu is a normalization constant that satisfies Gu �

􏽐
m
u�1Λ

u
kGu.

3.1.4. Output Interaction. According to the model proba-
bility μu

k and the estimation results of each model in the
Kalman filtering stage, the degradation state estimation 􏽢xk|k

and covariance estimation Pk|k are achieved through the
weighted sum and can be given by

􏽢xk|k � 􏽘
m

u�1
􏽢x

u
k|kμ

u
k, (19)

Pk|k � 􏽘
m

u�1
μu

k P
u
k|k + 􏽢x

u
k|k − 􏽢xk|k􏼐 􏼑 􏽢x

u
k|k − 􏽢xk|k􏼐 􏼑

T
􏼔 􏼕. (20)

In addition, in the initial time of degraded state esti-
mation, there exists xu

0|0 � xv
0|0 and p(Cu

0) � p(Cv
0) condi-

tioned on ∀u, v ∈ m, u≠ v. Once a new measurement value
yk+1 is obtained, the model probability can be updated to
realize model soft switch according to equations (8)–(20).

3.2. Model Parameter Evolution. -e model parameters θ of
HWSSM include μ0, Σ0, η, σ, D, and ϕ, where μ0 and Σ0
denote the mean and covariance of the initial simulated
degradation state, respectively. Since HWSSM is a state
space model with hidden state, it is considered to use the
expectation maximization (EM) algorithm to achieve model
parameter evolution. EM algorithm is suitable for estimating
model parameters of SSM with hidden state [42, 43]. Based
on the model soft switch, this paper uses EM algorithm to
realize the evolution of model parameters.

According to the EM algorithm, the estimations of the
model parameters θ at time k and the jth iteration of EM
algorithm can be obtained by

􏽢θ
(j)

k � argmax
θ

E
Xk,􏽥R1:k |Yk,􏽢θ

(j−1)

k

L Xk,Yk, 􏽥R1:k | θ( 􏼁 |Yk, 􏽢θ
(j−1)

k􏼒 􏼓,

(21)

where E(·) denotes the mathematical expectation operator,
L(Xk,Yk, 􏽥R1:k|θ) is the joint log-likelihood function, and
􏽥R1:k represents the model indicating matrix. 􏽥Rk represents
the model indicating vector at time k and satisfies
􏽥Rk � 􏽥R

1
k, 􏽥R

2
k􏽮 􏽯. Its element 􏽥R

v

k is defined as

􏽥R
v

k �
1, conditioned onCv

k,

0, others.
􏼨 (22)

EM algorithm consists of two steps, i.e., E-step and
M-step. E-step refers to calculate the mathematical expec-
tation of the joint log-likelihood function, and M-step refers
to maximize the mathematical expectation of the joint log-
likelihood function. -e model parameters can be estimated
online via the iteration of E-step and M-step.

3.2.1. E-Step. Based on the Markov property and the
multiplicative equation of conditional probability, the joint
log-likelihood function of the simulated state vector Xk, the
observed data vector Yk, and the model indicating matrix
􏽥R1:k at time k is given as

L Xk,Yk, 􏽥R1:k | θ( 􏼁 � ln p Xk,Yk, 􏽥R1:k | θ( 􏼁

� ln p Yk |Xk, θ( 􏼁p Xk, 􏽥R1:k | θ( 􏼁( 􏼁

� ln p Yk |Xk, θ( 􏼁
􏽼√√√√√√􏽻􏽺√√√√√√􏽽

①

+ ln p Xk, 􏽥R1:k | θ( 􏼁
􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

②

.

(23)

According to HWSSM, there exists

p yi | xi, θ( 􏼁 � N yi; xi,ϕ
2

􏼐 􏼑; p xi | xi−1,
􏽥R

v

i , 􏽥R1:i−1, θ􏼐 􏼑

� N xi; xi−1 + χv
i , σ2τi􏼐 􏼑; p x0 | θ( 􏼁 � N x0; μ0,Σ0( 􏼁,

(24)

where χ1i � ητi and χ2i � ητi + D. -en, the derivation of
equation (23) is as follows:

① � ln􏽙

k

i�1
p yi | xi, θ( 􏼁 � 􏽘

k

i�1
ln p yi | xi, θ( 􏼁

� 􏽘
k

i�1
ln

1
����

2πϕ2
􏽱 exp −
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2

2ϕ2
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� −
k

2
ln 2 π −

k

2
ln ϕ2 −

1
2ϕ2

􏽘

k

i�1
yi −xi( 􏼁

2
,

② � ln 􏽙

k

i�2
p xi,

􏽥Ri | xi−1,
􏽥R1:i−1, θ( 􏼁p x1,

􏽥R1 | x0, θ( 􏼁p x0 | θ( 􏼁
⎧⎨

⎩

⎫⎬

⎭
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k
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􏽙

2

v�1
μv
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􏽥R
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⎩
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⎭
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v
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⎩
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,
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2
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1
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i , σ2τi􏼐 􏼑􏽨 􏽩

􏽥R
v

i
􏼨 􏼩

� 􏽘

k

i�1
􏽘
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i , σ2τi􏼐 􏼑􏽨 􏽩􏽮 􏽯

� 􏽘
2
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⎭
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2
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k
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����
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⎭

⎫⎬
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(25)

Based on the above derivation, the final expression of the
joint log-likelihood function is formulated as
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L Xk,Yk, 􏽥R1:k | θ( 􏼁 � −
k

2
ln 2π −

k

2
ln ϕ2 −

1
2ϕ2

􏽘

k

i�1
yi −xi( 􏼁

2

+ 􏽘
2
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−
1
2
ln 2π −

1
2
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2

2Σ0
.

(26)

Next, Q(θ, θ(j)

k ) is denoted as the mathematical expec-
tation of the joint log-likelihood function at time k and the
jth iteration of EM algorithm, i.e.,

Q θ, θ(j)

k􏼐 􏼑 � E
Xk,􏽥R1:k |Yk,􏽢θ

(j−1)

k

L Xk,Yk, 􏽥R1:k | θ( 􏼁 |Yk, 􏽢θ
(j−1)

k􏼒 􏼓.

