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Abstract

Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including
antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in
all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and
make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation
sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we
invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of
decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune
patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for
theoretical understanding and mathematical modeling of adaptive immunity.
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Introduction

T lymphocytes are the key drivers of adaptive immune system, a

powerful machinery able to detect, combat, and memorize

pathogens in all their possible variety [1]. Specific recognition of

potentially harmful foreign peptides is achieved by the highly

selective binding of T cell receptors (TCRs) to peptide-MHC

complexes (p-MHC), mounted on the surface of specialized

antigen-presenting cells. Required diversity of recognition arises

due to an astronomic number of distinct molecular variants of

TCRs, potentially emerging through random-like V(D)J recombi-

nation during cell development in thymus. In result of allelic

exclusion, a T cell typically expresses a single TCR variant, and all

its daughter cells have identical antigen recognition properties,

constituting a clonotype [2]. After massive positive and negative

selection in thymus aimed to remove incapable or potentially

autoimmune cells, about 5% of thymocytes finally enter periphery.

Quantitative statistical assessment of TCR diversity is now

becoming possible due to recent developments of next generation

sequencing (NGS) techniques, capable of producing large TCR

libraries. Current estimates claim about 1011–1012 T cells

compartmented in about 108 clonotypes in healthy adult humans

[3–6].

Efficient and adequate performance of this ensemble requires

fine tuning of T cell populations, which is achieved by a plethora

of mechanisms: cytokine, antigen-presentation, and cell regulation

[7,8]. The nature of these mechanisms implies that competition for

cytokines controls the total number of T-cells, while competition

for p-MHC binding sites adjusts the frequencies of individual

clones. The latter involves a cascade of processes: proteasomal

degradation of proteins, peptide delivery and presentation on

MHC complexes, p-MHC - TCR binding events, epitope

recognition and signaling, cell fate decision by regulatory

networks. Since their thorough experimental quantification faces

tremendous difficulties, it becomes appealing to assess at least the

outcome.

Attention is getting drawn to analyzing experimentally obtained

clonal frequency (relative size) distributions, and there is a growing

evidence that they are strongly non-Gaussian. Even the first

sequencing results for human TCR repertoires (restricted to

clonotypes responsive to a certain peptide, though) indicated that

it has heavy tails that could follow a power law [9]. Parametric

approaches quite successfully employed several Poisson abundance

model distributions for mice with limited TCR diversity [10,11].

However, the studied TCR libraries contained only about a

hundred of entries, which precluded a definite choice of the best

model among the considered [10].

In contrast, the recently produced and publicly available NGS

human TCR libraries contain 104–106 distinct variants from 41

reportedly healthy [6,12] and one autoimmune [13–15] adult

donors, the latter screened before and after chemotherapy and

autologous hematopoietic stem cell transfer (HSCT). It gives an

opportunity to bring the quantitative analysis of the peripheral T-

cell pool statistics on a qualitatively new level.

It is worth noting, however, that quantitatively meaningful

estimates of power law distributions demand careful and critical
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analysis [16]. In particular, assessing clonotype distributions

requires accurate treatment of statistical sampling error, especially

significant for low-frequency clonotypes abundant in the T cell

repertoire. Otherwise, the blind cutoff of that part of repertoire

would seriously restrict the volume of data and span coverage,

undermining statistical significance of the result. This has proved

to be characteristic of the recent report on the ‘‘fractal’’

organization of the T cell repertoire, with convincing evidence

of heavy tailed distributions but quite questionable numerics of

power law fits [17].

The purpose of this paper is to conduct a comparative non-

parametric analysis to estimate the T cell clonal frequency

distributions from a number of available human libraries without

any prior assumption on the functional form. We aim to determine

whether reconstructed clonal frequency distributions follow some

functional dependence, common between different healthy indi-

viduals, whether it changes in the autoimmune patient before and

after treatment, whether there are differences in healthy and

autoimmune repertoire distributions, if any. We reveal the power

law scaling over several decades of distributions and quantify the

exponents.

