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A B S T R A C T

The study of infectious disease outbreaks is required to train today’s epidemiologists. A typical way to introduce
and explain key epidemiological concepts is through the analysis of a historical outbreak. There are, however,
few training options that explicitly utilise real-time simulated stochastic outbreaks where the participants
themselves comprise the dataset they subsequently analyse. In this paper, we present a teaching exercise in
which an infectious disease outbreak is simulated over a five-day period and subsequently analysed. We itera-
tively developed the teaching exercise to offer additional insight into analysing an outbreak. An R package for
visualisation, analysis and simulation of the outbreak data was developed to accompany the practical to re-
inforce learning outcomes. Computer simulations of the outbreak revealed deviations from observed dynamics,
highlighting how simplifying assumptions conventionally made in mathematical models often differ from rea-
lity. Here we provide a pedagogical tool for others to use and adapt in their own settings.

1. Introduction

An understanding of non-linear mechanisms that produce chains of
transmission underlying outbreaks and epidemics is central to in-
fectious disease epidemiology. Consequently, outbreak simulation is
increasingly used as a teaching tool. Approaches to simulating real-life
epidemiological data range from simple (e.g. rolling a dice) to complex
(e.g. electronic barcode scanning), resulting in the generation of data-
sets that can then be analysed for epidemiological parameters of in-
terest (Moore, 2017; Hayward, 2017).

Several recent infectious disease outbreaks have received much at-
tention owing to their potentially high impact on public health. For
instance, the Middle East Respiratory Syndrome Coronavirus (MERS-
CoV), first reported in Saudi Arabia in 2012, currently circulates at a
sub-critical level causing sporadic outbreaks (Cauchemez et al., 2014;
Cauchemez et al., 2016). The West African Ebola epidemic caused over
28,600 cases between 2014 and 2016 (WHO Ebola Response Team
et al., 2016) and its subsequent decline coincided with the emergence of
Zika virus transmission in Brazil (Cugola et al., 2016). Following an
outbreak of pathogens such as these, initial investigations include es-
timating the potential for onward transmission (i.e. the basic re-
productive number, R0 (Anderson and May 1992)) and understanding
key epidemiological features to inform possible control policies. Such

epidemiological studies have been crucial to understanding and
managing the transmission dynamics of important outbreaks such as
Severe Acute Respiratory Syndrome (SARS) in 2003, swine flu in 2009,
and more recently for MERS, Ebola and Zika (Cauchemez et al., 2014;
Riley et al., 2003; Cauchemez et al., 2009; WHO Ebola Response Team,
2014).

Outbreak exercises are an established tool for field epidemiology
training. Often employed by national and international public health
agencies, different case studies such as foodborne outbreaks are used to
train epidemiologists to track down the aetiological agent and then
apply appropriate control measures (CDC, 2017a; Public Health
England, 2017). Case studies of infectious disease outbreaks are used in
classroom teaching to introduce students to key epidemiological con-
cepts such as the incubation period, serial interval, attack rate, and the
basic reproductive number (R0) (Ponder and Sumner, 2009; Betancourt-
Bethencourt et al., 2016). Other outbreak exercises are designed to train
individuals as case investigation interviewers to increase the public
health surge capacity (Gebbie et al., 2007). In addition, virtual exercises
and complex computer simulations which incorporate network models
have been used as teaching tools (Huang et al., 2010; Neulight et al.,
2007; Hsieh et al., 2006). Furthermore, there are now numerous in-
teractive online teaching resources that allow the user to ‘solve’ out-
breaks by playing the epidemiologist (Barber and Stark, 2015; CDC,
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2017b; Center for Technology in Teaching and Learning, Rice
University, 2017). The University of Cambridge provides a selection of
online games where the aim of the game is to infect as many people as
possible using the characteristics of a specific infectious disease such as
influenza (Cambridge Infectious Diseases, 2017). More widely, the
potential for virtual role-playing games which exhibit social dynamics,
economies and player-objectives resulting in complex networks to be
used as model case studies have also been considered (Castronova,
2003; Balicer, 2007).