(27)

-rough neglecting the irrelevant items that are in-
dependent of the parameter θ, Q(θ, θ(j)

k ) can be expressed as

Q θ, θ(j)

k􏼐 􏼑∝−􏽘
k
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2
ln ϕ2 +

1
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2σ2τi

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
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−
1
2
ln Σ0

−
1
2Σ0
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2
|Yk, 􏽢θ

(j−1)

k􏼒 􏼓
􏽼√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√􏽽

⑧

,

(28)

where · represents Yk, 􏽢θ
(j−1)

k . According to the property of
mathematical expectation, the following intermediate vari-
ables are defined as

􏽢xi|k � EXk,􏽥R1:k|·
xi | ·( 􏼁,

Pi|k � varXk,􏽥R1:k|·
x
2
i | ·􏼐 􏼑 � EXk,􏽥R1:k|·

x
2
i | ·􏼐 􏼑− EXk,􏽥R1:k|·

xi | ·( 􏼁􏼒 􏼓
2

� EXk,􏽥R1:k|·
x
2
i | ·􏼐 􏼑− 􏽢x

2
i|k,

Pi,i−1|k � covXk,􏽥R1:k|·
xixi−1 | ·( 􏼁 � EXk,􏽥R1:k|·

xixi−1 | ·( 􏼁

−EXk,􏽥R1:k|·
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� EXk,􏽥R1:k|·
xixi−1 | ·( 􏼁− 􏽢xi|k􏽢xi−1|k.

(29)

Based on the definition of the above variables, the
derivation of the four conditional mathematical expectations
in equation (28) is as follows:

⑤ � EXk,􏽥R1:k|·
y
2
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2
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2
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2
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v
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v

i � 1 | ·􏼐 􏼑 � ωv
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⑦ � EXk,􏽥R1:k|·
xi − xi−1 − χ

v
i( 􏼁

2
| ·􏽨 􏽩

� EXk,􏽥R1:k|·
χv

i( 􏼁
2

+ xi −xi−1( 􏼁
2 − 2χv

i xi −xi−1( 􏼁􏼐 􏼑 | ·􏼐 􏼑

� χv
i( 􏼁

2
+ 􏽢x

2
i|k + Pi|k + 􏽢x

2
i−1|k + Pi−1|k
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⑧ � EXk,􏽥R1:k|·
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2
| ·􏼐 􏼑 � EXk,􏽥R1:k|·

x
2
0 + μ20 − 2μ0x0 | ·􏼐 􏼑

� 􏽢x
2
0|k + P0|k + μ20 − 2μ0􏽢x0|k.

(30)

After deriving the above four parts of the condi-
tional mathematical expectation, Q(θ, θ(j)

k ) can be given by
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Q θ, θ(j)
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1
2
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−
1
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2
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(31)

where Γi � 􏽢x2
i|k + Pi|k + 􏽢x2

i−1|k + Pi−1|k − 2(􏽢xi|k􏽢xi−1|k + Pi,i−1|k).
According to equation (31), in order to calculate
Q(θ, θ(j)

k ), the values of the variables 􏽢xi|k, 􏽢xi−1|k, Pi|k, Pi−1|k,
Pi,i−1|k, and ωv

i should be acquired, which belong to the
smoothed variables. -is paper uses the IMM backward
smoothing (IMMBS) algorithm to obtain the values of the
above six smoothed variables [44, 45].

IMMBS algorithm consists of backward filtering and
model state fusion. Backward filtering refers to the backward
filtering from the latest measured value. -e operation flow
of backward filtering is similar to the forward IMM filtering
mentioned in Section 3.1, but there are also obvious dif-
ferences between them.-e forward IMM filtering performs
the input interaction before performing one-step prediction,
while the backward filtering performs one-step prediction
before performing the input interaction. Backward filtering
can be divided into five steps, including backward one-step
prediction, backward input interaction, backward filtering
update, backward model probability calculation, and
backward output fusion. In particular, the backward one-
step prediction equation for backward filtering is given by

􏽢x
B,1
i|i+1 � 􏽢x

B,1
i+1|i+1 − ητi+1,

􏽢x
B,2
i|i+1 � 􏽢x

B,2
i+1|i+1 − ητi+1 −D,

P
B,u
i|i+1 � P

B,u
i+1|i+1 + σ2τi+1,

(32)

where 􏽢xB,u
i|i+1 denotes the backward one-step prediction of the

model u and PB,u
i|i+1 represents the covariance of backward

one-step prediction error for the model u. -e other steps of
backward filtering can be found in [44]. In the stage of model
state fusion for the IMMBS algorithm, according to the full
probability theorem, the smoothing estimation of the sim-
ulated state can be expressed as

p xi |Yk( 􏼁 � 􏽘
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(33)

where ωu
i represents the smoothed model probability, 􏽥ωv|u

i+1|k

denotes the smoothed hybrid probability, and Λuv
i denotes

the likelihood function. -e definition and calculation of the
three variables are given by

􏽥ωv|u
i+1|k �
Δ

p C
v
i+1 | C

u
i ,Yk

1􏼐 􏼑

�
1
􏽥Gu

p C
v
i+1 | C

u
i ,Yi( 􏼁p Yk

i+1 | C
v
i+1, C

u
i ,Yi􏼐 􏼑

�
1
􏽥Gu

puvp Yk
i+1 | C

v
i+1, C

u
i ,Yi􏼐 􏼑,

Λuv
i �
Δ

p Yk
i+1 | C

v
i+1, C

u
i ,Yi􏼐 􏼑 ≈ p x

B,v
i|i+1 | C

v
i+1, C

u
i , x

u
i|i􏼐 􏼑

� N 􏽢x
B,v
i|i+1 − 􏽢x

u
i|i; 0, P

B,v
i|i+1 + P

u
i|i􏽨 􏽩,

ωu
i �
Δ

p C
u
i |Yk

1􏼐 􏼑 �
􏽥Gu

G
p C

u
i |Yi( 􏼁 �

􏽥Gu

G
μu
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(34)

where 􏽥Gu and G are all the normalized constants. -ey can
be acquired by

􏽥Gu � 􏽘
m

v�1
puvΛ

uv
i ,
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m

u�1

􏽥Guμ
u
i .

