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Abstract

Methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food
webs. CH4 is oxidized by methane oxidizing bacteria (MOB), and subsequently utilized by chironomid larvae, which may
exhibit low d13C values. This has been shown for chironomid larvae collected from lakes, streams and backwater pools.
However, the relationship between CH4 concentrations and d13C values of chironomid larvae for in-stream impoundments is
unknown. CH4 concentrations were measured in eleven in-stream impoundments located in the Queich River catchment
area, South-western Germany. Furthermore, the d13C values of two subfamilies of chironomid larvae (i.e. Chironomini and
Tanypodinae) were determined and correlated with CH4 concentrations. Chironomini larvae had lower mean d13C values (2
29.2 to 225.5 %), than Tanypodinae larvae (226.9 to 225.3 %). No significant relationships were established between CH4

concentrations and d13C values of chironomids (p.0.05). Mean d13C values of chironomid larvae (mean: 226.8%, range: 2
29.2% to 225.3%) were similar to those of sedimentary organic matter (SOM) (mean: 228.4%, range: 229.3% to 227.1%)
and tree leaf litter (mean: 229.8 %, range: 230.5% to 229.1%). We suggest that CH4 concentration has limited influence
on the benthic food web in stream impoundments.
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Introduction

Allochthonous and autochthonous plant organic matter are

major sources of carbon and energy for freshwater ecosystems [1].

Recent studies have revealed that also methane, which can be

produced by microbial degradation of organic matter under

anoxic conditions, can significantly contribute to the carbon

budget of freshwater ecosystems [2]. Part of this gas is released to

the atmosphere, where it contributes to the pool of green house

gases [3], or is oxidized by methane oxidizing bacteria (MOB) [4].

The biogenic methane in MOB can contribute to the biomass of

chironomid larvae [5]. Chironomids are one of the most dominant

invertebrate groups in the soft sediments in freshwater ecosystems

and their larvae feed mainly on algae or allochthonous organic

material and associated microroganisms [6]. CH4 derived organic

carbon may constitute a crucial source of carbon and energy for

chironomids, in comparison to other aquatic invertebrates,

because their burrowing habit creates and exposes them to

oxyclines at the sediment-water interface, where MOB density and

CH4 oxidation rates are usually high [7–10]. For example,

chironomid larvae collected from some lakes were sustained (up to

70%) by CH4 derived carbon [11].

These quantitative estimates are based on the stable carbon

isotope signature (d13C) of CH4 which is highly depleted due to

carbon isotopic fractionation related to methanogenesis [12].

Additionally, MOB that oxidize CH4 are usually characterized by

further depletion in d13C [13]. Therefore, organisms that consume

MOB have lower d13C values (typically ,240%; [14]), in

comparison to organisms that feed on plant organic matter (232

to 221 %; [15]). Bunn & Boon [16] determined the d13C values of

invertebrates in backwater pools and found Chironominae larvae

to have d13C values (,235%) that were lower than for particulate

organic matter (229 to 225 %). Kiyashko et al. [18] and Jones &

Grey [19] also reported lower (264 to 255 %) d13C values for

some chironomid larvae than for particulate organic matter in

lakes. The observed differences between d13C values of chirono-

mid larvae and potential food resources led to the conclusion that

the chironomid larvae might have fed on MOB, which has very

low d13C values. The carbon isotope composition of consumers

(e.g. insects) is determined by their diet and usually potrays an

enrichment by about 1 %, even though the d13C can deviate from

23 % to +3 % [20]. Given that methane is isotopically very

distinct, stable carbon isotopes are particularly useful for tracing

methane derived carbon [17].

Although most existing studies on the importance of CH4

derived carbon in freshwater food webs mainly focused on lakes

[2], a wide array of anoxic habitats with high potential for CH4

production also exist in rivers and streams [21–23]. Particularly,

impoundments increases the residence time of water, promotes

accumulation of organic matter and sediment, and have been

identified as hot spots of CH4 emissions [24]. Maeck et al. [24]

measured CH4 concentrations in riverine and impoundment

reaches and found sediment accumulation in dams to be the main
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source of CH4 emissions. Guérin et al. [25] reported an increase in

CH4 emissions at the downstream sides of impoundments as a

result of release of water enriched with CH4.

In shallow aquatic systems such as rice paddies and small lakes,

CH4 has been shown to be an important source of energy in the

benthic food webs [26–28]. In spite of the high abundance of small

in-stream ponds in smaller streams [29], the relationship between

CH4 concentrations and stable carbon isotope ratios (d13C) of

chironomid larvae in such systems has not been examined.