However, there are few training modules that explicitly use real-
time simulated stochastic outbreaks where the participants themselves
comprise the dataset they subsequently analyse (Bellan et al., 2012;
Darwiche and Bokor, 2016). Participation in a real-time simulated
outbreak and analysing the resulting data reinforces and affords a better
understanding of important concepts while gaining insight into the
process of infectious disease transmission. To meet this need, Bellan
et al. developed a pedagogical approach to bridge the divide between
classical and dynamical epidemiology (Bellan et al., 2012). This ap-
proach involved real-time simulation of a stochastic outbreak among
participants, which ranged from university undergraduate students to
academic professors, attending an epidemiology training course. We
adapted the approach developed by Bellan et al. and used it as a
teaching tool for postgraduate epidemiology students by simulating a
five-day outbreak among five consecutive student cohorts (2012–2016
inclusive). Here we describe how we conducted the outbreak simulation
and how the data are analysed. We provide the teaching materials for
others to adapt and use in their own settings.

2. Materials and methods

A stochastic outbreak was simulated over the course of five days.
The outbreak was simulated within postgraduate students of five con-
secutive student cohorts (2012–2016 inclusive) of the MSc in
Epidemiology at Imperial College London. The infectious agent was
represented by a paper form (see Supplementary Material). Students
acquired “dide-disease” (an imaginary infection) by receiving a form
from a fellow student and transmitted infection by handing out new
forms.

The outbreak was seeded on day one by discretely handing an in-
fection form to three students at random. These paper ‘inocula’ con-
tained a list of instructions. Upon receiving the infection form each
student sent an e-mail to the dataset curator to notify that they had
been infected. The number of new infections to be transmitted was
determined by a random draw from a Poisson distribution with a mean
of 1.8, corresponding to the basic reproductive number for the out-
break. Students then printed out the required number of infection
forms, located on a shared drive. Students were instructed to do all
onward transmitting within 48 h. Whether or not symptoms occurred
was determined by a random draw from a Binomial distribution with a
mean of 0.8. Symptoms were also reported to the dataset curator via e-
mail. Each infected student listed on their infection form the names of
those whom they had transmitted to and the time of transmission.
Students recovered by placing their form in a ‘recovery box’ in their
classroom. Students were instructed to place their form in the recovery
box immediately after giving out all their infection forms. Infection was
assumed to confer lifelong immunity.

The data were collated in a spreadsheet software (MS Excel®,
Microsoft Corporation), and analysed by the students in a practical
session to analyse the outbreak. During the practical, students plot the
time series of the outbreak, calculate the basic and reproductive num-
bers as well as other key epidemiological parameters such as latent,
incubation and infectious periods. Calculating these and other proper-
ties such as the proportion of infections transmitted asymptomatically
permits discussion regarding ease of control of “dide-disease”. The in-
fection form, practical handout and dataset templates are provided for
others to adapt for their own use (see Supplementary Information).

When calculating the effective reproductive number (Rt), we use
day of acquisition, regardless of date of onward transmission. Two
different cumulative attack rates are calculated: an attack rate based on
whether students were infected at all, and a clinical attack rate based
only on whether students displayed symptoms. We exclude the seeds
when calculating the cumulative attack rate, as the aim is to describe
the process in the population of interest rather than the external process
that triggered the outbreak via the seeds. Given that the time of ac-
quisition, onset of symptoms (if any), onward transmission and re-
covery are documented, the latent, infectious and incubation periods
can easily be calculated. When estimating the generation time, we use
only successful transmissions, rather than all attempted transmissions,
as this is the closest analogue to what is observed in real outbreaks.
However, in real outbreaks it is the serial interval, rather than the
generation time that is typically observed.

For visualisation, analysis and simulation of the outbreak data, an R
package and accompanying tutorial was developed and is freely avail-
able at https://github.com/mrc-ide/outbreakteachR. Visualisation of
the temporal dynamics of the outbreak’s transmission network were
animated at discrete intervals. Where contact tracing data was missing,
the most probable source of an infection was imputed. Data imputation
in this way first identified potential source individuals who were in-
fectious at the time of the individual’s infection. The individuals most
likely to have caused an additional infection were then extracted. This
was based on how many onward infections they had already caused and
the basic reproductive number for the outbreak given by a Poisson
distribution with mean 1.8. From these individuals a random source
individual was chosen.