(35)

In equation (33), with respect to p(xi|C
u
i , Cv

i+1,Yk), the
mixed smoothing state estimation 􏽢xuv

i|k, covariance estima-
tion Puv

i|k, and the mixed interaction covariance estimation
Puv

i,i−1|k can be obtained by

􏽢x
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In equation (33), with respect to p(xi | Cu
i ,Yk), the

mixed smoothing state estimation 􏽢xu
i|k, covariance estima-

tion Pu
i|k, and the mixed interaction covariance estimation

Pu
i,i−1|k of model u can be obtained by
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In particular, if i � k, there exists

P
u
k,k−1|k � I−K

u
k( 􏼁P

u
k−1|k−1. (38)

Finally, after the smoothed state fusion of each model,
the smooth estimation 􏽢xi|k, covariance estimation Pi|k, and
interactive covariance estimation Pi,i−1|k of the simulated
degradation state can be acquired by
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In particular, the initial smoothed estimations are given
by
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T
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3.2.2. M-Step. -e estimation of the model parameters θ at
the jth step of the EM algorithm can be obtained by dif-
ferentiating equation (31), i.e.,

zQ θ, θ(j)

k􏼐 􏼑

zθ
� 0. (41)

-e updated parameters are given by

􏽢μ0 � 􏽢x0|k,

􏽢Σ0 � P0|k,

􏽢D �
􏽐

k
i�1ω2

i 􏽢xi|k − 􏽢xi−1|k − ητi􏼐 􏼑/τi

􏽐
k
i�1ω2

i /τi

,

􏽢η ��
􏽐

k
i�1 􏽢xi|k − 􏽢xi−1|k −Dω2

i􏼐 􏼑

􏽐
k
i�1τi

,

􏽢σ2 �
1
k

􏽘

k

i�1

ητi( 􏼁
2

+ ω2
i 2ητiD + D2( 􏼁 + Γi − 2 ητi + ω2

i D( 􏼁 􏽢xi|k − 􏽢xi−1|k􏼐 􏼑􏼐 􏼑

τi

,

􏽢ϕ
2

�
1
k

􏽘

k

i�1
y
2
i + Pi|k + 􏽢x

2
i|k − 2yi􏽢xi|k􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

where ω2
i denotes the smoothed probability of the model

formulated by equation (3). Note that the updated
equation of parameter D contains parameter η, the
updated equation of parameter η contains parameter D,
and the updated equation of parameter σ contains pa-
rameters η and D, which makes it impossible to directly
use equation (42) to obtain the estimated values of pa-
rameters D, η, and σ. For this reason, the simplex method
of multidimensional search in [36] is utilized to achieve the
estimated values of three parameters, which is integrated
as the “fminsearch” function in MATLAB [46]. -e
function is an effective method to search for the minimum
value of the multidimensional function. -e specific
solving process is as follows. Equation (42) is taken into
equation (31) to get an expression that only contains the
parameters D and η. -en, the “fminsearch” function is

used to perform a two-dimensional search starting from
the initial value of the parameters D and η. When the
expression −Q(θ, θ(j)

k ) gets the minimum value, the ex-
pression Q(θ, θ(j)

k ) obtains the maximum value. In this
case, the corresponding parameter values are the estimated
values of D and η. Finally, the estimated values of D and η
are brought into the updated equation of the parameter σ
in equation (42), and the estimated values of σ is achieved.

-e abovementioned solving method can obtain the
estimated values of model parameters at the jth iteration
of EM algorithm. In other words, the one iteration from
􏽢θ

(j−1)

k to 􏽢θ
(j)

k is completed. -en, the estimated values
are taken into IMM filtering-based model soft switch to
update the model probabilities and the simulated degra-
dation state and EM algorithm is performed again until a
criterion of convergence is satisfied.
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4. Parallel Simulation-Based Equipment RUL
Real-Time Prediction

According to the widely used concept of first hitting time
(FHT), the definition of the equipment RUL is given.
Assuming that the equipment failure threshold is w, the
equipment RUL T is defined as the time when the deg-
radation process first passes the failure threshold [47],
i.e.,

T(w) � inf t : x(t)≥w | x(0)<w{ }. (43)

In order to obtain the analytical expression of the PDF of
RUL, the derivation of the RUL calculation at time k is
performed below. Considering that there may be two de-
graded state equations at a particular moment in the
HWSSM, the RUL probability density distribution cannot be
obtained directly, so the degradation process x(t) needs to
be transformed. At the current monitoring time k, the
simulated degradation state is xk. According to the Markov
characteristic of the Brownian motion, the Wiener process
can be rewritten as

x(t) � xk + η t− tk( 􏼁 + σ B(t)−B tk( 􏼁( 􏼁

� xk + η t− tk( 􏼁 + σB t− tk( 􏼁.
(44)

-en the two state equations of HWSSM are merged into
one equation. In other words, the damages caused by n

Poisson shocks are integrated into the Wiener process. A
merged state equation is expressed as

x(t) � xk + n D + η t− tk( 􏼁 + σB t− tk( 􏼁. (45)

Equation (45) is a variant of the Wiener process.
According to theWiener process property and the definition
determined by equation (43), the RUL probability density
function conditioned on n Poisson shocks, xk, θ, and Yk

obeys the inverse Gaussian distribution, i.e.,

Tk | n, xk, θ,Yk( 􏼁∼IG
w−xk − nD( 􏼁

η
,

w−xk − nD( 􏼁
2

σ2
􏼠 􏼡,

(46)

where Tk represents the RUL at time k. Its mean is given by
E(Tk | n, xk, θ,Yk) � (w−xk − n D)/η and its PDF is for-
mulated by

f Tk | n, xk, θ,Yk( 􏼁

�
w−xk − nD

������

2πT3
kσ2

􏽱 exp −
w− ηTk − xk − nD( 􏼁

2

2σ2Tk

􏼠 􏼡.
(47)

Equation (47) does not take into account the simulated
degradation state distribution obtained by the parallel
simulation system. -e distribution reflects the un-
certainty of the simulated degradation state. Integrating it
into the RUL distribution determined by equation (47)
can improve the prediction accuracy and enhance the
prediction rationality. However, it will involve complex
integral operation. So a lemma is utilized to obtain the
probability density function of the RUL.