Globally, there exist millions of small impoundments (height ,

15 m; [30]). Within this study, we assessed (i) CH4 concentrations

in stream and pore-water and (ii) the relationship between CH4

concentrations and d13C values of chironomid larvae in impound-

ments located in the Queich River catchment area, South-western

Germany. We hypothesized that CH4 would have a significant

influence on the d13C of chironomid larvae.

Methods

Ethics statement
This study was conducted in the Queich River catchment area

(see coordinates below) and was not conducted in an area

requiring research permit (e.g. national park) or private land. This

study did not involve endangered or protected species.

Study area and sites
The study was conducted in the Queich River catchment area,

Rhineland-Palatinate State, South-western Germany. The Queich

River (length: 52 km) originates from the Palatinate forest

(49o1096oN 7o50948oE) and flows (mean discharge: 1.31 m3 s21;

www.geoportal-wasser.rlp.de) through the upper Rhine Valley to

its confluence with the Rhine River in Germersheim (49o13939oN

8o2394oE). The catchment (area: 271 km2) is primarily covered by

sandstone and is between 100 m and 673 m above sea level. The

Rhineland-Palatinate region has dry climate conditions in

summer.

Typical for most stream networks in central Europe, 67 small

in-stream impoundments (www.geoportal-wasser.rlp.de) have been

constructed on the main stem and tributaries of the Queich River,

South-western Germany, for various purposes such as hydropower

generation and flood control. Here, we selected eleven study sites

(e.g. Figure S1 in File S1) located from the downstream to the

upstream reaches of the Queich River catchment area (Figure 1,

Table S1 in File S1). The study sites were located at five different

streams. The sampled impoundments were approximately 0.5–2.0

metres deep and had water bypasses that transported water to the

downstream reaches.

Water chemistry and physical characteristics
Field measurements and sampling were conducted between 9th

and 24th June, 2013. Data collection was done between 9 a.m. and

4 p.m. Electrical conductivity, temperature, dissolved oxygen

concentration and pH of stream water were measured in situ with

a WTW Multi 340i/SET (Wissenschaftlich Werkstätten GmbH,

Weilheim, Germany). Average water depth was computed from

three measurements taken on a transect across the river channel

and current speed was estimated by timing a float over a distance

of 5 metres [31]. Water discharge was calculated from velocity,

width and depth [31]. Water residence time was calculated as

follows:

T~
V

Q
ðiÞ

where: T is the water residence time, V is the volume of water

stored in the impoundment, and Q is the water discharge [32].

Nitrate and phosphate concentrations in stream water were

determined in the laboratory using Macherey-Nagel viscolor kits

(Macherey-Nagel, Düren, Germany).

CH4 concentrations
Concentrations of dissolved CH4 in stream and pore-water were

measured at the impoundments. Water samples were collected

from each study impoundment using 20 mL serum bottles. The

samples for stream water CH4 analysis were collected by filling

water to the sample bottles from the bottom to top, and

overflowing the sample bottles several times over. Three bottles

were completely filled with water at each sampling site and several

drops (250 mL) of mercuric chloride were added to each bottle as

preservative [33]. The bottles were capped and sealed and

transported to the laboratory. A headspace was prepared by

replacing 10% of the bottle (i.e. 2 mL) with nitrogen gas. To

generate the headspace, each sample bottle was held upside down

and a 20 gauge needle was inserted through the septum. Then

2 mL nitrogen gas was added to each bottle using a syringe, while

the replaced water sample escaped through the needle. The

samples were manually shaken, for 1 minute, to equilibrate the gas

between the headspace and the water [34]. The samples were

analyzed using a CH4 analyser (Los Gatos Research Inc.,

Mountain view, CA, U.S.A.). A closed loop was created between

the gas inlet and outlet of the analyser. A gas tight syringe was then

used to inject 0.5 mL gas sample into the closed loop. The CH4

concentrations were averaged over 30 seconds before and after gas

injection. Concentration of the injected gas was computed as:

csample~
DcLosGatos(VLosGatoszVInjection)

VInjection

ðiiÞ

where: csample is the mol fraction of the sampled gas in parts per

million, DcLosGatos is the change in mole fraction before and after

gas sample injection, VLosGatos = 92.5 mL and VInjection = 0.5 mL.

