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Background: The ongoing fight with Novel Corona Virus, getting quick treatment, and rapid diagnosis
reports have become an act of high priority. With millions getting infected daily and a fatality rate of
2%, we made it our motive to contribute a little to solve this real-world problem by accomplishing a
significant and substantial method for diagnosing COVID-19 patients.
Aim: The Exponential growth of COVID-19 cases worldwide has severely affected the health care
system of highly populated countries due to proportionally a smaller number of medical practitioners,
testing kits, and other resources, thus becoming essential to identify the infected people. Catering to
the above problems, the purpose of this paper is to formulate an accurate, efficient, and time-saving
method for detecting positive corona patients.
Method: In this paper, an Ensemble Deep Convolution Neural Network model “CoVNet-19” is being
proposed that can unveil important diagnostic characteristics to find COVID-19 infected patients using
X-ray images chest and help radiologists and medical experts to fight this pandemic.
Results: The experimental results clearly show that the overall classification accuracy obtained with
the proposed approach for three-class classification among COVID-19, Pneumonia, and Normal is
98.28%, along with an average precision and Recall of 98.33% and 98.33%, respectively. Besides this,
for binary classification between Non-COVID and COVID Chest X-ray images, an overall accuracy of
99.71% was obtained.
Conclusion: Having a high diagnostic accuracy, our proposed ensemble Deep Learning classification
model can be a productive and substantial contribution to detecting COVID-19 infected patients.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction Iran, etc. [4]. On 11th March 2020, it was declared a Pandemic

by WHO [5]. With such a high growth rate of COVID-19 instances

The Novel Coronavirus or prominently known as COVID-19,
first appeared in Wuhan, the capital of Central China’s Hubei
province, in 2019 December and globally [1]. On 11th February
2020, “Severe Acute Respiratory Syndrome Coronavirus 2" (SARS-
CoV-2) was named COVID-19 by the World Health Organization
(WHO). Coronaviruses (CoV) are a large family of vulnerable and
hazardous viruses. Coronavirus gets its name from the Crown like
structure [2]. This family of viruses includes MERS-CoV (Middle
East respiratory syndrome), SARS-CoV-2 (COVID-19), and SARS-
CoV (severe acute respiratory syndrome). This virus has become
the principal cause of a hundred thousand people’s deaths, having
a catastrophic effect on the global population [3]. A high magni-
tude of cases is being experienced in Spain, Italy, China, the USA,
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worldwide, most countries said a complete Lockdown, advising
the population to stay indoors to avoid the disease [6].

With millions of people being infected and a minimal number
of testing kits and diagnosis systems, many countries’ healthcare
systems have come to a stage of collapsing. No proper medication
and drug or vaccine have been developed till now for the recovery
of infected patients. Thus, medical practitioners and government
officials rely on diagnosis measures so that infected people can
be appropriately quarantined and the spread of pandemic can be
controlled. Chest X-ray images of the patients can prove to be
a cheap, efficient, and faster method for diagnosis of COVID-19.
It is observed in the past that medical practitioners have fre-
quently been using Chest X-ray images to diagnose patients with
lung diseases such as Pneumonia, MERS-CoV SARS-CoV, ARDS,
etc. Scanned X-ray images can prove beneficial and efficient in
diagnosing a person’s lung infections, fractures, injuries related
to bones, Pneumonia, and tumors. Studies have suggested that
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deformity and abnormality in an individual’s X-ray images can
be vital in detecting the condition that the concerned person
may be suffering. Thus, it can also be possible for them to rely
on Chest X-rays to detect positive COVID-19 patients instead of
using expensive and dedicated COVID-19 test kits. Our study was
based on the fact that chest X-ray images can help identify a
COVID-positive person. Due to the limited availability of viral
testing kits, hospitals are using chest X-rays, or C.T. Scans to
assess and diagnose their patients for the COVID-19 infection.
Due to intricate morphological lung patterns, chest X-ray images’
diagnosis strongly relies on a radiological expert and can only
be done by a highly skilled medical doctor/consultant, which
are not present everywhere. The manual reading of Chest X-ray
images for diagnosis of patients may take significant time, and
also, the radiologists have to familiarize themselves with the X-
ray appearance of the Coronavirus infection. Radiologists have to
be extremely cautious while practicing this, as the chest imag-
ing can lack specificity and can also overlap with some similar
infections such as influenza, SARS, or MERS. Thus, instead of
being dependent on a skilled medical practitioner, developing an
automated and efficient Chest X-ray diagnosis system can prove
to be more beneficial. Our proposed intelligent automated system
will take as input the Chest X-ray images of a person, process it
through the proposed Deep Learning model, and output whether
the person is COVID positive or not. After analyzing a person’s
Chest X-ray images, if they are suspected of being infected with
the COVID-19 virus, they will be quarantined and taken up for
further viral specific tests to confirm the infection. This will prove
to a rapid and reliable method for COVID-19 screening without
using any expensive dedicated test kits and without any medical
expert’s or highly skilled radiologist’s involvement. It will allow
the authorities to separate the COVID-19 suspected people from
healthy ones, preventing its spread. Along with large hospitals,
X-ray machines can easily be set up at small and regional clinics
with a flexible architecture generalizing across multiple centers
and modalities. It is more versatile and could even be installed
in vehicles or portable triage tents for carrying out screening
of COVID-19 in remote and village areas where the availability
of dedicated COVID-19 testing kits is limited or medical experts
are not present. In the present work, we have tried to devise an
automated Machine Learning (ML) model to detect whether the
patient is COVID-19 positive or not by analyzing its chest X-ray
image. ML and Artificial Intelligence (A.L) can perform this task in
seconds and will surely help us deal with exponentially growing
COVID-19 cases. Analysis of medical image data using ML can be
of great help to the medical association.

With the advancements in A.l. and ML, they are now nearly
being used everywhere for solving real-life issues. We also took
them as our tools for devising an ML model that can predict
positive Coronavirus patients using their Chest X-ray images.
We made sure that our proposed model should have the ability
to classify among COVID-19, Pneumonia, and a Healthy per-
son’s X-ray, with higher accuracy and lower the number of false
negatives.

We have developed an automated model for predicting COVID-
19 using Deep Convolution Neural Networks (DCNNs) in the
following study. Our study aimed to devise a supervised Deep
Learning ensemble model to classify the Chest X-ray images
belonging to 3 classes. Normal (No-disease, Healthy Person),
Non-COVID (i.e., a person infected with Pneumonia), and COVID
infected person. Alongside it, we also performed the binary clas-
sification of COVID-19 vs. Non-COVID-19 chest X-ray images. For
collecting the dataset, multiple open-sourced online sources were
referred. These sources were freely available for research purpose.
These publicly available dataset has granted us to train complex
Deep Neural Networks and provide highly satisfying results.
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The proposed Deep Learning ensemble model is called CoVNet-
19. It uses pre-trained Deep Convolution Neural Networks (DC-
NNs) for feature extraction. DCNNs are futuristic and dynamic
learning algorithms widely employed in many practical appli-
cations, including using computer vision tasks such as pattern
detection and image classification. They give the most intuitive
way to understand the images and provide with most probable
results. After DCNNs for feature extraction, ML algorithm viz. Sup-
port Vector Machine (SVM) was used for classification. It is known
for its potential in performing the classification of highly non-
linear data. Our proposed method unequivocally concludes that
X-ray images can be a preferable method for fast and accurate
Coronavirus detection. The evaluation metrics chosen to evaluate
this Model are Accuracy, F1 Score, Recall, and Precision.

The objective and main contribution of this paper are summa-
rized below:

1. We have proposed a Stacked Ensemble Deep Learning
Model called CoVNet-19, which can distinguish among X-
rays of COVID-19, Pneumonia, and a healthy patient with
an accuracy of 98.28% 3-class and 99.71 on binary class
classification. It proved to be a powerful and robust ML
model in the classification of medical image data.

2. We collected Five different datasets, consisting of 6214
chest X-ray scans. Out of which 2241 belonged to Pneu-
monia infected patients, 1628 were COVID-19 positive pa-
tients, and 2345 images were of healthy patients.

3. A detailed implementation of our proposed model,
“CoVNet-19”, and a discussion of the experimental results
are provided in the paper.

4, Our proposition’s objective was to help medical practi-
tioners and nursing staff deal with exponentially grow-
ing COVID-19 cases and perform a faster and automatic
diagnosis of patients.

The remaining study is formulated as follows: In Section 2, we
have discussed the previously authored works and their draw-
backs. We have tried to improve our work and results by building
upon those drawbacks. Section 3 explains the fundamental and
preliminary concepts required to understand this study. In Sec-
tion 4, we have discussed the model architecture describing our
proposed CoVNet-19 model’s architecture for three-class classifi-
cation. It also refers to the dataset we collected to conduct our
experiment. An experimental analysis, results, and discussion are
mentioned in Section 5. Sections 6 and 7 consists of future works
and conclusions, respectively.

2. Related works

This section interprets the synopsis of previously authored
works in the same domain for classification and identification of
COVID-19 infected patients using the Chest X-ray images. With
the rapid spread of this new disease across the whole world, there
are not many much-authored works in detecting COVID-19 using
Chest X-ray images. Most of the authors performed three Class
classification (COVID-19 vs. Pneumonia vs. Normal) and two-class
classification (COVID vs. Non-COVID) using pre-trained DCNNS
to extract valuable features and afterward to perform classifica-
tion. We used these previously authored works to compare the
performance of our CoVNet-19 model.

In the study by Ioannis D. Apostolopoulos et al. [7], the authors
collected a dataset having 700 images of common Pneumonia,
224 images of positive Covid-19 cases, and 504 images of patients
with normal conditions to perform a three-class classification
using transfer learning. Results suggested using VGG19 as their
classification deep learning CNN model, and they achieved an
overall accuracy of 98.75% in the detection of Covid-19 and three
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class accuracy of 93.48%. Wang et al. [8] introduced COVIDx,
a dataset containing 13,975 chest X-ray images belonging to 3
classes. COVID, normal, and Pneumonia. It was observed that the
proposed COVID-Net network architecture achieved a good test
accuracy of 93.33%. Asif Igbal Khan et al. [9] proposed a DCNN
model, namely CoroNet, to detect COVID-19 infection using chest
X-ray images. The proposed model was based on the Xception
model, pre-trained on ImageNet, and fine-tuned on the collected
dataset. The proposed model achieved an overall accuracy of
89.6% and 95% for four-class and 3-class classification, respec-
tively, while the binary class classification accuracy was 99%.
Narin et al. [10] performed a similar experiment by creating
a dataset of 100 chest X-ray images belonging to COVID and
Non-COVID patients. The authors used a pre-trained ResNet50
DCNN model and achieved an accuracy of 98% for two-class
classification. However, the number of X-ray images was sig-
nificantly less. In contrast, the experiment conducted by Sethy
et al. [11] acquired an overall accuracy of 95.38% for binary class
classification. They deployed the ResNet50 CNN model for fea-
ture extraction and used SVM for classification purposes. Ozturk
et al. [12] collected a dataset comprising 500 Pneumonia, 500
normal, and 125 COVID-19 chest X-ray images. The proposed
CNN model, called DarkCovidNet, achieved binary and three-class
classification accuracies of 98.08% and 87.02%, respectively.

Shervin Minaee et al. [13] prepared a dataset of 5,000 Chest
X-ray images belonging to 3 classes, namely COVID-19, Non-
COVID normal, and Non-COVID other diseases. They trained four
popular convolutional neural networks, viz ResNet18, ResNet50,
SqueezeNet, and DenseNet-121, to perform a three-class clas-
sification and achieve an average specificity rate of 90% and a
sensitivity rate of 97.5%. Chun-Fu Yeh et al. [14] proposed a
deep learning architecture of three-stage cascaded learning for
a three-class classification among Normal, COVID-19, Non-COVID
(Pneumonia) infected patients. The architecture achieved an AUC
of 96.64 at stage 2 and an AUC of 99.88 at stage 3 when trained on
open and clinical datasets. Yifan Zhang [15] devised a Deep Do-
main Adaptation method to diagnose COVID-19 and achieved an
AUC of 0.985 and F1-Score of 92.98. The model proposed by the
authors transferred the domain knowledge from the well-labeled
source domain (i.e., typical Pneumonia) to the partially-labeled
target domain (i.e,, COVID-19). Ezz El-Din Hemdan et al. [16]
extracted 50 X-ray images; 25 for Normal Class and 25 images
for COVID positive class, and used pre-trained VGG19 for clas-
sification. Their model showed F1 scores of 0.89 and 0.91 for
normal and COVID-19, respectively, with 90% accuracy. Y. Pathak
et al. [17] used Chest CT Scans to classify COVID-19 patients using
deep transfer learning. They collected 413 COVID-19 positive
Scans and 439 CT Scans of normal Pneumonia infected patients.
ResNet-50 model was used to extract potential features from the
collected C.T. images. The Deep Transfer Learning classification
model attained a testing accuracy of 93.01%.

Mesut Togacar et al. [18] collected a chest X-ray dataset of
458 images with 295 images belonging to the COVID-19 class,
65 images for Normal, and 98 Pneumonia class. The authors
trained MobileNetV2 and SqueezeNet with the collected dataset
and extracted 1000 feature sets that were optimized using Social
Mimic Optimization method. Support Vector Machine was used
for classification after combining efficient features, and an overall
accuracy rate of 99.27% was achieved. Ferhat Ucar et al. [19]
proposed a Deep Bayes SqueezeNet model for three-class classifi-
cation among Normal, Pneumonia, and COVID cases and achieved
an accuracy of 98.30%. The authors collected a dataset having
76 COVID-19, 4290 pneumonia, and 1583 normal Chest X-ray
images. The study by Ali Abbasian Ardakani et al. [20] collected
C.T. Scans of 108 COVID-19 positive patients and 86 patients
with other viral diseases. Among all the DCNN models trained
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for binary classification, the best result metrics were acquired by
ResNet-101 and Xception DCNN models. ResNet101 was attained
at the accuracy of 99.51% and AUC of 0.994, while the Xception
model achieved an AUC of 0.994 and 99.02% accuracy.

The conclusion from the above works shows that most of the
Deep Learning models were built on an unbalanced dataset of X-
ray images due to very a smaller number of COVID-19 X-ray scans
available. We believe that these results may be improved further
by collecting a diversified and balanced dataset and implement-
ing an efficient feature extraction method. Our further work in
this research is based on developing a deep learning classification
model that can be efficiently used to classify the X-ray images.
We have given a detailed comparison report of our proposed
methodology with these already done works in literature.

3. Preliminary

This section explains some fundamental concepts that are
required to understand and implement our work thoroughly. The
following article provides an intuition about Deep Learning, Neu-
ral Networks, and the advantages of using the Convolution Neural
Network to extract efficient features from an image. This section
also notes the pros of using Transfer Learning and Ensemble
Learning while building a Deep Neural Network, as we have done
in our proposed model.

3.1. Deep learning and convolution neural networks

Neural Networks are the ML algorithms that help us to cluster
and classify any structured or unstructured data. Their formation
and working are deeply inspired by the human brain and the
neurons. They are sophisticated enough to work with all kinds of
real-world data like numbers, images, text, and audio. They can
tackle the real-life problems related to Image Recognition, Natural
Language Processing, and Speech Recognition. Deep Learning is a
subdivision of ML, consisting of a robust set of learning algorithms
to train and run the Neural Networks [20]. Neurons are the
building blocks of neural networks. Fig. 1 shows the structure
of a Neuron. A neuron interprets the input data (x;), combines
it with a set of constant weights (w;) that either intensifies or
condenses the input based on its importance, and the resultant is
passed through a non-linear activation function (f{ ¥w;x;). These
multiple neurons are stacked together to form a layer of a Neural
Network. When placed one after another, three or more such
layers include Deep Neural Networks (DNN). When non-linear
and large dimensional datasets are passed through these layers,
the DNN helps to compute sophisticated high-level features and
trends in the data, further used for classification and Clustering
of Data. The neurons’ optimal weight matrices are calculated
using an optimization algorithm to minimize the loss function
considering the input data points. A fixed number of epochs are
carried out for training the Neural Network after each epoch, the
Loss function is reduced and tends to go towards zero.

Convolution Neural Networks have made a prestigious and
predominant revolution in the study of computer vision. Manifold
objectives like image recognition and classification, image seg-
mentation, object detection can now be undoubtedly solved by
Convolution Neural Networks (CNN) [21,22]. Convolution Neural
Networks have proved their usefulness to collect valuable fea-
tures from an image by passing it through a series of convolution
layers, non-linear activation functions, pooling (down-sampling),
and fully connected dense layers [23]. The convolutional filters,
also known as kernels, works by sliding themselves through the
image and performing the convolutional operation. These learn-
able filters can also be referred to as neurons of convolutional
layers. They return high-level and complex features called feature
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Fig. 1. Neuron: Building blocks of Neural Networks.

maps of activation maps. The filters are nothing but a matrix of
weights, which gets multiplied with the pixel values of the image.
The hierarchical network of multiple Convolutional layers im-
proves generalization ability, extract high-level activation maps,
and identifies more complex patterns in an image. The output
feature maps from convolutional layers are fed to a non-linear
activation function, i.e., ReLU activation. Max-pooling layers re-
duce the dimensions of feature maps preserving only the essential
information. They reduce the number of parameters and hence
the computation power.

3.2. Transfer learning

Transfer learning is a kind of inductive learning and is a
popular technique used in Deep Learning. This approach is very
significant and helpful when we have a relatively small dataset
for training or have minimal computational power, therefore
incapable of building the whole model from scratch. This method
is majorly used in computer vision and Natural Language Pro-
cessing tasks. The base intuition behind transfer learning is to
take a model previously trained on a large dataset and transfer
its knowledge in a smaller dataset. Deep neural network models
that are yet trained on large labeled datasets can be imported
with their weights. The idea is further to fine-tune them on our
smaller datasets [23]. This method was noteworthy as the task
of medical image classification was implemented in this study. In
our study, two pre-trained Deep Convolutional Neural networks
viz VGG19 and DenseNet121, which were previously trained on
ImageNet dataset [24], were imported and used for extracting
essential image features from X-ray images. These feature ma-
trices that optimally represent the corresponding image were
transferred from the pre-trained DCNNs and used for the image
classification [25].

3.3. Ensemble learning

Ensemble learning is a keynote topic under ML techniques
that can significantly improve the classification performance by
sophisticated combinations of different classifiers. Bias, Variance,
and Noise are the main error factors that can affect the ML
model’s proper training. Ensembles play a considerable role in
eliminating these errors by complementing each model and, at
the same time, utilizing the individual benefit of each candidate
mode. Ensemble methods increase the overall stability, and the
errors are reduced effectively. Our proposed CoVNet-19 model is
a stacked ensemble model that combines two pre-trained DCNNs
for feature extraction at base level and finally uses Support Vector
Machine (SVM) for classifying the medical X-ray images in the
final level. The complete architecture of our proposed model is
explained in the upcoming section.
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4. “CoVNeT-19” model and implementation

Our devised framework’s primary purpose is to differentiate
between X-ray images of COVID-19 positive patients, Pneumonia
patients, and a healthy person. This section has discussed the in-
depth knowledge about our proposed “CoVNet-19” model and its
implementation.

CoVNet-19 model is based on the Deep CNN framework to de-
tect COVID-19 positive patients using Chest X-ray images. Given
the limitation in the availability of X-ray images of COVID-19
patients, it can be difficult to train a DCNN from scratch. Hence,
to subjugate this issue, we decided to use the transfer learning
approach and then fine-tune the pre-trained DCNNs on our col-
lected Chest X-ray dataset. The main objective of using DCNNs
was to extract essential and valuable features from image data.
The proposed model is a 2-leveled stacked ensemble ML model.
A stacked ensemble model combines multiple classification mod-
els to form a heterogeneous combination that can interpret the
same data in different ways. In level 1 or base-level model of
the CoVNet-19 model, we combined two pre-trained DCCNs viz.
VGG19 (Visual Geometry Group) [26] and DenseNet121 [27]. Both
the models were imported with pre-trained weights matrices,
which were trained on the ImageNet Dataset. ImageNet [24] is
an image database belonging to more than 20 thousand cate-
gories, having more than 14 million images. Models pre-trained
on the ImageNet Dataset are proved to give tremendously suc-
cessful results in image classification tasks [28]. We selected
DenseNet121 and VGG-19 pre-trained models because of their
exceptionally well performance in the classification of X-ray im-
ages. Combinational features from two DCNNs were used to deal
with noise present in medical image data and extract contrast-
ing image features to make our whole model generalized and
accurate. Both models’ complex architecture deals wisely with
the vanishing gradient descent problem and minimizes noise and
variance problems. The motivation to use the Ensemble ML model
was to allow better predictive performance and robustness in
comparison to a single DCNN classification model. Both the DC-
NNs were separately trained on the collected dataset to perform
the classification task. The input given to them is a (224,224,3)
dimensional Chest X-ray image. While at Level 2 of the stacked
ensemble model, an SVM ML model was trained to perform multi-
class classification and binary classification. It was trained on the
features extracted from the base model.

Fig. 2 illustrates the detailed pictorial representation of our
proposed DCNN ensemble model. CoVNet-19 architecture gives
an optimum intuition of VGG19 and DenseNet121 models with
our proposed technique’s working procedure and architecture.
Unlike VGG19, the visualization of DenseNet121 is a little bit
complex. Therefore, we have tried to show a simple blueprint
of the architecture of DenseNet121. The operating procedural
algorithm, of our proposed deep learning classification method,
is illustrated in Algorithm 1. The same model architecture was
developed and trained separately to perform binary classification
also i.e.,, two separate VGG-19 and DenseNet121 were trained
for binary and ternary class feature extraction along with two
separate SVM models for the final classification. Three additional
layers were added at the end of both the DCNNs. They included
two fully-connected dense layers having 64 and 32 nodes, re-
spectively, that were activated by Relu activation Function and a
final SoftMax layer to predict the class probabilities. Models were
trained and validated on training and validation datasets formed.

4.1. DCNN Model: DenseNet121
The DenseNet121 was first trained for both three and two-

class classification and then finally used as a feature extrac-
tor alongside VGG19. It consists of 121 layers and has several
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Algorithm 1: X-Ray classification using "CoVNet-19" Model

Input: (224x224x3) dimensional Chest X-Ray images.

Output: Predicted class label for the image (0: COVID-19, 1: Normal, 2: Pneumonia).

Steps:

1. Extracting features from the image

1.1 Image is passed through multiple Convolutional, ReLU Activation and Max Pooling Layers of

DenseNet121

Convolution Operation between the Filter (K) of size (m x n) and Image (I) to give Feature Map (F):

FG,j)=1* K@) =EmXn Il +m,j +n)K(m,n)

ReLU Activation Function to introduce non-linearity:

Ax) = max(0, x)

Max Pooling:

It is a Down-sampling layer to reduce the dimension of feature maps.

Returns: (32x1) Feature Vector: X = [0lo, O, 02 . « oy« . oy . . ., 032] T

1.2 Image is passed through multiple Convolution, Max Pooling and Relu Activation Layers of VGG19

Returns: (32x1) Feature Vector: Xo = [Bo, Bi, B2+ v vy v s v v oy B32] T

2. Augmentation of both Feature Vectors

X=XiTXoTy=[ow0, 0, 02 . ooy e veye ey 032, Bos B B2e v oyvv oy e vy Ba2]

Returns: (64x1) Feature Vector

3. The formed feature vector is given as input to SVM ML model to perform Classification.

The trained SVM model returns the class label.

compelling advantages, such as encouraging feature reusing and
solving the vanishing gradient problem. It has substantially re-
duced the trainable parameters compared to an equivalent CNN
model with the same number of layers. Each layer of DenseNet12
uses the activation-maps of the previous layers as inputs. In
contrast, the layer’s activation-maps are used as inputs to the
succeeding layers. The pre-trained DenseNet121 DCNN model
was imported, and the weights were trained on the ImageNet [24]
dataset. This model was fine-tuned separately for both three-class
classification (COVID-19, Normal, and Pneumonia) and then for
two-class classification (COVID-19 vs. Non-COVID-19). After the
complete training of DenseNet121, the last SoftMax layer used
for predicting the class probabilities was removed. The output
from the second last layer, i.e., Dense layer with 32 nodes, i.e., is
a (32 x 1) dimensional feature vector, was used as input to
SVM. These feature vectors gave a significant representation of
the corresponding X-ray image, which could efficiently be used
further for classification.

4.2. DCNN Model: VGG19
Visual Geometry Group Network, i.e.,, VGG19, consists of 19

layers, including 16 convolutional layers and three fully con-
nected dense layers. It has five max-pooling layers. VGG19 was

also imported along with the weights trained on the ImageNet
Dataset. Similar to DenseNet121, VGG-19 was also firstly fine-
tuned separately for three-class and two-class classification and
then used as a feature extractor in CoVNet-19. The last layer,
i.e., the SoftMax layer, was removed after training. The output
from the second last layer, i.e., the Dense layer with 32 nodes,
was used as the feature vector to be given as input to SVM for
classification purposes.

4.3. Stacked ensemble model: CoVNet-19

Level 2 of CoVNet-19 was SVM. SVM is a supervised ML
algorithm used in classification and regression problems. SVM,
when used for classification purposes, is called Support Vec-
tor Classifiers (SVC). For classifying the data points, SVC forms
a hyper-plane to separate the classes based on the input fea-
tures. The hyper-plane line is calculated by observing the critical
data points that are difficult to classify, making it one of the
most prominent and robust ML classification algorithms. The
data points are allotted to the corresponding classes based on
the distance concerning the Hyper-plane. Linear Support Vector
Classification (Linear SVC) was used to perform binary and three-
class classification. Linear SVC is a faster implementation of SVC
using a linear kernel function. It implements a “one versus the
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Fig. 2. CoVNet-19 architecture.

rest” multi-class classification strategy. We trained two separate
SVCs to perform the final binary and ternary classification. The
output from both the trained DCNNs for both binary and ternary
classification was a (32 x 1) feature vector corresponding to
each image. The two feature vectors, one from each DCNN, were
concatenated to form a (64 x 1) dimensional feature vector. This
combinational high-level feature vector was used as an input to
the SVM model, with the corresponding output to be the class
label of that image. For the three-class classification, the class
labels were 0: COVID-19, 1: Normal, and 2: Pneumonia, and for
the two-class classification, the class labels were 0: COVID-19
and 1 for Non-COVID-19 X-ray images. We used L2 regularization
to prevent overfitting while training the SVM model. Using the
feature output from highly accurately trained DCCNs, the SVC
combined the best features of both of them to make the final
predictions.

For performing binary classification of COVID-19 vs. Non-
COVID-19, a subset from the collected dataset was extracted. The
healthy and Pneumonia X-ray were combined in equal proportion
to form the Non-COVID-19 class, while the COVID-19 class was
the same as used for three-class classification. The training and
testing for both binary and ternary CoVNet-19 models were
carried out separately on their respective datasets, and the exper-
imental result metrics were observed. Our trained models’ result
metrics were compared with the other state-of-the-art models,
and a detailed discussion report was formulated, details of which
are given in the next section.

5. Experimental analysis and results

The fifth section of our paper discusses the Datasets, CoVNet-
19 hyperparameters, performance analysis, and the proposed
CoVNet-19 model results. The part is thereby divided into five
sub-sections. The first sub-section characterizes our Chest X-ray
image dataset belonging to Normal (Un-diseased person), COVID-
19, and Pneumonia patients. It was collected from multiple online
sources, which are made available for the sole purpose of research
and implementation. The second and third sub-sections explain
the Evaluation Metrics and hyperparameters of the CoVNet-19

model used, respectively. The fourth sub-section contains a de-
tailed, comprehensive analysis of the resultant evaluation metrics
of the CoVNet-19 model, achieved after three and two-class
classification. The fifth and the last sub-section presents a brief
comparison report of our proposed model with the other state-
of-the-art methods discussed in Section 2 (i.e., Related Works) of
this study.

5.1. Dataset description

The training and testing of our proposed CoVNet-19 model
were done on the combined five different datasets. We referred
to five other publicly available dataset repositories to perform
an unbiased and neutral experimental analysis. From there, we
collected Chest X-ray images belonging to three classes viz. Nor-
mal (Un-diseased), COVID-19, and Pneumonia. All the selected
repositories are updated regularly by their respective authors,
and the number of images may increase in the future. While
collecting images for our dataset, we tried to get the maximum
possible number of images to build a more robust Deep Learn-
ing model having high multi-class classification accuracy and F1
score. Our collection of medical images from five different was
randomly divided into our Training, Validation, and test set to
conduct and evaluate our experiment. This Train/Validation/Test
set distribution from five different datasets helped us better
generalize our model and evaluate it over a larger dataset. As
cited in Section 2 (Related Work), most of the studies worked
on a relatively smaller and unbalanced dataset. Thus, having a
more extensive and balanced dataset gave us a predominance
to train a more generalized and well-fitted ML model balancing
the Bias-Variance Tradeoff. The validation set was used to tune
some important hyperparameters like Learning Rate, Number of
Epochs, Batch Size, etc. Test Set was a purely unseen dataset
that was used to evaluate our model finally. The five repositories
accessed for creating our dataset are as follows:

1. “COVID-19 Radiography Database” [29] from Kaggle, col-
lected by a research team present at Qatar University and
collaborators from Malaysia and Pakistan. This dataset con-
tained 1341 Chest X-ray images of a healthy person, 219
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Table 1
Dataset used in CovNet-19.
Dataset Reference COVID-19 NORMAL PNEUMONIA
1 [29] 219 1341 1345
2 [30] 0 1000 1000
3 [31] 457 0 0
4 [32] 50 0 0
5 [33] 72 0 0
Total 798 2341 2345
Table 2
Three-class classification dataset distribution.
Training set Validation set Test set
COVID-19 1198 154 276
NORMAL 1187 154 1000
PNEUMONIA 1191 154 1000

images for COVID-19, and 1341 images of a Pneumonia
infected person.

2. “Chest Xray images (Pneumonia)” [30] Dataset from Kaggle
contained a large number of X-ray images of Healthy and
pneumonia infected patients. So, from this dataset, 1000
images belonging to both classes were extracted.

3. "COVID-chestxray-dataset”, [31] a GitHub repository by
a researcher named Joseph Paul Cohen that has a mix
of chest X-ray and C.T. scan images of patients who are
COVID-19 positive or infected by any other viral or bac-
terial pneumonia. From this repository, we were able to
collect 457 Chest X-ray Images of positive COVID-19 pa-
tients.

4. “Fig. 1 COVID-19 Chest X-ray Dataset Initiative”, [32]
GitHub repository, from which we extracted 50 X-ray im-
ages of positive COVID-19 patients.

5. “COVID-19 X-ray dataset”, [33] from Kaggle, helped us to
get 72 Chest X-ray images of positive COVID-19 patients.

Table 1 displays the number of images for each class that we
collected from the datasets mentioned above. A total of 5,484
Chest X-ray images were obtained from these five Datasets. Out of
them, 798 images belonged to COVID-19 infected patients, 2345
were of Pneumonia infected patients, and the rest of 2341 was
Chest X-ray images of a healthy person. All five of these Datasets
are open-sourced and fully accessible to the research community.
The X-ray images for COVID-19 patients are relatively low com-
pared to pictures collected for Normal and Pneumonia classes.
Thus, to cater to this issue, we used Data Augmentation to fabri-
cate the transformed version of COVID-19 images. The Augmen-
tation techniques used were Width Shift, Height Shift, Zooming,
Shearing, and Rotation by a small angle. Approximately a 2-fold
increase in COVID-19 X-ray images was done using augmentation.
830 Augmented images were added to the COVID-19 class making
a total of 1628 images.

Fig. 3 shows the Bar-Plot for distributing images concerning
each class extracted from the different Datasets. After obtaining
a nearly balanced dataset, we shuffled and divided the images
into Train, Validation, and Test Set. The training and validation
sets were made equitable for each class to have even-handed
and impartial training and model validation. The distribution of
images to each class in Train, Validation, and Test sets can be seen
in Table 2. All the images were distributed randomly to make a
proper unbiased dataset

A subset of the above-collected dataset was formed for per-
forming the binary classification between COVID-19 and Non-
COVID. Images from Normal and Pneumonia classes were ran-
domly selected in equal proportion to create the Non-COVID class.
Simultaneously, the photos in the COVID-19 category were the
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Fig. 3. Dataset distribution for CoVNet-19.
Table 3
Two-class classification dataset distribution.
Training set Validation set Test set
COVID-19 1198 154 276
Non-COVID-19 1218 154 776

same as the one formulated for three-class classification. The
distribution of this subset is shown in Table 3. Fig. 4 shows a
few examples of Chest X-ray images from the collected dataset.
Each column in Fig. 4 corresponds to two images belonging to
respective classes, as mentioned in the image.

5.2. Evaluation metrics

Evaluation metrics are the mathematical functions that pro-
vide constructive feedback and measure an ML model’s qual-
ity. The performance evaluation of training and testing of the
CoVNet-19 Classification Model was done using metrics such
as F1 Score, Precision, Recall, Accuracy, Matthews Correlation
Coefficient (MCC), and Confusion Matrix. Formulas are briefly
summarized below in Eqs 1-5, and Matrix 1.

1. Accuracy: A ratio between total correctly classified obser-
vations upon the total number of predicted observations
(Eq. (1)). The ratio between the summation of True Neg-
atives and True positives upon summating all values in a
Confusion Matrix.

No. of images correctly classified
Accuracy = fTota}lgno of imc}zlges f x 100 (1)

2. Precision: This metric indicates the confidence we have in
our predictions. The ratio of True Positive Predicted obser-
vation and all positively predicted observation (Eq. (2)).

Sum of all True positives (TP)
Sum of all True Positives (TP) + All False Positives (FP)

(2)

3. Recall: It tells us about what proportion of actual positive
observations we could predict correctly (Eq. (3)).

Precision =

Sum of all True positives (TP)
Sum of all True Positives (TP) + All False Negatives (FN)
(3)

4. F1 Score: It is an overall evaluation metric formed by a
combination of Precision and Recall. It is represented by

Recall =
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Fig. 4. Random images from the dataset.

the Harmonic mean of Precision and Recall (Eq. (4)).

2 x Precision x Recall
F1 Score = — (4)
Precision + Recall

5. Confusion Matrix: It is a performance measurement ma-
trix comparing the actual and predicted observations
through the values of False Positives, True Negatives, True
Positive, and False Negative labels (Matrix 1). Summation
of True Positives and True Negatives are the total correct
predictions, while summation of False Positive and False
Negatives are the incorrect predictions.

[True Positive (TP)  False Negative (FN)} (Matrix 1)
False Positive (FP)  True Negative (TN)
e True Positives: Cases where the predictions are posi-
tive to a class and are correct.
e True Negatives: Cases where the predictions are neg-
ative to a class and are correct.
e False Positive (Type 1 Error): Cases where the predic-
tions are positive to a class but are incorrect.
e False Negatives (Type 2 Error): Cases where the pre-
dictions are negative to a class but are incorrect.

6. Matthews Correlation Coefficient (MCC): It is a single
value performance measurement metric that summarizes
the whole Confusion Matrix. It produces a more infor-
mative and truthful score than accuracy and F1 score in
evaluating classification problems. It produces a high score
only if the prediction results are useful in all four confusion
matrix categories.

TN x TP — FP x FN
MCC = (5)
/(IN + FEN)(FP + TP)(IN + FP)(FN + TP)
The aforementioned metric evaluation formulas were used by
mostly all other authors mentioned in Related works to evaluate
their ML model’s performance. Thus, building upon that, we also
used the same metrics to conduct a fair comparison with them.

5.3. Model hyperparameters

DenseNet121 and VGG19 were optimized using Adam Opti-
mizer, having a learning rate of 0.001 decayed by a factor of
10 after each epoch. We used Adam Optimizer [34] as it is
one of the best Stochastic Gradient Descent algorithm combining

the best properties of AdaGrad [35] and RMSProp. It can easily
handle noise problems and sparse gradients during training. It
works faster and is more reliable in reaching the global minimum
with the default hyperparameters. Categorical cross-entropy and
binary cross-entropy was chosen as the loss function while train-
ing for three class and two-class classification, respectively. The
training batch size was set to 32. All the Convolutional layers
of DenseNet121 were made non-trainable during training, and
the pre-trained ImageNet weights were used. Only the externally
added two fully connected Dense layers and a SoftMax layer
were trained. For ternary classification SoftMax layer consisted
of 3 nodes belonging to three classes. Out of 10,251,011 total
parameters, just 3,213,507 were trainable. Unlike DenseNet121,
in VGG19, some convolutional layers closer to output were made
trainable. At the same time, all other convolutional layers were
made non-trainable. Out of 21,632,259 total parameters it had
3,967,683 trainable parameters. The number of training epochs
was selected by observing the model’s validation accuracy to
prevent potential overfitting. For binary classification VGG19 and
DenseNet121, both models were fine-tuned for five epochs, with
a batch size of 32. In Binary classification, the number of training
parameters of both the DCNNs was fewer as the last SoftMax layer
had only 1 Node.

Python Programming Language (Python 3.6) [36] using the
Keras API [37] along with TensorFlow [38] at the backend was
used to build and implement the Deep Learning models of
CoVNet-19. Scikit-Learn [39] was used to implement the ML
model Linear SVC. The evaluation metrics such as MCC Score,
Confusion Matrix, F1 Score, Precision, Recall, and Accuracy were
also computed using the Scikit-Learn library in Python. The com-
putations were done on Intel(R) Core (i5 8250U CPU 1.60 GHz)
processor, Windows 10, using the graphical processing unit
(NVIDIA MX 130 of 2 GB and RAM 8 GB). For some of the massive
computations, Google Collab Notebook [40] was used.

5.4. Result discussion

Building the proposed CoVNet-19 model was followed by the
training and testing phase on the collected dataset. This sec-
tion discusses the resultant evaluation metrics obtained. Both
the three and two-class classification models were trained and
tested separately on their respective datasets. First, the classifica-
tion evaluation metrics obtained after fine-tuning the DCCNs are
discussed, and then the improvement achieved in classification
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Table 4
DenseNet121: Three class classification.
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TRAINING

VALIDATION

TEST

P R F1 ACC. P

R F1 ACC P R F1 ACC

COVID-19
NORMAL
PNEUMONIA

1.00 1.00 1.00
0.94 0.99 0.97
0.99 0.94 0.97

1.00
0.91
0.97

97.79%

0.97 0.99
0.99 0.95
0.90 0.94

0.98 0.98 0.98
0.94 0.99 0.96
0.99 0.93 0.96

95.67% 96.30%

results by using CoVNet-19 is stated. All the results are compared
based on their performance in the test set. This section is thereby
further divided into two sub-sections examining the results of
each classification model.

5.4.1. Three-class classification

After fine-tuning the two pre-trained DCNNSs, the training and
validation accuracies achieved by DenseNet121 were 97.79% and,
95.67% respectively. While on the other hand, training and vali-
dation accuracies achieved by VGG-19 were 96.17% and 96.32%,
respectively. DenseNet121 achieved a test set accuracy of 96.30%,
and the test set accuracy reached by VGG19 was 96.08%. All
the resultant metrics related to training, validation, and testing
in Accuracy, Precision, Recall and F1 Score of DenseNet121 and
VGG19 are given in Tables 4 and 5, respectively (P: Precision,
R: Recall, F1: F1 Score, Acc: Accuracy). The confusion matrices
on the test set of DenseNet121 and VGG19 are shown in Figs. 5
and 6. Figs. 8-11 shows the curves for training and validation
accuracies and losses for both DCNNs. Sudden fluctuations can
be seen in the graph of Validation Accuracy and Loss for both
the DCNNs. During the model training small changes are made to
the model’s training parameters near the decision boundary. The
small changes in those training parameters are made to optimize
the training accuracy, but sometimes the validation accuracy gets
more affected than the training accuracy resulting in its high
fluctuation and variance. This is also due to relatively small size
of the validation set in comparison to the training set. Although,
these random fluctuations in the validation accuracy do not gen-
eralize to the whole CoVNet-19 model and also do not affect the
performance of the model.

We achieved an overall three-class classification accuracy of
around 96% from both DCNNs models. The metric results were
exceptionally improved in Accuracy, Precision, Recall, and F1
Score when the image feature matrix from them was combined
and used by SVC for ternary classification forming our proposed
CoVNet-19 model. Table 6 displays the detailed result metrics
of CoVNet-19. The training and validation accuracies achieved
by CoVNet-19 are 99.02% and 97.40%, respectively. CoVNet-19
increased the training and validation accuracies by around 2%.
The overall test set accuracy achieved by CoVNet-19 was 98.28%,
having an approximate increment of 2% compared to the accura-
cies achieved from DenseNet121 and VGG19 models on the test
set.

Comparing the CoVNet-19’s test set confusion matrix in Fig. 7
with confusion matrices of DenseNet121 (Fig. 5) and VGG19
(Fig. 6), we can conclude a considerable reduction in the num-
ber of misclassifications. Out of 2276 images in the test set,
CoVNet-19 misclassified 39 of them. (including all False Positives
and False Negatives). The number of misclassifications done by
DenseNet121 and VGG19 was 84/2276 and 89/2276, respectively.
For the COVID-19 class, CoVNet-19 predicted 3 False Negatives
(Type 2 Error) and 3 False Positives (Type 1 Error). The num-
ber of False Positives and False Negatives of Pneumonia and
Normal classes also decreased considerably in CoVNet-19 com-
pared with the ones resulting from the predictions of VGG19 and
DenseNet121 models. It is also observed that most of the misclas-
sifications were when X-ray images belonging to the Pneumonia
class were classified as Normal. We could reasonably conclude
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Fig. 6. VGG19 confusion matrix (Test Set)

that our proposed stacked ensemble model precisely performed
a sophisticated combination of both DCNNs and reduced the
misclassifications done by the DCNNs by eliminating the error
and noise factors.

CoVNet-19 achieved an F1-score of 99% for the COVID-19 class
and 98% for the Normal and Pneumonia class. It showed an im-
provement in the F1-score by 2% for the Normal and Pneumonia
classes and by an average of 1.5% for the COVID-19 class on the
test set. It is also observed that the overall average Precision,
Recall, and F1-score of CoVNet-19 for all three classes is 98.33%.
For a more in-depth exploration of the performance of CoVNet-
19, we also observed the Matthews Correlation Coefficient. The
MCC of our model for ternary classification was 0.9715. A high
MCC score and F1 score signifies the better prediction ability of
our model.

Based on these results, it can be concluded that CoVNet-19
performs well as a whole in classifying the Chest X-ray im-
ages. We also observed the Gradient Weighting Class Activation
Mapping study the X-ray images’ comprehensive visual analysis
(Grad-CAM). Grad-CAMs visually analyze and understand the re-
gion of interest where our DCNN model is looking for classifying
the images [41]. We examined the gradients flowing into the last
convolution layer and highlighted the picture’s localized regions,
which are crucial for class prediction. It acts as a core component
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Table 5
VGG19: Three class classification.
TRAINING VALIDATION TEST
P R F1 ACC. P F1 ACC P R F1 ACC
COVID-19 1.00 0.98 0.99 1.00 0.96 0.98 0.98 0.96 0.97
NORMAL 0.93 0.96 0.94 96.17% 0.91 0.99 0.95 96.32% 0.95 0.97 0.96 96.08%
PNEUMONIA 0.96 0.95 0.95 0.99 0.94 0.96 0.97 0.95 0.96
Table 6
CoVNet-19: Three class classification.
TRAINING VALIDATION TEST
P R F1 ACC. P F1 ACC P R F1 ACC
COVID-19 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99
NORMAL 0.98 0.99 0.99 99.02% 0.95 0.98 0.96 97.40% 0.97 0.99 0.98 98.28%
PNEUMONIA 0.99 0.98 0.99 0.97 0.95 0.96 0.99 0.97 0.98
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in the interpretation and understanding of the model. Grad-
CAMs are used to visually verify that our model is looking and
activating correct patterns in the image. The output is a heatmap
visualization. Heat Map visualization of Grad-CAMS [41] is shown
in Fig. 16, where the first row shows the original X-ray images
of each class from our dataset, and the second-row shows their
corresponding Grad-CAM Heatmap.

5.4.2. Two-class classification

Similar to the three-class classification, we implemented
CoVNet-19 for the binary classification to distinguish between
COVID-19 and Non-COVID-19 chest X-ray images. Figs. 12-15
shows the curves for training and validation accuracies and losses

10

EPOCHS

Fig. 10. Three classes: VGG19 (Accuracy)

for both the DCNN models. Training, Validation, and Test set
efficiencies achieved by DenseNet121 were 99.87%, 99.35%, and
99.60%, respectively. Training, Validation, and Test set efficiencies
achieved by VGG19 were 98.47%, 99.03%, and 99.61%. Table 7
shows the Accuracy and Loss metrics for both the DCNNs. An
improvement in all the evaluation metrics was seen with CoVNet-
19 for binary classification—Table 8 displays all the training,
validation, and testing evaluation metrics of CoVNet-19. Fig. 17
shows the confusion matrix of CoVNet-19 on the test set. The
overall training and validation accuracies achieved by CoVNet-19
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for binary classification are 100% and 99.03%, respectively, while
it achieved a test set accuracy of 99.71%. The model achieved F1
Scores of 99% and 100% for detecting COVID-19 and Non-COVID,
respectively. Out of 276 COVID-19 X-ray scans, the model pre-
dicted 274 correctly, and out of 776 Non-COVID X-ray scans, 775
were predicted correctly. The model resulted in 1 False Positive
(Type 1 Error) and 2 False Negative (Type 2 Error). MCC achieved
by CoVNet-19 for the binary classification was 0.9926. Similar
to ternary classification, CoVNet-19 attained a High MCC and F1
score for binary classification. It depicts the high classification and
generalization power of our model.

5.5. Model interpretation and comparison

Table 9 demonstrates a comparison of our Novel “CoVNet-
19” model with other ML models acknowledged in Section 2,
i.e., Related Work of this study. We have compared our proposed
work with various deep learning-based studies mentioned previ-
ously in the literature review section of this study [7-12,16,18,
19,42]. We performed a direct comparison of our results with
these works due to our and their datasets’ considerable resem-
blance. We collected our dataset from the same open-sourced
repositories used by most of the other authors in their studies.
We collected and compiled images from all those open-sourced
repositories available to us and presented them as one single
dataset in our study. We tried to fill all the gaps in previous
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studies on COVID-19 detection using Deep Learning with our pro-
posed methodology. We can certainly see that our trained model
out-performs all other binary class classification models, while
for three-class classification, we have achieved considerably high
accuracy surpassing nearly all of the previously done works.
Mesut Tougacar et al. [ 18] achieved a higher ternary classification
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Table 7
Two-class classification: DCNNs evaluation metrics.
Metrics TRAINING VALIDATION TEST
Accuracy Loss Accuracy Loss Accuracy Loss
DenseNet121 99.87% 0.009 99.35% 0.014 99.60% 0.019
VGG19 98.47% 0.023 99.03% 0.022 99.61% 0.021
Table 8
CoVNet-19: 2-class classification.
CoVNet-19 TRAINING VALIDATION TEST
P R F1 ACC. P R F1 ACC P R F1 ACC
COVID-19 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.99 0.99
Non-COVID-19 1.00 1.00 1.00 100% 1.00 0.98 0.99 99.03% 1.00 1.00 1.00 99.71%
1. NORMAL 2. PNEUMONIA 3. COVID-19

Fig. 16. Gradient weighted class activation mapping visualization.
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Fig. 17. CoVNet-19 confusion matrix (Test Set)

accuracy of 99.27%, but the author’s dataset was relatively small
compared to ours. A small dataset may not thoroughly explain the
higher generalizability of the model. The assuring and favorable
results obtained from CoVNet-19 signifies it to be an efficient
deep learning method for detecting COVID-19 using Chest X-
ray images. CoVNet-19 outperformed the works discussed in
literature due to its complex ensemble architecture along with
a well-balanced training dataset.

Some salient and novel features of CoVNet-19 can be summa-
rized as:

1. Our dataset comprised 6214 X-ray images, formed from
the reasonable homogeneity of five different Datasets. It
allowed our model to be robust and influential, showing
highly accurate results. Our model’s results were better due

to the availability of a relatively larger and balanced dataset
used for training.

2. Our proposed CoVNet-19 model proved to be an efficient
deep learning model for the classification of COVID-19
Chest X-ray images. Using two powerful DCNNs, we ex-
tracted valuable and significant image features, making our
model generalized and accurate.

3. CoVNet-19 clearly distinguished between X-ray images of
a Normal, COVID positive, and Pneumonia infected person
with an F1 score of 98.33% and MCC of 97.15%. In COVID-
19 detection, CoVNet-19 produced 3 False Negative (Type
2 Error), 3 False Positives (Type 1 Error) in Ternary Clas-
sification, and 2 False Negatives, 1 False Positive in Binary
Classification out of 276 True Positive Cases of COVID. It
implies that CoVNet-19 can efficiently be used in clinics
and hospitals to analyze Medical and Radiographic Images.

4. Using automated Artificial Intelligence-based methods to
diagnose the patients for COVID-19 infection can be time
and cost-effective. Many people can be analyzed using their
Chest X-ray images when there is limited availability of
Testing kits and other medical resources in remote places.
Machines for X-rays and Radiography can easily be made
available in small clinics and installed in moving vans.

6. Conclusion

The results showed that our CoVNet-19 classification model
could distinguish between COVID-19 amid pneumonia diseases
along with a regular person with steep accuracy, Precision, and
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Table 9
Comparison of CoVNet-19 with other state-of-the-art methods.
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Reference study Model architecture

X-ray dataset 2-Class accuracy 3-Class accuracy

loannis D. et al. [7] VGG19

224 COVID +,
504 Normal.
700 Pneumonia

98.75% 93.48%

Wang et al. [8] COVID-Net network

183 COVID +,
8066 Normal,
5538 COVID -

N/A 93.33%

Asif Igbal Khan et al [9] CoroNet

290 COVID +,
1203 Normal.
1590 Pneumonia

99.00% 95.00%

Narin et al. [10] ResNet50

50 COVID +,
50 COVID -

98.00% N/A

Sethy et al. [11] ResNet50 + SVM

25 COVID +,
25 COVID -

95.38% N/A

Ozturk et al. [12] DarkCovidNet

127 COVID +,
500 Normal,
500 Pneumonia

98.08% 87.02%

Ezz El-Din Hemdan [16] VGG19

25 COVID +,
25 COVID -

90.00% N/A

Mesut Tougagar et al. [18] MobileNetV2+ SqueezeNet + SVM

295 COVID +, 99.27%
65 Normal,

98 Pneumonia

NJA

Ferhat Ucar et al. [19] Deep Bayes SqueezeNet

76 COVID +,
1583 Normal,
4290 Pneumonia

N/A 98.30%

Mahesh Gour [42] Stacked CNN

270 COVID +, 92.74%
1139 Normal,

1355 Pneumonia

N/A

Proposed Model CoVNet-19

1628 COVID +
2341 Normal,
2345 Pneumonia

99.71% 98.28%

**N/A: Authors did not perform the specified classification.

Recall. The results suggest that the DCCNs viz. VGG19 and the
DenseNet121 helped us to achieve the best classification accuracy
by extracting valuable sophisticated features. Hence an auto-
mated Deep Learning accession for diagnosis of COVID-19 using
chest radiography tablatures can be beneficial for medical institu-
tions. CoVNet-19 model is trained on X-ray images dataset from
various sources and has attained a high overall three-class clas-
sification accuracy of 98.28% and MCC of 97.15%. Alongside that,
CoVNet-19 has achieved an overall accuracy of 99.71% for two-
class classification and an MCC of 99.26%. CoVNet-19 achieved
an F1-score of 99% for detection of COVID-19 in both ternary
and binary classification. A proper medication or a vaccine is not
available to humanity; it is of primary importance to correctly
detect all the positive COVID-19 cases and stop its rapid spread.
Due to the high increase rate of this pandemic, no particular
conclusive case must file anonymously. With millions of people
getting infected, this pandemic has out-run the medical resources
and testing-kits in many countries. We believe that CoVNet-19
will provide significant assistance and support to the medical
practitioners and nursing staff to deal with exponentially growing
COVID-19 cases and perform a faster and automatic diagnosis of
patients. This fatal disease is still a standing danger for millions
of people and should be dealt with wisely by strong-arming
ourselves with everything we can do in our reach.

7. Future work

According to the formulated results, it can thus be established
that using Deep Convolutional Neural Networks can help us ex-
tract valuable features from images that can be further used to
diagnose and detect COVID-19 infected patients. Further research
work can be carried based on our proposed study by eliminating
the limitations of our work. The notably more reliable in-depth
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analysis can be done with much more patient data, specifically of
the patients affected with COVID-19. Using chest X-ray images,
the patient’s other characteristics and physiological character-
istics can be observed and used as input features to the Deep
Learning Classification model. In this study, apart from COVID-19,
only Pneumonia cases were taken into consideration. A better and
broad scaled classification model can be built by including other
similar viral and pneumonia-based diseases like SARS, MERS. All
the Convolutional layers of the pre-trained DCNNs were not fine-
tuned due to limited computational power. Classifications results
may improve if the whole DCNN is fine-tuned with the training
data. Rather than extracting a (32 x 1) feature vector from one
DCNN, the number of features can be increased to 64 or 128
for multi-class classification tasks having three or more distinct
classes. As we have used an ensemble model of 2 DCNNs and
an SVC Model, CoVNet-19 can be optimized and transformed
into its lighter version. It can then be made to run on lower
power devices like Smart Phones and Arduinos efficiently. In
smartphones, the Camera can be used to capture the X-ray image
and detect COVID-19. This will enable the population to check
the diagnosis results on their smartphones by capturing the X-
ray image photo. The presented work thereby commits to the
achievability of a cheaper, faster, and more efficient mode of di-
agnosing the disease automatically and can be an excellent aid for
medical practitioners and nursing staff to deal with exponentially
rising COVID-19 cases. This technique can play a significant role
in controlling the rapidly increasing cases via timely informing
the infected person to stay quarantined and prevent others from
coming in contact.
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