Lemma 1. Supposing that Ω∼N(c− ξ2) and A, B, and
C are all constant,

EΩ (A−Ω)exp −
(B−Ω)2

2C
􏼠 􏼡􏼠 􏼡 �

������
C

ξ2 + C

􏽳

A−
ξ2B + cC

ξ2 + C
􏼠 􏼡

· exp −
(B− c)2

2 ξ2 + C􏼐 􏼑
⎛⎝ ⎞⎠.

(48)

-e proof of Lemma 1 can refer to literature [48]. On the
basis of Lemma 1, a theorem is proposed to achieve the RUL
distribution.

Theorem 1. For the hybrid degradation process x(t), t≥ 0{ },
the RUL distribution at time k can be given by

fT Tk | θ,Yk( 􏼁 � 􏽘
+∞

n�0

⎧⎨

⎩

ρTk( 􏼁
n σ2 w− 􏽢xk|k − nD􏼐 􏼑 + ηPk|k􏽨 􏽩

��������������

2π Pk|k + σ2Tk􏼐 􏼑
3

􏽱

· n!

· exp −ρTk −
w− ηTk − 􏽢xk|k − nD􏼐 􏼑

2

2 Pk|k + σ2Tk􏼐 􏼑
⎛⎝ ⎞⎠

⎫⎬

⎭.

(49)

According to the form of the specific HWSSM and IMM
filtering algorithm, xk follows the normal distribution,
i.e., xk∼N(􏽢xk|k, Pk|k). Let p(xk |Yk) express the conditional
PDF about Yk of xk. Based on the total probability theorem,
the simulated degradation state distribution is integrated
into the inverse Gaussian distribution and gives

fT Tk | θ,Yk( 􏼁 � 􏽚
+∞

−∞
fT Tk | xk, θ,Yk( 􏼁p xk |Yk( 􏼁dxk

� 􏽘
+∞

n�0
􏽚

+∞

−∞
fT Tk | n, xk, θ,Yk( 􏼁p xk |Yk( 􏼁dxkp(n)

� 􏽘
+∞

n�0
Exk

fT Tk | n, xk, θ,Yk( 􏼁􏼂 􏼃p(n).

(50)

According to Lemma 1, let A � w− n D, B � w− ηTk −
n D, C � σ2Tk, Ω � xk, c � 􏽢xk|k, and ξ2 � Pk|k and calculate
the mathematical expectation about xk of f(Tk | xk, θ,Yk).
-en, the weighted sum with the occurrence probability of
the n Poisson shocks is calculated. As a result, equation (49)
is obtained. -is completes the proof of -eorem 1.

According to the property of the mathematical expec-
tation and equation (49), the expected value of the RUL can
be obtained by
E Tk | θ,Yk( 􏼁 � Exk|θ,Yk

ET Tk | xk, θ,Yk( 􏼁􏼂 􏼃

� Exk|θ,Yk
ET 􏽘

+∞

n�0
fT Tk | n, xk, θ,Yk( 􏼁p(n)⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭.

(51)
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Obviously, it is difficult to directly obtain the analytical
expression of RUL’s mathematical expectation by using the
above equation. -erefore, according to the definition of
mathematical expectation, the parallel simulation system
uses numerical integration to calculate the mathematical
expectation value of the RUL, i.e.,

ET Tk( 􏼁 � 􏽚
+∞

0
Tk · fT Tk | θ,Yk( 􏼁dTk. (52)

According to the equations (49) and (52), the parallel
simulation system can support maintenance decision-
making by calculating the probability density function of
the RUL, and its expected value in an online and real-time
manner.

5. A Case Study

5.1. Data Introduction. -e performance degradation of
bearings of mechanical equipment is a typical hybrid deg-
radation process with shock characteristic. -is paper uses
the life test data of a bearing of the IEEE PHM 2012 Pre-
diction Competition [49] to verify the parallel simulation
method considering model soft switch. -ese data are
provided by the FEMTO-ST Institute in France. -e life test
is conducted on the PRONOSTIA platform shown in
Figure 2(a), and the test data have been widely used in
method validation in the reliability field in recent years. -e
life test is divided into 3 different working conditions, while
the first working condition is rotating speed of 1800 rpm
with a load of 4000N.-e record time of the test data is from
2010/11/17 08:33:01 to 2010/11/17 15:08:41, and the sam-
pling frequency of the vibration signal is 25.6 kHz with the
sampling interval of 10 s. A total of 2375 data samples are
collected in the first working condition. In the case study, the
life test data of the third bearing under the first working
condition are used to validate the method. Particularly, the
bearing is called bearing 1–3.

-e rootmean square (RMS) value of the vibration signal
is a commonly used degradation feature and it is calculated
by

RMS �

�������

1
N

􏽘

N

i�1
e
2
i

􏽶
􏽴

, (53)

where N is the sampling point number and satisfies N �

2560 and ei denotes the vibration acceleration signal at the
ith sampling point. -e RMS of bearing 1–3 is shown in
Figure 2(b). It can be seen that the shock characteristic of the
performance degradation process for bearing 1–3 is obvious,
indicating that the data are suitable for verifying the method.
-e RMS begins to change significantly after the 1500th
monitoring time, which is regarded as the starting time of
RUL prediction oriented parallel simulation. -e failure
criterion of the bearing is that the vibration intensity of the
original signal reached 20 g at the 2341th monitoring time,
and the corresponding RMS value is 4.7145. As a result, the
failure threshold is set to the RMS value at the 2341th
monitoring time, i.e., w � 4.7145.