For comparison, several outbreaks with identical initial conditions
were simulated. Each simulation was seeded with three infections, the
population size was set equal to the students’ class size and the outbreak
was simulated for five days. In common with the paper-based outbreak,
the number of secondary infections was drawn from a Poisson dis-
tribution with a mean of 1.8. The generation time and recovery period
were sampled in two ways:

(i) by sampling from a Poisson distribution with a mean equal to the
observed mean generation time and recovery period respectively,

(ii) by sampling from the observed distribution of generation times and
recovery periods.

For each of the five years, 2000 outbreaks were simulated using a
discrete-time approach with hourly intervals in line with the students’
timetable. The simulated time-series was then compared to the ob-
served time-series.

3. Results

Data for five outbreaks are presented (2012–2016) and together
illustrate clearly how, despite key parameters being constant, stochastic
effects and differences in behaviour from year-to-year affect the out-
come of the outbreak. For each year, identical starting conditions were
used (i.e. the outbreak was seeded with three infections and an R0 of 1.8
was assumed). The class size increased over time from 56 students in
2012–84 in 2016. Each outbreak showed different temporal transmis-
sion dynamics (Fig. 1), however, each outbreak was broadly sum-
marised by having one major chain of transmission resulting from one
of the three seeds. Both 2012 and 2016 had a secondary smaller cluster
of infections and a single infection event resulting in a dyad. In 2012
and 2016 the majority of transmission occurred within the first two
days in 2016, whereas the majority of transmission occurred between
the second and fourth days in 2012. The outbreaks from 2013, 2014
and 2015 were notably slower, with comparatively little transmission
until the last two days. We also visualised the infection networks
evolving over time (see Supplementary Movies).

A strong time effect was observed within each outbreak, with the
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majority of transmission observed within short windows of time each
day when frequent contacts occurred. This is highlighted within the
visualisation of the outbreak, which show long periods of inactivity
(Supplementary Movies). This effect can be seen in the strongly mul-
timodal distributions describing the students’ behaviour (Fig. 2).

There was substantial variation in the cumulative attack rate, with
between 26% − 83% students uninfected at the end of each outbreak.
Saturation effects were also observed in each year, with an overall
decline in the proportion of infectious contacts that led to successful
infections observed from day 1 to day 5, except in 2013 reflecting the

observed low cumulative attack rate for that year.
Computer-simulations of a process similar to the classroom outbreak

reveal potential explanations for some of the differences between years.
For the 2016 outbreak, the number of infected individuals peaked at 28
on day 2 (Fig. 3a). Simulated numbers of susceptible, infected and re-
covered individuals broadly capture the magnitude of the outbreak.
However, the simulated curves are delayed by approximately two days
when the generation and recovery times are sampled from a Poisson
distribution (Fig. 3b).

Sampling from the observed distributions provides an improved

Fig. 1. Daily infection networks. The infection network is represented at daily intervals, with individuals either susceptible (blue), infected (red) or recovered (green). The networks are
directional, indicating the source of onward transmission events. Individuals who remained uninfected throughout the five days are represented by unconnected blue nodes. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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representation, with the diurnal patterns of the outbreak being better
captured by the simulated mean, though a discrepancy remains
(Fig. 3c). Subsequent comparisons between the simulated outbreaks
and the observed outbreaks were consequently made with simulations
using the empirical re-sampling method (Fig. 4).

Simulations captured the observed outbreak in 2012 well, however,
simulations proceeded too quickly for 2013, 2014 and 2015, and failed
to accommodate the slow transmission dynamics over the first 3 days
followed by bursts of transmission in the final 2 days. In contrast, the
simulation method lagged the 2016 outbreak and failed to capture the
fast transmission dynamics on the first day.