Sediment samples for pore-water CH4 analysis were obtained at

the impoundments, where fine sediment accumulated. Pore-water

CH4 concentrations were assessed from sediment cores (1 core per

site). Cores were taken at location of soft sediment using a piston

corer and analyzed for porosity, carbon:nitrogen (C:N) ratio, total

organic carbon (TOC) content and pore-water CH4 concentra-

tion. Cut-off syringes (3 mL) were used to extract sediment sub-

samples which were immediately placed into crimp capped 20 mL

vials containing 3 mL of 2.5% NaCl solution for conservation of

the CH4. Pore-water was sampled in the cores from the

homogenized upper (0–10 cm) sediment layer, where chironomid

larvae are found [35]. The pore-water CH4 samples were

measured as described for water samples. For C:N ratio, TOC

and porosity, three sediment sub-samples were extracted from the

cores (0–10 cm) and placed into glass tubes before analysis in the

laboratory.

Chironomid sampling and processing
Chironomid samples were collected from the deepest point in

each impoundment using an Ekman grab sampler (Hydro-Bios,

Kiel, Germany). Sediments were sieved by passing them through
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two metal sieves (mesh size: 500 mm and 2 mm). Materials such as

stones and large pieces of organic matter (.5 cm) were removed

and chironomid larvae were picked from a sorting tray using

forceps and placed into 500 mL sample bottles containing river

water. In some sites only few chironomids (,5 chironomids) were

found. The chironomid samples were transported to the labora-

tory and transferred to sample bottles containing clean tap water

for 24 hours to allow gut clearance. Faecal materials were

periodically removed to prevent ingestion by chironomids [36].

Chironomids were sorted by tribe and subfamily [37–40] and size

(instar) [41,42] under a dissecting microscope (magnification: x 40-

100). Chironomids of the same tribe, subfamily and size were

pooled to obtain sufficient mass (0.5–1 mg) for isotope analysis

[43]. Sorting of chironomids by size was done to detect the

potential effect of body size on the isotopic signal as demonstrated

by Grey et al. [44]. In most cases the limited number of specimens

excluded replicate analyses. Therefore, we collected individuals

from a site with a high abundance of chironomids to exemplarily

determine the d13C variability from 9 replicates. Second instar

larvae were discarded as they were too small for identification and

their mass was insufficient for isotope analysis. Before isotope

analysis, chironomids were placed into glass tubes, oven dried at

60uC for 24 hours and subsequently stored in a desiccator.

Stable isotope, TOC and C:N analyses
Three replicate sediment samples, from each site were analysed,

for d13C of sedimentary organic matter (SOM), TOC and C:N

ratios. They were rinsed with a 2.5% HCL solution for four hours

to remove carbonates [45], rinsed three times with demineralised

water, oven dried at 60uC for 24 hours and ground using a mortar

and pestle. Leaves, for analysis of d13C of potential allochthonous

food resources, were collected from trees near the impoundments,

washed with demineralised water, rinsed, oven dried and ground

before analysis.

Sediment samples for C:N ratios and TOC were weighed into

tin cups (15–20 g) and analysed using a Vario Microcube

elemental analyser (Elementar Analysensysteme, Hanau, Ger-

many). The chironomid, SOM and leaf litter samples for stable

isotope analysis were also weighed (approximately 0.5–1.0 mg for

chironomids and 5–20 mg for SOM and leaf litter) into tin cups

before their combustion in an isotope ratio mass spectrometer

(ThermoScientific, Bremen, Germany). Stable isotope ratios were

expressed in per mille (%).

Statistical analysis
Relations between variables were tested using Spearman’s rank

correlation test [46]. Comparisons of CH4 concentrations in pore

and stream water, and between d13C values of chironomids, and

leaf litter and SOM were done using paired t-test. A value of p,

0.05 was considered as statistically significant. Homogeneity of

variances was examined with Bartlett’s test and data were square

root transformed to improve normality. Statistical analyses were

done using the R statistical package [47] and all data are provided

in File S1.

Figure 1. Locations of the study impoundments in the Queich River catchment area.
doi:10.1371/journal.pone.0111392.g001
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Results

Water chemistry and physical characteristics
Water residence time varied from 0.5 to 6.0 minutes. Nutrient

concentrations in stream water ranged from 3.5 to 5.0 mg NO3 L21,

and from 0.1 to 0.3 mg PO4 L21. Water temperature ranged from

10.2 to 18.6uC, whereas electrical conductivity, dissolved oxygen

concentrations and water discharge ranged from 61 to 380 mS cm21,

8.5 to 11.9 mg L21 and 0.2 to 7.8 m3 s21 (Table S1 in File S1).