5.2. Model Evolution and RUL Real-Time Prediction. -e
initial simulation configurations include x0 � 0.2, η � 0.02,
σ � 0.5, D � 0.02, ρ � 0.5, τ � 1, and ϕ � 0.1. Furthermore,
the vector of initial model probability is μ0 � [0.6 0.4]T,
i.e., μ10 � 0.6 and μ20 � 0.4. -e model transition probability
matrix is chosen as P � [0.5 0.5; 0.6 0.4]. -e comparison of
the degraded trajectories is shown in Figure 3. It shows that
the difference between the simulated degradation trajectory
and the actual degradation trajectory is minimal, indicating
that the simulation output can effectively approach the
actual degradation process driven by the real-time degraded
data. In order to quantify the comparison results, the root
mean square error (RMSE) is given by

RMSE �

���������������

1
r

􏽘

r

k�1

yk − 􏽢xk|k

yk

􏼠 􏼡

2
􏽶
􏽴

× 100%, (54)

where r(r � 842) denotes the number of monitoring points.
After calculation, the RMSE of the simulated degradation
trajectory and the actual observed degradation trajectory is
only 3.497%, which fully demonstrates that the parallel
simulation considering model soft switch can effectively
model and simulate the performance degradation process
with discrete shocks of bearing 1–3.

-e model probability is shown in Figure 4. -e Poisson
shocks characteristic is not significant in the monitoring
period from t1500 to t1765, and the linear degradation
characteristic is more obvious. -e probability of the linear
degradation model which is noted as Model 1 is obviously
higher than that of the degradation model with discrete
Poisson shocks which is noted as Model 2. -e model
probabilities of the two models are about 0.74 and 0.26,
respectively. In this monitoring period, the dominant model
is Model 1. However, as time passes, the Poisson shock
characteristic becomesmore andmore prominent, especially
at the moments t1766, t1827, t1877, t2130, t2234, etc. -e
probability of Model 2 generally shows a dynamic upward
trend. Conversely, the probability of Model 1 shows a dy-
namic decline trend. In the late degradation stage, the
probability of Model 2 surpasses the probability of Model 1,
which shows that the former model is more suitable for
describing the current degradation process. Above all, the
parallel simulation method considering model soft switch
can effectively meet the needs of model suitability for RUL
prediction. It is worth noting that the probability curves of
the two models are symmetric about the probability μ � 0.5.

With the dynamic injection of the observed degradation
data, the parallel simulation system uses the IMM-EM al-
gorithm to perform model evolution. -e estimated results
of model parameters are shown in Figure 5. It shows that the
drift coefficient η fluctuates around 0.004 with the fluctu-
ation range [0, 0.012]. In addition, the fluctuations are larger
at the monitoring times t1766, t1827, etc., reflecting the
accelerated degradation rate of bearings 1–3. -e diffusion
coefficient σ can converge quickly. When the shocks char-
acteristic is obvious, σ fluctuates greatly and reaches a new
convergence state, which is conducive to obtaining a stable
remaining life probability density function. Furthermore,
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the convergence value of σ is rather small, which is helpful to
obtain a narrower PDF of the RUL and improve the accuracy
of RUL prediction. -e damage D caused by Poisson shocks
fluctuates dynamically within the interval [0.03, 0.07].
Considering the damage into the RUL prediction, it can
effectively reduce the occurrence of “lack maintenance.”
Parameter ϕ converges faster and the convergence value is
about 0.01, reflecting that the fluctuation of measurement
error is gradually stable.

With the execution of model soft switch and parameters
evolution, the parallel simulation system uses equations (49)
and (52) to predict the RUL of bearings 1–3, including the
PDF of the RUL and its mathematical expectation. Figure 6
shows the PDF curves predicted at eight different moni-
toring times from t1600 to t2300 with the prediction interval of
100 monitoring points.

According to Figure 6, at each monitoring time of
predicting the RUL, the PDF curve of the RUL can effectively

cover the actual RUL. As the degradation data of bearing 1–3
continuously accumulates, the PDF curve of the RUL
gradually narrows with the weaker “right-biased” charac-
teristic and the stronger “normal” characteristic. -e
prognostic results indicate that themodel matching degree is
gradually improved, and the model parameters are more
accurate. As a result, the uncertainty of the RUL prediction is
getting smaller. -is is due to the model soft switch and
parameters online estimation. In addition, the error between
the mathematical expectation of the RUL and the actual RUL
is small. And also, the mathematical expectation of the RUL
is close to the peak of the PDF curve, indicating that the
uncertainty of the PDF is small, and the prognostic results
can provide an important basis for maintenance decision.

5.3. Comparative Study. To further verify the validity of the
parallel simulation method considering the model soft
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Figure 2: Test platform and degradation data. (a) PRONOSTIA platform. (b) RMS of bearing 1–3.
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switch, the comparative study is performed by comparing
with the method without considering the model soft
switch which can be found in [50]. In that case, the single
model is used to only execute model parameters evolution,
i.e., the state equation equation (2) and the observation
equation (6). So the method is called the single-model
method. -e equations of model parameters evolution
and RUL prediction for the single-model method are
given in Appendix. -e RUL prognostic results of the
single-model method and the proposed method are shown
in Figure 7.

-e PDF curves of the single-model method are flatter
than that of the proposed method, which indicates that it has
stronger uncertainty. Moreover, the “right-biased” charac-
teristic of the PDF curves of the single-model method is
more obvious and there is a long “tail.” Although the PDF
curves of the single-model method can also cover the true
RUL, the flat distribution of the RUL and the obvious “right-
biased” characteristic cause the prognostic results to be
unfavorable to the maintenance decision. In addition, at

each monitoring time of predicting the RUL, the mathe-
matical expectation of the RUL obtained by the single-model
method is all greater than that of the proposed method,
implying the larger prediction error. On the contrary, the
proposed method has better performance, and the prog-
nostic results at the 1900th monitoring time are taken as
examples for analysis. As shown in Figure 8, the PDF curves
obtained by the proposed method is more compact with less
uncertainty, and the corresponding peak value is 2.24×10−3,
which is bigger than the peak value 1.31× 10−3 achieved by
the single-model method. Besides, the RUL corresponding
to the peak value of the proposed method and the single-
model method are 292 cycles and 170 cycles, respectively.
Considering that the true RUL at the 1900th monitoring
time is 441 cycles, it shows that the RUL corresponding to
the peak value of the proposed method is closer to the true
RUL than that of the single-model method. Additionally, the
mathematical expectation of the RUL obtained by the
proposed method and the single-model method are 465.92
cycles and 553.67 cycles, respectively, also illustrating that
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the prediction error obtained by the proposed method is
smaller than that of the single-model method.