Materials & Methods

We analyze the sets of data coming from: (i) reportedly healthy

donors: middle-aged two male and one female subjects [6], 38

subjects aged 9–90 years [12], and (ii) a middle-aged patient with

ankylosing spondylitis who undergone chemotherapy and autol-

ogous HSCT, and was observed up to 25 months since the

treatment [15] (see Table 1 for details). The respective TCR

libraries were build by a common workflow that is extraction of

peripheral blood mononuclear cells, isolation of RNA, cDNA

synthesis, PCR amplification and sequencing of TCRb CDR3

region [6,12–15].

It is essential that each step of profiling is prone to experimental

and statistical errors that depend on implementation details and

equipment (see [6,14,18] for a detailed discussion). We trust the

quality assessment and error correction for the reads that the

authors of the TCR libraries had performed and make use of their

final post-processed data. Following the common approach we

associate different TCR variants with different T cell clonotypes.

We focus our attention on the distribution of the multiply read

TCR variants, since only they can be reliably distinguished from

sequencing errors and allow a trustworthy frequency estimate.

Instructively, even the most frequent clonotypes demonstrate

significant variances of clonal frequencies in comparative deep

sequencing of the same donor either within a week interval [6] or

in parallel draws [14]. Therefore, the straightforward histogram

analysis of the statistics of TCR reads is a questionable estimate of

the clonotype frequency distribution, and it is essential to view the

NGS repertoire profiling as a K-stage random sampling process,

respective to sequencing steps. Notably, the novel cDNA

barcoding procedure establishes a one-to-one correspondence

between a T cell in a sample and a sequenced TCR variant [12],

which allows for reducing the model to a single-step random

sampling for their data.

To incorporate statistical uncertainty in our analysis we

construct a non-parametric kernel distribution estimator for the

complementary cumulative frequency distribution

F̂F (p�):Prob (p§p�) [19,20]:

F̂Fc(p)~
1

Nc

XNc

i~1

F̂Fnorm(p{pi), ð1Þ T
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where Nc is the number of identified distinct sequences (‘distinct

reads’), pi is the frequency of each TCR variant, F̂Fnorm(:) is the

kernel function that is the complementary cumulative normal

distribution with the zero mean and standard deviation

spi
~

XK

k~1

s2
pi ;k

" #1=2

ð2Þ

dependent on standard deviations spi ;k
present at each of K steps

of repertoire profiling. Assuming that sampling a particular variant

i at step k is a binomial process with probability pi we get

spi ;k
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi (1{pi )

Nk

q
, where Nk is the total number of samples at this

step. Note, that as the expected value of a binomial process /pi,

the expected frequency of a TCR derivative product will remain pi

at each step of sequencing.

Obviously, the contribution of different steps to statistical errors

is quite different (see Table 1 for indicative sample sizes). Three

major bottlenecks accumulating statistical error in our case are

sampling T cells, synthesized cDNA for PCR (typically, order of

the number of sampled cells), and good sequence reads. A single

PCR cycle efficiency was estimated to equal E~1:8 [14], and there

was a typical number of about 30 cycles performed. Viewing it as a

branching process one obtains an expression for variance on exit

s2
pi ,PCR&(2=E{1)s2

pi ,cDNA [21]. It yields a factor 2=E~10=9

correction to the variance of cDNA sampling.

If in question, the estimator of the probability density

distribution can be also obtained then:

Wc(p)~{
d

dp
F̂Fc(p): ð3Þ

For each data set we estimate the upper 95% confidence bound

(further, CI95) for the frequency of unseen clonotypes (viewing

observation failure as an outcome of binomial samplings) as

p0~1{(1{0:95)s, s~
XK

k~1

1

Nk

, ð4Þ

where s can be viewed as an effective inverse number of trials.