Methane gas concentrations
Average values of dissolved CH4 concentrations in stream water

ranged from 0.07 mmol L21 at Site 6 to 0.7 mmol L21 at Site 10

(Table 1). Pore-water CH4 concentrations ranged from 0.3 mmol

L21 at Site 7 to 1657.5 mmol L21 at Site 9, and were statistically

significantly (t-value = 3.1, p = 0.005) higher than the stream water

CH4 concentrations. Some pore-water CH4 measurements at sites 3

and 6 differed greatly from the other measurements, either due to

disturbance during sampling or gas leakage during analysis, and were

therefore taken to be unreliable and excluded from further analysis.

d13C of SOM and leaf litter, C:N ratios and TOC
d13C values of SOM ranged from 229.3% at site 7 to 227.1%

at site 3 (Table 1), whereas d13C values of leaf litter ranged from 2

30.5 % to 229.1%. C:N ratios of sediment and the TOC ranged

from 12.0 at site 3 to 23.2 at site 2, and from 0.2% at site 3 to 3.1%

at site 2, respectively (Table 1).

d13C of chironomids
The chironomids were identified as Chironomini, Tanypodinae

and Chironomus sp. Chironomus sp. were only found at site 10 and

were not analyzed because they did not provide an adequate

pooled mass for isotope analysis. The lowest d13C value, 229.2 %,

was measured in a third instar Chironomini larvae collected from

site 8, whereas the highest d13C values, 225.3 %, were measured

in third instar Tanypodinae larvae collected from Sites 9 and 11

(Table S2 in File S1). Generally, the highest mean d13C values

were measured in third (225.360.01%) and fourth (226.360.14

%) instar Tanypodinae, whereas slightly lower mean d13C values

were measured in fourth (227.260.16 %) and third (226.960.25

%) instar Chironomini. d13C values did not differ significantly

between third and fourth instar Chironomini larvae (t-value = 1.4,

p = 0.17). The analysis of 9 replicates of fourth instar Chironomini

larvae from site 4 had a standard deviation as low as 0.19 % for

d13C (Table S2 in File S1). No significant correlations were

observed between CH4 concentrations and d13C values of

chironomids (Figure 2, Table 2). However, d13C values of

chironomid larvae were significantly correlated to those of the

SOM and to each other within site (p,0.05) (Table 2). Mean d13C

of chironomid larvae (226.8 %) was more similar to that of the

SOM (228.4 %) than leaf litter (229.8 %) and there were

significant differences (p,0.05) between d13C values of chirono-

mids, and SOM and leaf litter.

Discussion

Methane gas concentrations
CH4 concentrations measured in this study are comparable to

those measured in other aquatic ecosystems [48–50]. Pore-water

CH4 concentrations showed a highly variable pattern among the

impoundments (Table 1). These differences can be attributed to

heterogeneity in the distribution of sedimentary organic materials

within the impoundments. Sanders et al. [51] found pore-water

CH4 concentrations to be influenced by sediment heterogeneity.
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The authors reported that enhanced retention of sediment by

macrophytes (Ranunculus penicillatus) increased pore-water CH4

production in streams. Significantly higher mean CH4 concentra-

tions were recorded in pore than stream water. This can be

explained by the fact that CH4 is usually produced in sediments,

where anoxic conditions are likely to develop, whereas the stream

water is rather well oxygenated (Table S1 in File S1) [21].

Relationship between d13C of chironomids and methane
gas

Few studies examined CH4 as a source of carbon and energy for

stream invertebrates (e.g. [52]). In these studies, mean d13C values

of invertebrates supported by CH4 derived carbon were lower

(,240 %) than those of potential photoautotrophic food

resources, indicating ingestion and assimilation of MOB, which

had oxidized isotopically light CH4. This was also demonstrated

for lake invertebrates [7,43,53], where significant negative

relationships between CH4 concentrations and d13C values of

some invertebates indicated ingestion and assimilation of MOB.

Mean d13C of chironomid larvae ranged from 227.2 (fourth

instar Chironomini) to 225.3 % (fourth instar Tanypodinae). The

mean d13C values of potential food resources ranged from 228.4

(SOM) to 229.8 % (leaf litter) and were significantly correlated to

those of the chironomids. The similarity of d13C of Chironomini

larvae and SOM can be attributed to the fact that Chironomini

larvae are either filterers or gathering-collectors, feeding on fine

particulate organic matter in aquatic systems [54]. In comparison

to Chironomini, Tanypodinae utilize different types of food (e.g.

detritus, oligochaetes, diatoms; [55]) and their d13C values may be

difficult to interpret when compared with the other chironomids.

The differences between the d13C values of chironomids, SOM

and leaf litter were within the reported range (63 %) of d13C

values for consumers and their food resources [20].

In the current study, no significant relationships were

established between CH4 concentrations in stream and pore-

water and d13C values of chironomid larvae. In the UK, Trimmer

et al. [52] found river water to have higher mean (0.16 mmol L21)

CH4 concentrations than pore-water (0.07 mmol L21). Highly

depleted mean d13C values (,242 %) of Trichoptera larvae

(Agapetus fuscipes), relative to those of potential food sources (238

%), were only measured in areas with low pore-water CH4

concentrations. In comparison to Trimmer et al., we recorded

higher mean CH4 concentrations in stream and pore-water and

the mean d13C values of chironomid larvae were not low. The type

of food consumed by chironomids and presence of MOB influence

the d13C values of chironomid larvae. The short water residence

times and the shallow nature of the studied impoundments could

have enhanced water turn over rates, mixing of the entire water

column and supply of organic matter or periphyton into the

benthic zone. Thus, in the case of chironomid larvae feeding on

sedimenting organic matter, we would anticipate their d13C to be

similar to that of their food resources. Mixing of the water column

may also increase oxygen concentration and CH4 oxidation rates,

and reduce CH4 production and the biomass of MOB available to

chironomids [9]. For example, Eller et al. [9] recorded two fold

higher MOB density in the anoxic waters (0.1 mg L21 O2) of a

stratified lake than in the well mixed and oxygenated waters (9 mg

L21 O2) of a polymictic lake. Additionally, the contribution of

Figure 2. Relationships between pore-water CH4 concentrations and d13C values. TNP 4th, CMI 3rd, CMI 4th and SOM stands for
Tanypodinae fourth generation, Chironomini third and fourth generation, and sedimentary organic matter, respectively.
doi:10.1371/journal.pone.0111392.g002
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MOB to chironomid larvae biomass was higher in the anoxic than

oxygenated waters. Jones et al. [11] found that the contribution of

MOB to the chironomid larvae biomass was highest at sites with

low dissolved oxygen content (2–4 mg L21). Within the above

mentioned studies, the isotopic values of chironomids were more

similar to those of the SOM, when they were collected from

sediments overlaid by well oxygenated waters. Use of MOB was

particularly pronounced under hypoxia or post mixing following

on from stratification.

d13C values of chironomid larvae (mean = ,227 %; 229 to

225 %) were similar to those of SOM (mean = ,228 %; 229

to 227 %) and leaf litter (mean = ,229 %; 230 to 229 %).

Additionally, d13C values of chironomid larvae were significantly

correlated to each other. Given that the d13C values varied little

between consumers and their food sources [56], the chironomid

larvae collected from the sampled impoundments most likely

obtained their carbon through ingestion and assimilation of SOM

or allochthonous leaf litter. Other studies using stable carbon

isotope analysis also demonstrated SOM and allochthonous plant

organic matter as significant sources of carbon and energy for

freshwater invertebrates [57]. The C:N ratio can be used to

determine the source of organic matter in aquatic ecosystems

because autochthonous organic matter generally has lower C:N

ratios (e.g. algae: 4–10; [58]) than allochthonous organic matter.

The measured C:N ratios (12.0–23.2) of sediments indicated

elevated proportions of allochthonous organic matter.

Although the d13C values of chironomid larvae did not indicate

utilization of methane derived carbon, other invertebrates could

have used it as a source of energy. For example, Kohzu et al. [59]

found coleopterans collected from backwater pools to have lower

mean (240 to 267 %) d13C values than the other invertebrates

(e.g. chironomids; 236 %), suggesting increased utilization of

methane derived carbon. In summary, this study reveals that

methane derived carbon did not contribute substantially to

chironomid larval biomass in small impoundments, rather that

allochthonous organic matter was the main source of energy.

Future studies assessing the role of methane derived carbon in

stream impoundments should include MOB community charac-

terization, CH4 oxidation rates and fluxes, and d13C values of

other invertebrates.
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