In order to further quantify the comparison results
of the RUL prediction, two quantitative indicators, the

average relative accuracy and the total mean square error
(TMSE), are introduced. At the monitoring time k, the
definition of the relative prediction accuracy of the RUL is
given by
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Figure 6: PDF of the RUL for bearing 1–3 at different monitoring time.
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RAk � 1−
| 􏽥Tk −Tk |

􏽥Tk

, (55)

where 􏽥Tk denotes the true RUL at time k. On the basis of
RAk, the average relative accuracy MRA is defined as

MRA �
1
p

􏽘

p

k�1
RAk, (56)

where p represents the number of monitoring time points
used to predict the RUL. According to the definition of
MRA, it satisfies MRA ∈ [0, 1] and the bigger MRA in-
dicates the higher prediction accuracy with respect to the
RUL. In addition, the TMSE between the actual RUL and
the mathematical expectation of the predicted RUL is
defined as

TMSE � 􏽘

p

k�1
E Tk − 􏽥Tk􏼐 􏼑

2
􏼔 􏼕

� 􏽘

p

k�1
􏽚
∞

0
Tk − 􏽥Tk􏼐 􏼑

2
fT Tk | θ,Yk( 􏼁dTk.

(57)

Based on the definition of the TMSE, the smaller TMSE
implies the more accurate prediction result. -e calculated
comparison results are shown in Table 1. According to
Table 1, the MRA obtained by the proposed method is
obviously larger than that of the single-model method,
indicating the higher relative prediction accuracy. -e
TMSE of the proposed method is much smaller than that of
the single-model method, implying the smaller RUL pre-
diction error.

6. Conclusions and Future Perspectives

Equipment parallel simulation is an emerging simulation
paradigm, which has an important concept of model evo-
lution. Based on the background of RUL prediction for the
hybrid degradation equipment with continuous degradation
and discrete shocks, the hybrid degradation equipment RUL
prediction oriented parallel simulation consideringmodel soft
switch is studied, including parallel simulation modeling,
model evolution, RUL prediction, and case study. Under the
modeling framework of SSM, two different models are
constructed by using the Wiener process and the effect of
Poisson shocks. One model describes a continuous degra-
dation process, and the other model expresses a degradation
process with discrete shocks. Owing to the discrete, unknown
characteristics of the shocks, it is not possible to directly
determine the model morphology at a specific time. -ere-
fore, the forward IMM filtering is utilized to dynamically
calculate the probabilities of different models, achieving the
model soft switch. -en, the model probability-based
weighted summation is performed to obtain the simulated
degradation state estimation. On the basis of model soft
switch, the evolution of model parameters based on the EM
algorithm is studied. -rough the iteration between model
soft switch and model parameters evolution, the output of the
simulation model can dynamically approach the actual
degradation process. In order to realize RUL real-time pre-
diction, the unknown Poisson shocks is firstly integrated into
the Wiener process. According to the concept of the first
hitting time and the mathematical property of the Wiener
process, the RUL distribution which neglects the simulated
degradation state distribution is achieved and subjects to the
inverse Gaussian distribution. -en, based on the total
probability theorem, the simulated degradation state distri-
bution is integrated into the inverse Gaussian distribution to
obtain the analytical expression of the PDF of the RUL. A
bearing degradation data with typical hybrid degradation
characteristic is regarded as the data-driven source to verify
the proposed method considering model soft switch. -e
results show that the proposed method can effectively model
the bearing performance degradation process. Comparative
study shows that the PDF of the RUL acquired by the pro-
posed method has a less uncertainty and higher prediction
accuracy than that of the single-model method. -is paper
researches and perfects the modeling method, model evo-
lution mechanism, and RUL prediction method of parallel
simulation in the field of equipment RUL prediction, which is
helpful to promote the application of parallel simulation in
actual equipment maintenance support.

-ere are several underlying directions deserving further
implementation. First, this paper only considers the hybrid
degradation with linear continuous degradation and discrete
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Figure 8: Comparative results of the RUL prediction at the 1900th
monitoring time.

Table 1: Comparative results of RUL prediction.

Methods
Indicators

MRA TMSE (×104)
Single-model method 0.6427 13.5037
Proposed method 0.8607 5.4611
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shocks. It is a challenging work further considering the
hybrid degradation with nonlinear continuous degradation
and discrete shocks. -e mechanisms of model soft switch
and parameters evolution will be more complicated and
difficult. Additionally, the multistage case can be considered,
and the corresponding model dynamically evolution is
deserved to research.

Appendix

According to the single-model method, it can be known that
xi | xi−1∼N(xi−1 + ητi, σ2τi) and yi | xi∼N(xi, ϕ

2). -e joint
log-likelihood function L(Xk,Yk | θ) can be formulated as
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(A.1)

Based on the Bayesian theorem and the Markov property
and omitting independent parts, Q(θ, θ(j)

k ) can be expanded as
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where Υi � 􏽢xi|k − 􏽢xi−1|k.
-rough the derivation of the M-step, the parameters

evolution of the single-model method at the jth iterative step
is determined by

􏽢μ0 � 􏽢x0|k,
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(A.3)

Via the iteration of Kalman filtering and EM algorithm,
the model parameters can be obtained by equation (A.3).
-en, the RUL distribution at time k of the single-model
method can be calculated by
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(A.4)

-e proof of equation (A.4) is similar to -eorem 1. -e
RUL expected value can be formulated as follows:
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Data Availability

-e bearing degradation data supporting the findings of this
study are from previously reported studies and datasets,
which have been cited. -e processed data are available
at “http://www.femto-st.fr/en/Researchdepartments/AS2M/
Research-groups/PHM/IEEE-PHM-2012-Data-challenge” or
in “P. Nectoux, R. Gouriveau, K. Medjaher, E. Ramasso,
B. Morello, N. Zerhouni, C. Varnier, “PRONOSTIA: an
experimental platform for bearings accelerated life test,”
IEEE International Conference on Prognostics and Health
Management, Denver, CO, USA, 2012.”

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] B. Sun, S. Zeng, R. Kang, and M. G. Pecht, “Benefits and
challenges of system prognostics,” IEEE Transactions on
Reliability, vol. 61, no. 2, pp. 323–335, 2012.