4. Discussion

We successfully simulated an outbreak of an infectious agent among
a class of epidemiology and public health students. Working with a
perfectly observed outbreak allowed students to estimate directly key
quantities such as the reproductive number (see Supplementary Fig. 1),
generation time, and latent, incubation and infectious periods. In ad-
dition, key concepts including analysis of transmission networks and
how this relates to the data time-series obtained from an outbreak of
infection were explored. Comparing each of the five outbreaks provided

students with an awareness of stochastic effects that distinguish out-
breaks amongst years.

Simulating an infectious disease outbreak in the classroom is an
engaging exercise as students actively participate and comprise the
dataset they subsequently analyse. Analysing the outbreak data, in both
excel and R, is a useful teaching exercise as it reinforces definitions
previously covered in lectures. Active learning has been found to be
more effective than traditional exposition-centered (“teaching by
telling”) approaches. Active learning can take many forms and has been
defined as “engaging students in the process of learning through ac-
tivities and/or discussion in class. It emphasizes higher-order thinking
and often involves group work” (Freeman et al., 2014). A recent meta-
analysis of 225 studies found that use of active learning in under-
graduate science, technology, engineering and maths courses, improves
exam performance (Freeman et al., 2014). Active learning was also
found to be particularly beneficial at improving performance on “con-
cept inventories”. Thus, our constructivist approach, whereby students
experience and then reflect, lends itself well to this particular teaching
exercise, as the objective is to reinforce concepts and definitions.

Panel: How to run the outbreak exercise

Fig. 2. Epidemiological parameters. Distributions for each year are presented using box and whisker plots, with each box representing the interquartile range (IQR) and the median. The
whiskers extend to 1.5 * IQR above and below the upper and lower quartile respectively. The individual data are overlaid as a solid black circles. The plot spreads out data points to make
them visible.

Fig. 3. 2016 outbreak time series. Observed data (a), simulated data with Poisson sampling (b) and simulated data with empirical re-sampling (c). Shaded areas show the interquartile
range of the simulated outbreaks, with the simulated mean shown as a dashed line.
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What is required?

•An infection form

• A list of all students in the class

• An easily accessible shared drive where the infection form and
class list can be accessed

• A means by which students can draw a number from a distribution
(e.g. a Poisson distribution)

• A location to store ‘recovered’ infection forms, or use an online
form

Practical tips for running the outbreak:

•Finalise a class list of all participating individuals before seeding
the outbreak

• Emphasise that not everyone in the class will get infected

Fig. 4. 2012–2016 Outbreak time series and comparative simulations. Observed outbreak data is presented for each year with solid lines, and the output of 2000 replicate simulations
data with empirical re-sampling shown as a dashed line with the interquartile range shown as shaded areas.
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• Students can only acquire infection if someone hands them the
paper form i.e. they cannot infect themselves by downloading the
infection form

• If infected, students need to follow all the instructions carefully

• When transmitting the infection, students must only hand the
infection form to someone listed on the class list

• Students need to make sure to put their name on the form and the
names of those they have infected

Over the five years, the class size increased, however, this did not
appear to affect the ability for an outbreak to be sustained, with the
smallest and largest class sizes (2012 and 2016 respectively) yielding
the highest cumulative attack rate. Importantly, the outbreak never
experienced stochastic fadeout across the five days of the outbreak,
with new infections still occurring on day five in all years. Overall, the
outbreaks presented with short incubation and infectious periods, but
comparatively longer and more variable latent periods. The increased
variance in the latent period, and subsequently the generation times,
was typified by the strongly diurnal patterns in the behaviour of the
students, with most events occurring within their timetable. It is in-
teresting to observe the decline in transmission exhibited on the third
day of the 2012 and 2016 outbreak, which could reflect the absence of
afternoon classes on Wednesday. However, this effect is hard to be
definitive about, with the outbreaks in 2013–2015 exhibiting low levels
of transmission over the first three days.

The human simulation is different from a computer simulation of
the same system. Sampling the generation time and recovery time di-
rectly from the observed distributions, rather than sampling from a
Poisson distribution with a mean based on the observed data, markedly
improves the closeness of the simulated outbreak to the observed out-
break. This effect can be explained by the multi-modal nature of the
distributions seen within the outbreaks, reflecting the strong diurnal
time-effects observed, which weakens the suitability of a unimodal
distribution such as the Poisson distribution.

Although the simulated outbreaks largely failed to capture the
2013–2016 outbreaks, we are able to use these discrepancies as a
teaching exercise, through both highlighting the weaknesses of the
mathematical model we used, and to highlight phenomena within the
observed outbreaks that are typical within real outbreaks. Firstly, the
simulation lagged behind the observed outbreak in 2016, due to the
large amount of transmission that occurred on day 1 (see
Supplementary Fig. 2). The lengthening generation times in 2016 could
represent a degree of waning enthusiasm from the students, which
would invalidate the time-independent sampling used within the si-
mulations. Secondly, the long latent times exhibited at the beginning of
the 2013–2015 outbreaks, combined with a burst of shorter generation
times at the end of these outbreaks, yields another time-dependant ef-
fect upon the distribution of generation times. These effects, combined
with the lower population mean number of secondary infections ob-
served in these years, offer a potential explanation for the poor pre-
dictions afforded by the simulations. Additionally, these effects also
demonstrate a teaching point concerning the potential for time de-
pendent effects to occur in outbreaks, representative of real outbreaks
(Chowell et al., 2015; Nishiura, 2010), and the difficulties they present
in mathematical modelling. The slower transmission in 2013–2015 is
illustrative of commonly observed stuttering chains of transmission that
occur prior to sustained chains of transmission (Dibble et al., 2016).

This teaching exercise provides a flexible template which can easily
be modified for other audiences, such as public-health professionals and
policy makers. For example, a more advanced class with prior experi-
ence of epidemiological modelling could calculate clustering coeffi-
cients and path lengths to assess deviation from a random mixing as-
sumption. For a larger class, students could calculate R0 from the final
class size and growth rate, and compare to the observed R0. The out-
break itself could be adapted to run over a shorter or longer time period
(by altering R0 or time in which onward transmission should occur) and
could also be elaborated by looking at the impact of interventions to

reduce transmission, such as vaccination, whereby some students are
immune to infection. As noted by Bellan et al., the outbreak could be
elaborated to include multiple pathogen strains with different proper-
ties (such as infectiousness, symptomatic proportion and infectious
period).

These data collected over five years highlighted a number of lim-
itations within the methodology of the practical. Firstly, the paper
‘inocula’ form was largely well completed by students, however, there
were a number of missing data. A large degree of the missing in-
formation could be imputed once all the data was collected, but there is
no guarantee that participants will always fill the form in fully or ac-
curately. This represents a key issue in data collection (Owada et al.,
2016), one which is often addressed with the design of more intuitive
and robust surveillance tools and software. To address this, an online
form, utilising both automated data fields and required data entry
fields, has been designed for use in the future as an alternative to the
paper form (see Supplementary Form). It is hoped that this will also
strengthen participant engagement and will help prevent students
‘forgetting’ about the outbreak, which appeared to occur on a few oc-
casions when observed latent periods were greater than 48 hours (see
Supplementary Fig. 3). Secondly, the initial practical spreadsheet was
designed to emphasise how epidemiological quantities such as the
generation time and latent periods are calculated, as well as for plotting
the outbreak time series. While this was helpful for introducing these
calculations, we found that this analysis was overly time consuming and
reduced the ability to explore additional epidemiological concepts such
as the cumulative attack rate and saturation effects. Consequently, we
redesigned the spreadsheet to automate specific sections of the analysis,
thereby improving the pedagogical experience (see Supplementary
Datasets).

In conclusion, we present five years of data in response to the ap-
proach presented by Bellan et al. (Bellan et al., 2012). Furthermore, we
have introduced several new features to extend the pedagogical insights
afforded by this approach, in particular the incorporation of a networks
component, and the focus on comparing modelled results to the data
itself in order to demonstrate both the strength and potential limitations
of mathematical models. The approach could readily be modified for
other settings, for example over a longer or shorter period of time and is
a useful method to engage students and reinforce key epidemiological
concepts in a “real-world” setting. In addition, the R package is freely
available for extension and adaptation to consider alternative epide-
miological questions and analysis and provides a framework to in-
troduce discrete-time models.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.epidem.2017.12.002.
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