Apparently, about and below this value the clonal frequency

distribution cannot be reliably estimated from the available data.

To assess the potential impact of the additional sources and

types of statistical sampling errors as well as laboratory errors that

escaped post-processing we also estimated the clonotype frequency

variances from three parallel samples from an autoimmune donor

independently taken and sequenced 10 month after HSCT [14]

and plugged them into the kernel distribution estimator (1). The

result did not show significant deviations from the one obtained

with the sampling bottlenecks approach.

Resulting frequency distributions can be analyzed by various

approaches. Since they clearly exhibited intervals of power law

decay F̂Fc(p)!pa, we performed linear polynomial fits in the

double-log scales employing a standard least square method,

determining respective exponents and their CI95.

To test applicability of the parametric methods, previously

developed for assessing clonal size distributions [10], we developed

a Poisson abundance model under an assumption of power law

clonal frequency distribution within a certain range. In particular,

one describes sampling distribution by a Multinomial law

P½fmigDD,a�~ D!

(D{Nc)!P
Nc

i~1 mi

½fa(0)�D{Nc P
M

i~1
½fa(i)�mi , ð5Þ

where D is the total diversity of the T cell repertoire, mi is the

number of distinct TCR sequences found in i copies, M~
P

mi,

fa(i) is the parameter-dependent probability to obtain i copies of a

TCR variant in a sample. The latter can be calculated taking into

account the typically small size of the sample comparing to the

whole repertoire, which yields the Poissson distribution

fa(i)~
e{ppi

i!
ð6Þ

for the clonotypes with identical frequency p. If the frequencies are

expected to follow some distribution, in particular, W(p)/pa21,

integrating out p gives

fa(i)!
C(iza)

i!
, iw{a: ð7Þ

Diversity D and distribution power law exponent a are then

numerically estimated by maximizing the (log)likelihood function

(5). The method is easily adapted to exclude low and high clonal

frequency outliers that do now follow power law: it suffice to

redefine fa(0) in (5) as the probability to fall off the the specified

range of frequencies.

Results

We assess clonal frequency distributions ascribing each distinct

TCRb CDR3 sequence to a distinct T cell clonotype. We make

use of publicly available TCR libraries obtained from human

donors as described in Materials & Methods. Aiming to avoid

prior assumptions on the clonal frequency distribution, we choose

a non-parametric approach. As it is outlined in Materials &

Methods we construct an estimator based on a complementary

cumulative normal distribution kernel. For each clonotype the

Gaussian is centered at the measured frequency and has the

variance calculated from the binomial sampling model as

described in the above. Altogether, it allows to incorporate

statistical sampling error, different for clonotypes with different

frequencies, avoiding the blind cutoff of the less frequent ones.

First, we analyze NGS TCR libraries obtained from reportedly

healthy individuals: 38 subjects aged 9–90 years [12] and two male

and one female, middle-aged (‘‘Male 1’’, ‘‘Male 2’’, and ‘‘Female’’)

[6]. Representative examples for donors from different age groups

shown in Fig. 1, illustrate the general result: the major parts of the

complementary cumulative frequency distributions F(p);Prob

(pi$p) exhibit a power law decay over at least two decades:

F̂F (p)!pa, ð8Þ

where the exponent values are a= {21.16, 21.16, 21.0}.

Noteworthy, deviations from the power law are observed not

only in the low frequency range (which can be accounted for

significant statistical sampling uncertainties), but for abundant

clonotypes as well. The latter hints that the clonal size distribution

might consist of at least two different parts.

Parametric approach that makes use of Poisson abundance

models [10] also produces good results, once a power law

distribution is assumed (Fig. 1, inset). However, turning from

Assessing T Cell Clonal Size Distribution: A Non-Parametric Approach
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probability density to cumulative distributions, one notices

moderate but systematic underestimation of the exponent value

(Fig. 1, main). A possible reason for that could lie in employing

probability estimators, more sensitive to statistical sampling errors

than cumulative ones, used in the developed non-parametric

method.