[2] F. Pecht and R. B. Chinnam, “Health-state estimation and
prognostics in machining processes,” IEEE Transactions on
Automation Science and Engineering, vol. 7, no. 3, pp. 581–
597, 2010.

[3] M. Pecht, Prognostics and Health Management of Electronics,
John Wiley & Sons, Hoboken, NJ, USA, 2008.

16 Computational Intelligence and Neuroscience

http://www.femto-st.fr/en/Researchdepartments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge
http://www.femto-st.fr/en/Researchdepartments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge


[4] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining
useful life estimation-a review on the statistical data driven
approaches,” European Journal of Operational Research,
vol. 213, no. 1, pp. 1–14, 2011.

[5] A. K. S. Zhou, D. Lin, and D. Banjevic, “A review on ma-
chinery diagnostics and prognostics implementing condition-
based maintenance,” Mechanical systems and signal process-
ing, vol. 20, no. 7, pp. 1483–1510, 2006.

[6] A. Soualhi, H. Razik, G. Clerc, and D. D. Doan, “Prognosis of
bearing failures using hidden Markov models and the
adaptive neuro-fuzzy inference system,” IEEE Transactions on
Industrial Electronics, vol. 61, no. 6, pp. 2864–2874, 2014.

[7] N. Z. Doan, M. A. Lawley, R. Li, and J. K. Ryan, “Residual-life
distributions from component degradation signals: a Bayesian
approach,” IIE Transactions, vol. 37, no. 6, pp. 543–557, 2005.

[8] C.-Y. Ryan, “Inverse Gaussian processes with random effects
and explanatory variables for degradation data,” Techno-
metrics, vol. 57, no. 1, pp. 100–111, 2015.

[9] J. Lawless and M. Crowder, “Covariates and random effects in
a gamma process model with application to degradation and
failure,” Lifetime Data Analysis, vol. 10, no. 3, pp. 213–227,
2004.

[10] X. S. Si, W. B. Wang, M. Y. Chen et al., “A degradation path-
dependent approach for remaining useful life estimation with
an exact and closed-form solution,” European Journal of
Operational Research, vol. 226, no. 1, pp. 53–66, 2011.

[11] X.-S. Si, “An adaptive prognostic approach via nonlinear
degradation modeling: application to battery data,” IEEE
Transactions on Industrial Electronics, vol. 62, no. 8,
pp. 5082–5096, 2015.

[12] N. Gebraeel, M. Lawley, R. Liu, and V. Parmeshwaran,
“Residual life predictions from vibration-based degradation
signals: a neural network approach,” IEEE Transactions on
Industrial Electronics, vol. 51, no. 3, pp. 694–700, 2004.

[13] T. H. Parmeshwaran, D. Roulias, and G. Georgoulas,
“Remaining useful life estimation in rolling bearings utilizing
data-driven probabilistic E-support vectors regression,” IEEE
Transactions on Reliability, vol. 62, no. 4, pp. 821–832, 2013.

[14] Y. Zhou, M. Huang, Y. Chen, and Y. Tao, “A novel health
indicator for on-line lithium-ion batteries remaining useful
life prediction,” Journal of Power Sources, vol. 321, no. 1,
pp. 1–10, 2016.

[15] J. Tao, H. L. Gao, and J. Q. Zhang, “Bearing remaining useful
life prediction based on a nonlinear wiener process model,”
Shock and Vibration, vol. 2018, Article ID 4068431, 13 pages,
2018.

[16] Z. Zhang, X. Si, C. Hu, and Y. Lei, “Degradation data analysis
and remaining useful life estimation: a review on Wiener-
process-based methods,” European Journal of Operational
Research, vol. 271, no. 3, pp. 775–796, 2018.

[17] J.-F. Lei, X.-S. Si, C. H. Hu, Z.-X. Zhang, and W. Jiang, “A
nonlinear prognostic model for degrading systems with three-
source variability,” IEEE Transactions on Reliability, vol. 65,
no. 2, pp. 736–750, 2016.

[18] Y. G. Lei, N. P. Li, and J. Lin, “A new method based on
stochastic process models for machine remaining useful life
prediction,” IEEE Transactions on Instrumentation Mea-
surement, vol. 65, no. 12, pp. 1–14, 2016.

[19] X.-S. Si, C.-H. Hu, Q. Zhang, and T. Li, “An integrated re-
liability estimation approach with stochastic filtering and
degradation modeling for phased-mission systems,” IEEE
Transactions on Cybernetics, vol. 47, no. 1, pp. 67–80, 2017.

[20] L. Li, L. Bian, N. Gebraeel et al., “Residual life prediction of
multistage manufacturing process with interaction between

tool wear and product quality degradation,” IEEE Trans-
actions on Automation Science and Engineering, vol. 14, no. 2,
pp. 1211–1224, 2016.

[21] X. S. Si, T. M. Li, and Q. Zhang, “A prognostic model for
degrading systems with randomly arriving shocks,” in Pro-
ceedings of 2016 Prognostics and System Health Management
Conference (PHM-Chengdu), October 2016.

[22] Z. X. Zhang, C. H. Hu, and X. S. Si, “A degradation-modeling
based prognostic approach for systems with switching op-
erating process,” in Proceedings of 2016 Prognostics and
System Health Management Conference, Chengdu, China,
2016.

[23] J.-X. Zhang, C.-H. Hu, X. He, X.-S. Si, Y. Liu, and D.-H. Zhou,
“Lifetime prognostics for deteriorating systems with time-
varying random jumps,” Reliability Engineering & System
Safety, vol. 167, no. 1, pp. 338–350, 2017.

[24] B. Zhang, L. Xu, Y. Chen, and A. Li, “Remaining useful life
based maintenance policy for deteriorating systems subject to
continuous degradation and shock,” Procedia CIRP, vol. 72,
pp. 1311–1315, 2018.

[25] D. B. Du, J. X. Zhang, and Z. J. Zhou, “Estimating remaining
useful life for degrading systems with large fluctuations,”
Journal of Control Science and Engineering, vol. 2018, Article
ID 9182783, 11 pages, 2018.

