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Hepatocellular carcinoma (HCC) is one of the most common internal malignancies worldwide and is associated with a poor prognosis.
Abnormal expression of miRNAs is believed to play a role in the recurrent metastasis of HCC. However, limited studies on the role of
miRNAs in HCC metastasis have been carried out. 1erefore, this study is aimed at exploring the potential value of metastasis-related
miRNAs (MRMs) in HCC. We retrieved MRMs were from the Human Cancer Metastasis Database. Differential miRNAs were
identified for tumor samples of HCC patients and normal samples based on the TCGA database. Further, univariate and multivariate
Cox regression analyses were used to screenMRMs known to be independent prognostic factors in HCC.1eseMRMs were then used
to build a prognostic signature. All patients were classified into high-risk and low-risk groups based on the median of the signature
scores. Moreover, GO and KEGG pathway enrichment analyses were performed to predict the function of these MRMs. Finally, a
nomogram was constructed to predict the OS of patients at 1, 2, and 3 years. In our study, a total of seven prognostic MRMs (miR-140-
3p, miR-9-5p, miR-942-5p, miR-324-3p, miR-29c-5p, miR-551a, and miR-149-5p) were identified and used for constructing the
prognostic signature based on the training cohort. Patients in the low-risk HCC group showed better overall survival (OS) than those in
the high-risk group.1e results were validated using the validation cohort. In summary, the findings of this study provide evidence that
MRMs-based prognostic signature is an independent biomarker in the prognosis of HCC patients.

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common
malignancy in the world and the second leading cause of
cancer-related deaths [1]. Despite significant advances in
surgery, liver transplantation, and interventional therapy,
the mortality rate remains high as a result of the poor
prognosis of HCC patients due to late diagnosis [2]. Tumor
metastasis plays a major role in the poor prognosis of HCC
patients. Although HCC has many staging systems, such as
the American Joint Committee on Cancer (AJCC) TNM
stage and the Barcelona-Clinic Liver Cancer (BCLC) system,
approaches for evaluation of survival and prognosis of
patients are limited [3]. 1erefore, there is a need to develop

a novel metastasis-related signature for improved prediction
of prognosis of HCC patients.

MiRNAs are a class of small endogenous single-stranded
noncoding RNAs. MiRNAs downregulate gene expression
through targeted degradation of mRNAs or by inhibiting the
translation process [4]. Recently, studies have reported
overexpressed miRNA-96-5p promotes gastric cancer cell
proliferation [5], miR-26 affects apoptosis of hepatocellular
carcinoma [6], miR-23a promotes invasion of glioblastoma
[7], and miR-17-5p promotes angiogenesis in nasopha-
ryngeal carcinoma [8]. Moreover, previous studies have
found that miRNAs are downregulated or overexpressed in
several cancer types, including breast cancer [9], colorectal
cancer [10], and HCC [11]. It has been reported that miRNA
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dysregulation plays a crucial role in the metastasis of tumors
[12–14]. However, the role of metastasis-related miRNA
(MRMs) in HCC and its prognosis role has not been ex-
plored fully.

In this work, we examined the correlation between the
expression ofMRMs and the clinical data of HCC patients. A
seven-MRM prognostic signature based on the training
cohort was constructed for the prediction of the overall
survival (OS) for HCC patients. Moreover, we constructed a
nomogram to predict the OS of patients at 1, 2, and 3 years.
1e study provides a potential prognostic indicator for
patients with HCC who have undergone surgical resection
based on 1e Cancer Genome Atlas (TCGA) database.

2. Material and Methods

2.1. Data Acquisition. A total of 710 MRMs were retrieved
from the Human Cancer Metastasis Database (https://
hcmdb.i-sanger.com). 1e MRMs were from recurrent
cases after undergoing living donor liver transplantation
(LDLT). Similarly, we retrieved miRNA expression and
clinical information of 375 HCC patients from the TCGA
database (https://cancergenome.nih.gov). A total of 344
cases were enrolled for the study after deleting samples with
no survival data or with a survival time less than 30 days.

2.2. Differentially Expressed miRNAs (DEMs). 1e limma
package in R software was used for the analysis of differential
expression of MRMs in HCC tissues and adjacent nontumor
tissues. A cut-off value of ∣logFC∣ >0.5 and FDR <0.05 was
used. Pheatmap and ggpubr packages in R software were
used to generate volcano plots, heatmaps, and box plots.

2.3. Construction of Prognostic Signature. 1e screened
clinical samples were randomly grouped into training cohort
(n� 172) and validation cohort (n� 172). 1e clinicopath-
ological features of the training cohort and validation cohort
were recorded (Table 1). Univariate Cox regression analysis
was used to identify MRMs in the training cohort which
were highly correlated with HCC OS. Further, multivariate
Cox regression analysis was used to filter out independent
prognostic factors from this group. A survival plot of the
screened miRNAs was drawn, and a prognostic signature
was established using the metastasis-associated prediction
formula. 1e risk score of each patient was calculated based
on the prognostic signature constructed from the training
cohort. Patients in the training cohort were divided into a
high-risk group and low-risk group based on themedian risk
score. 1e Kaplan–Meier (K–M) methods were used for
survival analysis of the high-risk and low-risk groups.
Subsequently, the role of the prediction signature was
evaluated by calculating the area under the curve (AUC)
using the receiver operator characteristic (ROC) curve.

2.4. Validation of the Prognostic Signature. Patients in the
validation cohort were grouped into high-risk and low-risk
groups based on the median risk score of the training cohort.

1e risk score and formula of the validation cohort were
evaluated. Further, we evaluated the OS of the high- and
low-risk groups. In addition, the prognostic value of the
predictive signature was evaluated using the ROC curve.

2.5. GO and KEGG Pathway Enrichment Analysis. To in-
vestigate significantly enriched functions and important
pathways in which MRMs play a role, we performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis and the
results were visualized via R software. Corrected P value
<0.05 was considered statistically significant.

2.6. PPINetworkAnalysis. Protein-protein interaction (PPI)
network analysis data analyzed from STRING online website
(https://string-db.org/). Further analysis and visualization of
protein interaction network data were completed by
Cytoscape software (version 3.7.2).

2.7. Nomogram Model Construction. We combined the risk
score and the corresponding clinical variables (age, TNM
stage, grade) to construct a nomogram for the prediction of
the OS of patients at 1, 2, and 3 years. 1e nomogram was
used for effective use and visualization of the prognostic
signature.

2.8. Statistical Analysis. All gene expression data were
normalized by log2 transformation. We used R software
(version 3.6.2) to perform all statistical analyses. In all an-
alyses, P value <0.05 was considered statistically significant.

3. Result

3.1. Differentially Expressed MRMs. Among the 710 metas-
tasis-associated genes, 335 differentially expressed MRMs
were identified in the analysis of HCC and normal tissue.
Volcano plots were used to visualize expression patterns of
differentially expressed MRMs between HCC and nontumor
tissues (Figure 1(a)). Further, a heat map and box plot were
constructed using the top 10 upregulated miRNA and the
top 10 downregulated miRNA (Figures 1(b) and 1(c)).

3.2. Construction of Prognostic Signature. Only 26 of the 335
MRMs were linked to the prognosis of HCC patients using
univariate Cox regression analysis. Further, we performed
multivariate analysis on the 26 MRMs. As a result, miR-140-
3p, miR-9-5p, miR-942-5p, miR-324-3p, miR-29c-5p, miR-
551a, and miR-149-5p were picked out as potential inde-
pendent prognostic predictors in HCC. In addition, we
validated the prognostic significance of the genes using a
survival curve. High expression levels of miR-9-5p, miR-
942-5p, miR-324-3p, miR-551a, and miR-149-5p were sig-
nificantly correlated with poor OS. On the other hand,
upregulation of miR-140-3p and miR-29c-5p indicated
better survival of HCC patients (Figures 2(a)–2(g)).

Multivariate Cox regression analysis results are shown in
Table 2.1e prognostic signature was constructed using Cox
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regression analysis results. 1e risk score for each sample
was calculated using the following formula: risk score-
� (0.36809∗ the expression of miR-942-5p) + (0.27523∗ the
expression of miR-324-3p) + (0.26632∗ the expression of
miR-551a) + (0.26487∗ the expression of miR-29c-
5p) + (0.10317∗ the expression of miR-9-5p)−(0.26632∗ the
expression of miR-29c-5p)−(0.66679∗ the expression of
miR-140-3p). Further, we grouped the training cohort into a
high-risk group (n� 86) and low-risk group (n� 86) using
the median value of the risk score. 1e two groups were
analyzed to identify the key role of the prognostic signature
in predicting the prognosis of HCC. Survival analysis
showed significantly low survival of samples with a high-risk
score compared with samples with a low-risk score
(Figure 3(a)). As shown in (Figure 3(b)), the ROC curve
showed that the risk score had a significant prognostic value
in HCC patients (AUC� 0.780). And the area under the

curve was larger than other clinicopathological character-
istics, such as AFP, pathology grade, and clinical stage. 1e
heatmap showed the expression pattern of these seven
prognostic miRNAs (Figure 3(c)), and the samples were
ranked in ascending order of the parameters (Figure 3(d)).
1e risk score ordered the scatterplot of patient survival
status (Figure 3(e)).

3.3. Validation of the Prognostic Signature. Further, the cut-
off value used for the training cohort was used to group the
validation cohort into a high-risk group (n� 86) and a low-
risk group (n� 84). Results obtained from the analysis of the
validation cohort were similar to the training cohort results.
1e prognosis of the sample with a high-risk score signif-
icantly poor compared to the samples with low-risk score
(Figure 4(a)). In addition, the ROC curve (Figure 4(b))

Table 1: Clinicopathological characteristics of training cohort and validation cohort.

Overall Training cohort Validation cohort p

n 344 172 172
Age (mean (SD)) 59.35 (13.19) 60.21 (13.30) 58.50 (13.07) 0.23
Gender�male (%) 236 (68.6) 118 (68.6) 118 (68.6) 1
Pathology grade (%)

0.406

G1 53 (15.4) 25 (14.5) 28 (16.3)
G2 160 (46.5) 83 (48.3) 77 (44.8)
G3 114 (33.1) 52 (30.2) 62 (36.0)
G4 13 (3.8) 9 (5.2) 4 (2.3)
Unknown 4 (1.2) 3 (1.7) 1 (0.6)

Clinical stage (%)

0.575

Stage I 162 (47.1) 74 (43.0) 88 (51.2)
Stage II 77 (22.4) 42 (24.4) 35 (20.3)
Stage III 3 (0.9) 2 (1.2) 1 (0.6)
Stage IIIA 59 (17.2) 30 (17.4) 29 (16.9)
Stage IIIB 9 (2.6) 4 (2.3) 5 (2.9)
Stage IIIC 9 (2.6) 4 (2.3) 5 (2.9)
Stage IV 1 (0.3) 0 (0.0) 1 (0.6)
Stage IVB 2 (0.6) 2 (1.2) 0 (0.0)
Unknown 22 (6.4) 14 (8.1) 8 (4.7)

T classification (%)

0.711

T1 169 (49.1) 80 (46.5) 89 (51.7)
T2 82 (23.8) 45 (26.2) 37 (21.5)
T2a 1 (0.3) 0 (0.0) 1 (0.6)
T2b 1 (0.3) 0 (0.0) 1 (0.6)
T3 42 (12.2) 23 (13.4) 19 (11.0)
T3a 26 (7.6) 12 (7.0) 14 (8.1)
T3b 7 (2.0) 2 (1.2) 5 (2.9)
T4 13 (3.8) 8 (4.7) 5 (2.9)
TX 1 (0.3) 1 (0.6) 0 (0.0)
Unknown 2 (0.6) 1 (0.6) 1 (0.6)

M classification (%)

0.455M0 248 (72.1) 119 (69.2) 129 (75.0)
M1 3 (0.9) 2 (1.2) 1 (0.6)
MX 93 (27.0) 51 (29.7) 42 (24.4)

N classification (%)

0.407
N0 241 (70.1) 115 (66.9) 126 (73.3)
N1 3 (0.9) 1 (0.6) 2 (1.2)
NX 99 (28.8) 55 (32.0) 44 (25.6)
Unknown 1 (0.3) 1 (0.6) 0 (0.0)
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showed that the risk score was effective for the prognosis of
HCC patients (AUC� 0.724). Similarly, the area under the
curve was larger than other clinicopathological character-
istics, such as AFP, pathology grade, and clinical stage. 1e
risk score for the validation cohort was calculated as de-
scribed in the training cohort. 1e distribution of prognostic
miRNAs between both groups was presented as a heatmap

(Figure 4(c)). 1e distribution of risk score, the OS, and OS
status were as shown (Figures 4(d) and 4(e)).

3.4. GO and KEGG Pathway Enrichment Analysis. We used
three databases (TargetScan (http://www.targetscan.org/)
[15], miRDB (http://www.mirdb.org/) [16], miRTarBase
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Figure 1: Differentially expressed MRMs between HCC and normal tissue. (a) Volcano plots showing miRNAs expression. (b) and (c) Top
10 upregulated and top 10 downregulated miRNAs.
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Figure 2: Survival analysis for each prognostic MRMby the Kaplan–Meier plots. (a) miR-140-3p, (b) miR-149-5p, (c) miR-29c-5p, (d) miR-
324-3p, (e) miR-551a, (f ) miR-942-5p, and (g) miR-9-5p.

Table 2: Results of multivariate Cox regression analysis for MRMS in the training cohort.

MRMs Coefficient HR HR. 95L HR. 95H P value
hsa-miR-942-5p 0.36809 1.44497 1.09978 1.89851 0.00822
hsa-miR-324-3p 0.27523 1.31683 0.92256 1.87961 0.12953
hsa-miR-551a 0.26632 1.30516 1.04248 1.63402 0.02019
hsa-miR-149-5p 0.20294 1.22500 1.02264 1.46739 0.02760
hsa-miR-9-5p 0.10317 1.10868 0.99782 1.23186 0.05494
hsa-miR-29c-5p −0.26487 0.76730 0.56868 1.03531 0.08311
hsa-miR-140-3p −0.66679 0.51335 0.32004 0.82342 0.00568
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Figure 3: Continued.
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(http://mirtarbase.mbc.nctu.edu.tw/) [17] to identify po-
tential target genes of prognostic miRNAs. We selected the
common target genes in these three databases. However, the
target genes of miR-551a and miR-29c-5p were selected
based on two datasets because there are too few common
target genes in the other dataset. A total of 260 target genes
were used for subsequent analysis. We performed GO en-
richment and KEGG pathway enrichment analyses to
identify biological functions and pathways where the
identified genes are implicated. GO and KEGG enrichment
analysis results were as shown in Figures 5(a) and 5(b).
KEGG pathway analysis showed that target genes regulated
several biological pathways, including FoxO signaling
pathway, cellular senescence, and miRNAs in cancer. GO

enrichment analysis showed that target genes are mainly
involved in response to oxygen levels, decreased oxygen
level, and hypoxia at the biological process level. Neuronal
cell body, nuclear chromatin, and PcG protein complex were
the most enriched cellular components. Molecular function,
DNA-binding transcription activator/repressor activity and
RNA polymerase II-specific, and histone deacetylase binding
were significantly enriched in HCC samples compared with
normal cells.

3.5. PPI Network Analysis. We used the STRING online
website to analyze the potential interactions between the 260
target genes of the 7 prognostic miRNAs, and the minimum
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Figure 3: Risk score of HCC patients in the TCGA training cohort. (a) 1e Kaplan–Meier survival analysis of HCC patients. (b) ROC curve
for the risk score and clinicopathological characteristics of HCC patients. (c) Heatmap of the expression pattern of the seven-MRM
signature between high-risk and low-risk groups. (d) Risk score distribution in each HCC patient. (e)1e OS and OS status for the high-risk
and low-risk groups.
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required interaction score was set at 0.9 (Figure 6(a)). Also,
the above results were further analyzed and visualized by
Cytoscape software. 1e top 6 nodes with greater degrees
were displayed in the middle of the image, including RNF2,
ESTR1, RAB5C, AGO1, CREBBP, and SUZ12 (Figure 6(b)).

3.6. Nomogram Model Construction. Moreover, we verified
the effectiveness of the prognostic signature in predicting the
prognosis of HCC patients using univariate Cox analysis and
multivariate Cox analysis for the training cohort
(Figures 7(a) and 7(b)). 1e results showed that the prog-
nostic signature was an independent prognostic factor for
HCC. Further, we constructed a nomogram to establish a
more sensitive prediction signature to predict the prognosis
of HCC (Figure 7(c)). 1e prognostic signature, age, sex,
tumor grade, and TNM stage were incorporated into the
nomogram model. 1e total score of the nomogram can be
used for the prediction of the 1-, 2-, and 3-year OS of pa-
tients with HCC.

3.7. :e Relationship between MRMs and Clinical Variables.
Analysis of the correlation between clinical variables and
seven MRMs showed that the risk score of elderly patients
(age >65 years old) was lower compared with that of young
patients (age ≤65 years old). Furthermore, the risk score of
patients with advanced tumors (stages III ∼IV or T3∼T4)
was higher than that of patients with early-stage tumors

(Figures 8(a)–8(c)). miR-29c-5p was significantly correlated
to T stage, grade, and stage; miR-140-3p was significantly
correlated to T stage, age, gender, and stage whereas miR-
149-5p was significantly correlated to T stage and age
(Figures 8(d)–8(i)).

4. Discussion

HCC is one of the most lethal cancers worldwide [18].
Hepatitis-cirrhosis-HCC is the main cause of most liver
cancer cases. Most patients with HCC have a history of
hepatitis B or C infection [19]. Surgical resection is still the
mainstream treatment approach for HCC; however, the
postoperative survival of HCC patients is low due to the high
incidence of metastasis [20]. Previous studies report that
miRNA dysregulation is associated with metastasis of liver
cancer [21–23]. However, the prognostic value of metastasis-
related miRNAs in HCC has not been fully elucidated.
1erefore, the identification of miRNAs and the targets
associated with HCC metastasis may provide promising
therapeutic avenues.

In this study, we retrieved miRNA expression profiles
and clinical information of 373 HCC samples and 50 normal
samples from the TCGA database. Further, we selected and
analyzed differentially expressed MRMs in HCC. We
identified seven MRMs (miR-140-3p, miR-9-5p, miR-942-
5p, miR-324-3p, miR-29c-5p, miR-551a, and miR-149-5p)
as potential independent prognostic predictors for HCC
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through univariate and multivariate analyses. Further, a
prediction signature based on the 7 MRMs showed good
performance in predicting the OS of HCC. GO and KEGG
enrichment analysis indicated that the seven MRMs may be
involved in metastasis of HCC through the regulation of
different pathways. We constructed a more sensitive pre-
diction signature using the nomogrammethod to predict the
prognosis of HCC.

Our results suggest that the screened MRMs are inde-
pendent prognostic predictors. Out of the differentially
expressed miRNAs, miR-140-3p, miR-9-5p, miR-324-3p, and
miR-149-5p were implicated in HCC metastasis. On the other
hand, miR-942-5p, miR-29c-5p, and miR-551 were reported in
other cancer types but not in HCC. For instance, high ex-
pression levels of miR-140-3p inhibit EMT, invasion, and
metastasis of HCC by targeting GRN [24], whereas miR-9-5p

and miR-149-5p promote HCC progression [25, 26]. On the
contrary, upregulation of miR-551a by dimethoxy curcumin
hinders metastasis of ovarian cancer cells [27]. miR-135b-5p
modulates APC gene in both diffuse and intestinal gastric
cancer subtypes [28]. GO enrichment analysis of seven-MRMs
were associated with changes in oxygen levels in biological
processes. Notably, hypoxia is associated with metastasis of
HCC [29, 30]. 1e FoxO signaling pathway was identified as
the significantly enriched pathway through KEGG analysis.
FoxO is reported to play a vital role in the metastasis of HCC
[31]. PPI analysis revealed those seven miRNAs’ target genes
with the strongest protein interactions. Moreover, it has been
reported that the abnormal expression of RNF2, AGO1,
CREBBP, and SUZ12 is closely related to the invasion and
metastasis of HCC [32–35]. 1ese results indicate that MRMs
are associated with metastasis of HCC. However, this study has
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a few shortcomings. We only validated the seven miRNAs
prognostic signature in the validation cohort; therefore, large
independent studies are needed to verify the effectiveness of
this signature. In addition, we selected MRMs related to the
overall survival of HCC patients and did not do further ex-
periments to explore their mechanism in metastasis.

In conclusion, our study evaluated expression profiles of
metastasis-related miRNAs retrieved from the TCGA database
and established a prediction signature. 1e seven-miRNA
molecular signature accurately predicts the prognosis of HCC;
therefore, it has important implications in clinical practice.
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bined miRNA profiling and proteomics demonstrates that
different miRNAs target a common set of proteins to promote
colorectal cancer metastasis,” :e Journal of Pathology,
vol. 242, no. 1, pp. 39–51, 2017.

[14] T. Wang, H. Xu, M. Qi, S. Yan, and X. Tian, “miRNA dys-
regulation and the risk of metastasis and invasion in papillary
thyroid cancer: a systematic review and meta-analysis,”
Oncotarget, vol. 9, no. 4, pp. 5473–5479, 2018.

[15] B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed
pairing, often flanked by adenosines, indicates that thousands
of human genes are microRNA targets,” Cell, vol. 120, no. 1,
pp. 15–20, 2005.

[16] N. Wong and X. Wang, “miRDB: an online resource for
microRNA target prediction and functional annotations,”
Nucleic Acids Research, vol. 43, no. D1, pp. D146–D152, 2015.

[17] S.-D. Hsu, Y.-T. Tseng, S. Shrestha et al., “miRTarBase update
2014: an information resource for experimentally validated
miRNA-target interactions,” Nucleic Acids Research, vol. 42,
no. D1, pp. D78–D85, 2014.

[18] A. Budny, P. Kozlowski, M. Kaminska et al., “[Epidemiology
and risk factors of hepatocellular carcinoma],” Polski Mer-
kuriusz Lekarski, vol. 43, no. 255, pp. 133–139, 2017.

[19] Y. A. Ghouri, I. Mian, and J. H. Rowe, “Review of hepato-
cellular carcinoma: epidemiology, etiology, and carcinogen-
esis,” Journal of Carcinogenesis, vol. 16, p. 1, 2017.

[20] S. T. Orcutt and D. A. Anaya, “Liver resection and surgical
strategies for management of primary liver cancer,” Cancer
Control, vol. 25, no. 1, Article ID 1073274817744621, 2018.

[21] H.-C. Zhou, J.-H. Fang, L.-R. Shang et al., “MicroRNAs miR-
125b and miR-100 suppress metastasis of hepatocellular
carcinoma by disrupting the formation of vessels that en-
capsulate tumour clusters,”:e Journal of Pathology, vol. 240,
no. 4, pp. 450–460, 2016.

[22] Z. Liu, W. Li, Y. Pang et al., “SF3B4 is regulated by micro-
RNA-133b and promotes cell proliferation and metastasis in
hepatocellular carcinoma,” Ebiomedicine, vol. 38, pp. 57–68,
2018.

[23] Y. Chen, Y. Guo, Y. Li et al., “miR300 regulates tumor
proliferation and metastasis by targeting lymphoid enhan-
cerbinding factor 1 in hepatocellular carcinoma,” Interna-
tional Journal of Oncology, vol. 54, no. 4, pp. 1282–1294, 2019.

[24] Q. Y. Zhang, C. J. Men, and X. W. Ding, “Upregulation of
microRNA-140-3p inhibits epithelial-mesenchymal transi-
tion, invasion, and metastasis of hepatocellular carcinoma
through inactivation of the MAPK signaling pathway by
targeting GRN,” Journal of Cellular Biochemistry, vol. 120,
no. 9, pp. 14885–14898, 2019.

[25] X. Dong, F. Wang, Y. Xue et al., “MicroRNA95p down-
regulates Klf4 and influences the progression of hepatocellular
carcinoma via the AKT signaling pathway,” International
Journal of Molecular Medicine, vol. 43, no. 3, pp. 1417–1429,
2019.

[26] G. Liu, L. Yin, X. Ouyang, K. Zeng, Y. Xiao, and Y. Li, “M2
macrophages promote HCC cells invasion and migration via
miR-149-5p/MMP9 signaling,” Journal of Cancer, vol. 11,
no. 5, pp. 1277–1287, 2020.

[27] Z. Du and X. Sha, “Demethoxycurcumin inhibited human
epithelia ovarian cancer cells’ growth via up-regulating miR-
551a,” Tumour Biology, vol. 39, no. 3, Article ID
1010428317694302, 2017.

Journal of Oncology 13



[28] L. Magalhaes, L. G. Quintana, D. C. F. Lopes et al., “APC gene
is modulated by hsa-miR-135b-5p in both diffuse and in-
testinal gastric cancer subtypes,” BMC Cancer, vol. 18, no. 1,
1055 pages, 2018.

[29] C. Legendre, T. Hori, P. Loyer et al., “Drug-metabolising
enzymes are down-regulated by hypoxia in differentiated
human hepatoma HepaRG cells: HIF-1α involvement in
CYP3A4 repression,” European Journal of Cancer, vol. 45,
no. 16, pp. 2882–2892, 2009.

[30] Z. Liu, Y. Wang, C. Dou et al., “Hypoxia-induced up-regu-
lation of VASP promotes invasiveness and metastasis of
hepatocellular carcinoma,” :eranostics, vol. 8, no. 17,
pp. 4649–4663, 2018.

[31] Y. Q. Hou, Y. Yao, Y. L. Bao et al., “Juglanthraquinone C
induces intracellular ROS increase and apoptosis by activating
the Akt/Foxo signal pathway in HCC cells,” Oxidative
Medicine and Cellular Longevity, vol. 2016, Article ID
4941623, 18 pages, 2016.

[32] C. Qu and Y. Qu, “Down-regulation of salt-inducible kinase 1
(SIK1) is mediated by RNF2 in hepatocarcinogenesis,”
Oncotarget, vol. 8, no. 2, pp. 3144–3155, 2017.

[33] M. Wang, L. Zhang, Z. Liu et al., “AGO1 may influence the
prognosis of hepatocellular carcinoma through TGF-β
pathway,” Cell Death & Disease, vol. 9, no. 3, p. 324, 2018.

[34] D. Y. Wen, P. Lin, H. W. Liang et al., “Up-regulation of CTD-
2547G23.4 in hepatocellular carcinoma tissues and its pro-
spective molecular regulatory mechanism: a novel qRT-PCR
and bioinformatics analysis study,” Cancer Cell International,
vol. 18, p. 74, 2018.

[35] C. Xue, K. Wang, X. Jiang et al., “1e down-regulation of
SUZ12 accelerates the migration and invasion of liver cancer
cells via activating ERK1/2 pathway,” Journal of Cancer,
vol. 10, no. 6, pp. 1375–1384, 2019.

14 Journal of Oncology