The fitted exponents along with respective CI95 are shown in

Fig. 2 vs. donors age (see also Table 2 for details). In all cases they

were obtained over two decades of clonal frequencies, specific

ranges being log10 p[½{5:5,{3:5� or log10 p[½{5,{3� (which-

ever produces a better fit) for the data from [12], and

log10 p[½{4,{2� for the data from [6]. Overall, the power law

exponents fall into quite a narrow range a[½{1:43{0:97�.
Notably, no pronounced age dependence is observed. One can

only point it out that all values among the young (9–20 years) and

elderly (70–90 years) groups belong to the lower half of the

interval: a,21.18, though it could simply be due to moderate

pool of donors.

Secondly, we follow the dynamics of the clonal frequency

distribution from an autoimmune patient(‘‘Male A’’) who under-

gone autologous HSCT and demonstrated a stable remission since

[13–15]. Before the HSCT the patient’s TCR repertoire had been

analyzed for 2 years, and a number of stably hyperexpanded

clones associated with inflammatory response were found. NGS

was performed right before HSCT (the reference 0 time point), 4,

10, and 25 months after the procedure. Reportedly, the treatment

led to a major resetting of the repertoire with only about 10% of

earlier observed clonotypes detected afterwards. Previously

hyperexpanded clones (including a pro-inflammatory one) drasti-

cally decreased their frequencies, while the other clones grew large

and remained so over the study [15]. Interestingly, the share of

hyperexpanded clonotypes in the repertoire even increased after

HSCT, when remission reportedly occured, indicating that their

existence is not a trait of an abnormal state.

Reconstruction of frequency distributions before and after the

treatment reveals a drastic change in the power law exponent from

a<22.07 before HSCT to a<20.99 after 25 months, though the

power law fit of the major part of the distribution (spanning across

two decades except for the horizontal axis for time point 0)

remains plausible at all times (Fig. 3, Table 2). Remarkably, before

HSCT the exponent was considerably below those obtained in

reportedly healthy adult individuals (Fig. 2). Conversely, at all time

points after HSCT the exponent consistently remained in the

interval, specific for healthy donors.

Assessing the possible effect of technical differences in NGS

procedures on the clonal frequency distribution, we note the

following. The values obtained from healthy donors libraries in [6]

and [12] agree well. Qualitatively different values of the power law

exponent a are estimated from the TCR libraries assembled

before, 4 and 10 months after HSCT from the same autoimmune

donor by the same NGS protocol [13]. Moreover, the values of a
4–25 months after the therapy are typical of those for healthy

donors, obtained by the protocols different in details. Therefore,

differences in protocols do not seem to bias the value of the power

law exponent significantly.

Discussion

Next generation sequencing tools have recently made a high-

throughput analysis of T cell repertoire possible. Through the last

several years most attention has been paid to estimating clonal

diversity, and the reported numbers of distinct clonotypes have

been renewing record each time the methods improved and

analysis deepened. At the same time the statistics of clonal

frequency distributions remained a secondary issue, addressed

Figure 1. Clonal statistics for healthy donors. Main figure.
Representative complementary cumulative clonal frequency distribu-
tions F̂F (p) (CDF) for three healthy individuals across different age
groups [12] in double log scale: male (20 years), female (39 years), and
male (66 years). Shaded areas indicate CI95 intervals for clonal
frequencies. Black dashed lines show power law dependencies

F̂F (p)!pa , a<21.16, a = 21.16, and a = 21.0, respectively, indicating a
good fit of experimental data over two decades (cf. Fig. 2 and Table 2
for more details). Black solid lines show power law dependencies with
the exponents derived from the Poisson abundance model fit (5)–(7).
Inset. Parametric approach [10]: frequency distribution of clonotypes
binned by detected size in double log scale (colors code the same
donors as in the main figure) and Poisson abundance method fits (black
solid lines).
doi:10.1371/journal.pone.0108658.g001

Figure 2. Power law exponents. Exponents a of power law fits with
respective CI95 indicated vs. age of individuals. Blue circles: healthy
donors from [12], least square fits performed over the interval
log10 p[½{5:5,{3:5� or log10 p[½{5:0,{3:0�, whichever produced
better quality. Red squares: healthy donors from [6], least square fits
performed over the interval log10 p[½{4,{2�. Green triangles: auto-
immune patient before and after treatment [13–15], least square fits
performed over the interval log10 p[½{3:5,{2:5� for the time point
before treatments and log10 p[½{4,{2� for the three time points after.
doi:10.1371/journal.pone.0108658.g002
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mostly to estimate the number of ‘‘unseen’’ small-frequency

clonotypes by Fisher’s techniques [4,22].

About ten years ago even very scarce data led to hypothesize

that human T cell clonal frequency distributions have heavy non-

Gaussian tails that could follow a power law [9]. However, the

study was confined to only 141 clonotype and allowed to produce

a power-law-like dependence over a single decade of magnitude at

best, rendering the statistical validity of observations and fitted

exponents questionable, according to the general practices [16]. A

recent study by Meier et al. [17] generated much deeper libraries,

reportedly containing about 105–106 distinct TCR sequences.

They also shared the much anticipated view of the self-similar

properties of the repertoire, but admitted several shortcomings in

their quantitative analysis. First, as we already mentioned in

Introduction, the authors dismissed clonotypes with frequencies

below 0.05%, restricting themselves to a single order of magnitude

interval, insufficient for a reliable power law fit [16]. Second, they

estimated clonal frequency distributions with unevenly sized bins,

which distorted the result. Another recent report studied evolution

of clonal distributions in the course of HSCT, also producing

evidence of heavy non-Gaussian tails, but did not attempt to

quantify it [23]. To achieve a progress one had to employ

appropriate statistical inference techniques, taking into account

sampling errors of sequencing but avoiding an overly strong data

cutoff.

Parametric fitting approach offered several model distributions,

which became popular choices in analyzing restricted TCR

repertoires from mice, to name uni- and multi-variate Poisson

abundance models with log-normal, exponential, and gamma

sampling rates [10,11]. However, as it was demonstrated in [10],

even a systematic analysis of the fit goodness cannot not yield a

decisive answer in favor of one or another model, when

experimental data are confined to about a hundred of clonotype

frequencies. Besides, parametric estimators have two obvious

limitations for analyzing clonal statistics per se. First, it requires to

assume a specific functional distribution of TCR frequencies. Its

biological meaning is unclear since there is no bottom-up theory

predicting such a distribution from first immunological principles.

Moreover, assuming a model distribution we limit our ability to

infer these first principles in the top-bottom analysis. Second, it is

not guaranteed that a single model distribution describes the whole

range of frequencies, and optimal model distributions could, in

principle, differ between species or even donors. On the other

hand, when the kind of functional dependence(s) and their validity

intervals are known a priori, by the virtue of another analysis,

parametric fitting becomes indispensable.

To overcome these difficulties we proposed to employ non-

parametric analysis, appropriate for the currently available

extensive human TCR libraries. We have successfully implement-

ed kernel density estimators, which conveniently incorporate the

variances of the clonal frequency estimators, essentially dependent

on the clonotype size. Variances can either be calculated by

comparing data from several parallel samples taken and processed

independently (which is preferable, as it counts both statistical and

Table 2. Power law exponent fits for complementary cumulative clonal frequency distributions and 95% confidence intervals.

Subject, age
Timepoint
(month) a

CI95a interval
width

Male, 29 – 21.41 0.17

Male, 33 – 20.97 0.10

Female, 33 – 21.01 0.06

Group 1 (9–25 y) – 21.21 0.07

Group 2 (36–43 y) – 21.20 0.06

Group 3 (61–66 y) – 21.15 0.07

Group 4 (71–90 y) – 21.28 0.08

Male A, 49 0 22.07 0.33

Male A, 49 4 21.15 0.12

Male A, 50 10 20.89 0.57

Male A, 51 25 20.99 0.58

Sources of libraries: upper block [6], middle block [12], bottom block [13–15]. Values in the middle block are averages within each group.
doi:10.1371/journal.pone.0108658.t002

Figure 3. Clonal statistics for an autoimmune patient. Comple-
mentary cumulative clonal frequency distributions F̂F (p) (CDF) for an
autoimmune patient [13–15] in double log scale: right before the
treatment (blue), 10 months after (red), and 25 months after (green).
Shaded areas indicate CI95 intervals for clonal frequencies. Dashed lines

show power law fits F̂F (p)!pa, a = 22.07, a = 20.88 and a = 20.99,
respectively. Least square fits performed over the interval
log10 p[½{3:5,{2:5� for the time point before treatments and
log10 p[½{4,{2� for the time points after.
doi:10.1371/journal.pone.0108658.g003
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experimental errors), or by estimating statistical sampling errors at

the bottlenecks of an experiment. One has to keep in mind that

non-parametric fitting cannot overcome limitations of NGS as the

data source sequencing errors, PCR amplification bias, etc.

Meanwhile, the developed error detection and correction algo-

rithms along with the most recent cDNA barcoding technique [12]

already seem to ensure substantial reliability (for a detailed

discussion of the issue we refer a reader to [14,18]). It is worth

stressing that non-parametric analysis does not dismiss parametric

one, as the latter is required to evaluate and validate the functional

dependence in the output data from the former.

Implementing this approach, we demonstrated for the first time

that cumulative clonal frequencies distributions from 41 adult

human donors can be fitted well with the power law F(p)/pa over

several decades of magnitude. For reportedly healthy individuals

the exponents grouped about a<21…21.4, while for an

autoimmune donor it had been considerably less, about a<22.1

before HSCT and increased to the values typical of healthy donors

a<21 afterwards. We were unable to identify any certain

functional behavior of the frequency distribution for small size

and hyper-expanded clonotypes, in the first place, due to

insufficient statistics in current experimental data: the former

yield reads of very low copy number or simply escape sequencing,

the latter are too few. We, therefore, cannot exclude deviations

from the power law scaling in these parts of distributions.

These findings put a challenge for theoretical immunology to

identify the mechanism(s) behind such clonal distributions. Several

candidates appear plausible. A major role in shaping individual

clonal sizes belongs to T cell competition for access to cognate p-

MHCs on antigen presenting cells, for survival and proliferation

stimuli. Indeed, it is known that the same antigen can be

recognized by several, sometimes hundreds of clonotypes [24,25],

and, vice versa, a given TCR can recognize theoretically up to 106

different p-MHCs due to inherent cross-reactivity [26,27]. A good

question to address is whether existing mathematical models of T

cell competition and clonal selection at the periphery [28–33] can

reproduce power-law distributions, or their further development is

needed. Another crucial mechanism is the positive and negative

selection in thymus, and we await theoretical and experimental

advances here. Some insight could also be expected from the

statistics of V(D)J recombination, though it still remains a far

stretch to infer the functional properties from TCR sequence.

Finally, our results should inspire studying a greater number of

human TCR libraries to confirm or disprove that statistical T-cell

clonal size distributions for healthy and autoimmune donors (at

least for certain diseases) may exhibit drastically different power

laws. Another issue to be addressed in a consistent manner is that

clonal frequency distribution may possibly evolve significantly

under treatment like HSCT, similarly to drastic changes in the

other numerical measures [17,23]. We believe that the proposed

approach will become a useful tool in the studies of immunity and

autoimmunity development, complement the developing deep

sequencing methods of individual diagnostics of infectious and

autoimmune diseases, characterizing and understanding immu-

nosenescence.
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