[26] J. N. Lin, J. Jiang, L. Y. Sun et al., “Research of resource
selection algorithm of parallel simulation system for com-
mand decisions support driven by real-time intelligence,” in
Proceedings of AsiaSim/SCS AutumnSim 2016, pp. 419–430,
Beijing, China, 2016.

[27] C. Ge, Y. Zhu, Y. Di, and Z. Dong, “Equipment residual useful
life prediction oriented parallel simulation framework,” in
Proceedings of AsiaSim/SCS AutumnSim 2016, pp. 377–386,
Beijing, China, 2016.

[28] F.-Y. Dong, “Parallel control and management for intelligent
transportation systems: concepts, architectures, and appli-
cations,” IEEE Transactions on Intelligent Transportation
Systems, vol. 11, no. 3, pp. 630–638, 2010.

[29] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and
B. Chapman, “High performance computing using MPI and
OpenMP on multi-core parallel systems,” Parallel Computing,
vol. 37, no. 9, pp. 562–575, 2011.

[30] B. Chen, L. Zhang, G. Guo, and X. Qiu, “KD-ACP: a software
framework for social computing in emergency management,”
Mathematical Problems in Engineering, vol. 2015, Article ID
915429, 27 pages, 2015.

[31] C. Douglas, Y. Efendiev, R. Ewing, V. Giniting, and
R. Lazarov, “Dynamic data driven simulations in stochastic
environments,” Computing, vol. 77, no. 4, pp. 321–327, 2006.

[32] D. Allaire and J. Chambers, “An offline/online DDDAS ca-
pability for self-aware aerospace vehicles,” in Proceedings of
the International Conference on Computational Science 2013,
pp. 1959–1968, Barcelona, Spain, 2013.

[33] H. Aydt, S. J. Turner, W. T. Cai et al., “Preventive what-if
analysis in symbiotic simulation,” in Proceedings of the 2008
Winter Simulation Conference, pp. 750–758, Miami, FL, USA,
2008.

[34] H. Aydt, W. T. Cai, S. J. Turner et al., “Symbiotic simulation
for optimisation of tool operations in semiconductor
manufacturing,” in Proceedings of the 2011 Winter Simulation
Conference, pp. 2093–2104, Phoenix, AZ, USA, 2011.

[35] W. Davis, “On-line simulation: need and evolving research
requirements,” in Handbook of Simulation, J. Banks, Ed.,
pp. 465–516, Wiley-Interscience, Hoboken, NJ, USA,
1998.

Computational Intelligence and Neuroscience 17



[36] C. L. Ge, Y. C. Zhu, and Y. Q. Di, “Equipment remaining
useful life prediction oriented symbiotic simulation driven by
real-time degradation data,” International Journal of Model-
ing, Simulation, and Scientific Computing, vol. 9, no. 2, p. 22,
2018.

[37] D. Wang and K.-L. Tsui, “Brownian motion with adaptive
drift for remaining useful life prediction: revisited,” Me-
chanical Systems and Signal Processing, vol. 99, pp. 691–701,
2018.

[38] S. Song, D. W. Coit, and Q. Feng, “Reliability analysis of
multiple-component series systems subject to hard and soft
failures with dependent shock effects,” IIE Transactions,
vol. 48, no. 8, pp. 720–735, 2016.

[39] Z. S. Ye, L. C. Tang, and H. Y. Xu, “A distribution-based
systems reliability model under extreme shocks and natural
degradation,” IEEE Transactions on Reliability, vol. 60, no. 1,
pp. 246–256, 2011.

[40] H. A. P. Blom and Y. Bar-Shalom, “-e interacting multiple
model algorithm for systems with Markovian switching co-
efficients,” IEEE Transactions on Automatic Control, vol. 33,
no. 8, pp. 780–783, 1988.

[41] R. E. Helmick, W. D. Blair, and S. A. Hoffman, “Interacting
multiple-model approach to fixed-interval smoothing,” in
Proceedings of the 32nd Conference on Decision and Control,
pp. 3052–3057, San Antonio, TX, USA, 1993.

[42] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,”
Journal of the Royal Statistical Society: Series B (Methodo-
logical), vol. 39, no. 1, pp. 1–22, 1977.

[43] A. Zia, T. Kirubarajan, J. P. Reilly, D. Yee, K. Punithakumar,
and S. Shirani, “An EM algorithm for nonlinear state esti-
mation with model uncertainties,” IEEE Transactions on
Signal Processing, vol. 56, no. 3, pp. 921–936, 2008.

[44] R. E. Helmick, W. D. Blair, and S. A. Hoffman, “Fixed-interval
smoothing for Markovian switching systems,” IEEE Trans-
actions on Information Jeory, vol. 41, no. 6, pp. 1845–1855,
1995.

[45] D. Huang, N. Fujiyama, and S. Sugimoto, “Blind image
identification and restoration for noisy blurred images based
on discrete sine transform,” IEICE Transactions on In-
formation and Systems, vol. E86-D, pp. 727–735, 2003.

[46] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence properties of the nelder--mead simplexmethod
in low dimensions,” SIAM Journal on Optimization, vol. 9,
no. 1, pp. 112–147, 1998.

[47] X. S. Wright, W. B. Wang, C. H. Hu et al., “AWiener-process-
based degradation model with a recursive filter algorithm for
remaining useful life estimation,” Mechanical Systems and
Signal Processing, vol. 35, no. 1-2, pp. 219–237, 2011.

[48] X.-S. Si, W. Wang, C.-H. Hu, D.-H. Zhou, and M. G. Pecht,
“Remaining useful life estimation based on a nonlinear dif-
fusion degradation process,” IEEE Transactions on Reliability,
vol. 61, no. 1, pp. 50–67, 2012.

[49] FEMTO-ST, IEEE PHM 2012 Data Challenge, http://www.
femto-st.fr/en/Research-departments/AS2M/Research-groups/
PHM/IEEE-PHM-2012-Data-challenge.

[50] C. Ge, Y. Zhu, Y. Di, and Z. Dong, “Parallel simulation based
adaptive prediction for equipment remaining useful life,”
Journal of Vibroengineering, vol. 20, no. 5, pp. 2027–2044,
2018.

18 Computational Intelligence and Neuroscience

http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge

