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Abstract

Cellulose binding domains (CBD) in the carbohydrate binding module family 1 (CBM1) are structurally conserved regions
generally linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on
plant cell wall polysaccharides, they are absent amongst most plant pathogenic fungal cellulases. A genome wide survey for
CBM1 was performed on the highly destructive plant pathogen Phytophthora infestans, a fungal-like Stramenopile, to
determine if it harbored cellulolytic enzymes with CBM1. Only five genes were found to encode CBM1, and none were
associated with catalytic domains. Surveys of other genomes indicated that the CBM1-containing proteins, lacking other
domains, represent a unique group of proteins largely confined to the Stramenopiles. Immunolocalization of one of these
proteins, CBD1, indicated that it is embedded in the hyphal cell wall. Proteins with CBM1 domains can have plant host
elicitor activity, but tests with Agrobacterium-mediated in planta expression and synthetic peptide infiltration failed to
identify plant hypersensitive elicitation with CBD1. A structural basis for differential elicitor activity is proposed.
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Introduction

Cellulose binding domains (CBD), are highly conserved regions

of family 1 carbohydrate binding modules (CBM), are generally

associated with catalytic glycoside hydrolases, whose members

include endoglucanases, exocellobiohydrolases and beta-glucosi-

dases. The non-catalytic CBD aids in anchoring to polysaccha-

rides, and is often separated from the catalytic region by a short,

flexible linker region rich in serine, proline and threonine [1].

These carbohydrate binding modules aid in specific binding, but

are required principally for binding to crystalline cellulose [2].

While CBM1 is ubiquitous on fungal saprophyte-encoded

glycoside hydrolases, they have thus far been absent in most

fungal plant pathogen-encoded glycoside hydrolases identified

subsequent to the first fungal phytopathogen endoglucanase

sequence reported [3–4]. Recently, genome sequence information

has become available for the major plant pathogenic organism

Phytophthora [5–6]. While sharing some similarities to phytopath-

ogenic fungi, Phytophthora is classified within the Stramenopiles,

separate from the fungal kingdom. In an effort to discover if

Phytophthora-encoded glycoside hydrolases follow the structural

paradigm of those found in fungal phytopathogens, a genome-

wide survey for CBM1 in Phytophthora infestans was initiated. A total

of five putative gene products were identified, however, none were

associated with any form of catalytic domain. The gene products

represent a novel group of Phytophthora proteins, with one or two

cellulose binding domains. As Phytophthora cell walls are comprised

largely of cellulosic glucans [7] it is probable that the cellulose

binding proteins are associated with the cell wall. One Phytophthora

glycoprotein with cellulose binding domains and a lectin binding

region, referred to as CBEL, was found associated with the cell

wall [8]. The CBEL protein, one of the cellulose binding domain

proteins also identified in our search, elicits plant defenses [8–9].

In our study we have focused on a previously unrecognized, 13 kD

cellulose binding protein, determining cellular location and elicitor

activity.

Results

We performed a genome-wide search of Phytophthora infestans

genes encoding family 1 carbohydrate binding modules (CBM1)

that are commonly found on cellulolytic enzymes from saprophytic

fungi. There were very few CBM1 motifs detected (Figure 1), and

none were associated with proteins having any type of catalytic

domain. Analysis of corresponding EST data from the numerous P.

infestans cDNA libraries that have been sequenced indicates that

CBD1, CBD4 and CBD5 are transcribed. Our research focused on

the previously undocumented CBD1, that is the smallest CBM1

containing protein (13 kD). The protein contains one CBM1, as

opposed to CBD4 and CBD5 (corresponding to a protein known as

CBEL), that contain two CBM1 regions. The protein has a signal

peptide (www.cbs.dtu.dk/services/SignalP), a region with high

probability of O-glycosylation (www.cbs.dtu.dk/services/NetO-

Glyc) and a CBM1 that is located near the C-terminus (Figure 2).

Interestingly, the CBM1 ends about 14 amino acids from the

terminus of a non-enzymatic protein, while CBM1 is situated at the

extreme terminus of cellulolytic enzymes. Homologues of CBD1 are

found in P. sojae, P. ramorum and P. capsici (Figure 3).
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To test the ability of P. infestans CBD1 to elicit a plant response,

expression in plants was mediated through infiltration of tobacco

and potato with Agrobacterium carrying pBI121-cbd1. Six days after

infiltration there were no signs of necrosis due to hypersensitive

reaction to CBD1. Western blots showed that the protein was

expressed in planta (data not shown). The possibility existed that the

CBD1 protein was somehow sequestered and unable to interact

with a potential receptor region, but this is unlikely as in planta

expression of the Phytophthora CBEL protein elicited necrosis [9].

Synthetic peptides were also tested to determine if host defense

could be elicited. The peptide, spanning the conserved CBM1

domain, was infiltrated at levels beyond that expected as

biologically relevant, yet necrosis was not observed during a one

week observation period.

During the initial isolation of CBD1, we precipitated proteins

found in the culture medium. Using an anti-CBD1 antibody, we

did not detect the protein in the filtrate. The antibody was then

used for immunodetection, to determine if the protein was

associated with the hyphae. A strong signal was apparent along

the hyphal and sporangial walls of P. infestans that emerged from

infected samples of potato leaf tissue (Figure 4A). The hyphae

growing through the tissue was also labeled (Figure 4B).

To determine the association of CBD1 with the hyphal wall,

various extraction methods were performed. Two effective

methods were found, boiling in SDS or overnight incubation in

Tris buffer (pH 9.5). Methods that would commonly elute CBM1

from cellulose were not effective [2, 18,20]. The higher pH of

30 mM NaOH (11.5) was also not suitable. SDS extraction

suggests interaction with other cell wall proteins. Total extractable

CBD1 was quite low indicating a resilient association with the cell

wall (data not shown).

Discussion

This genome wide screen provides the first comprehensive

evidence that Phytophthora retains the structural paradigm first

found for phytopathogenic fungi [3–4], where cellulolytic enzymes

are devoid of CBM1. Previous studies have clearly shown that

Phytophthora encodes cellulolytic enzymes, such as family 5 and

family 12 endoglucanases [10–11]. They are present as multiple

copy gene families and there was no evidence of CBM1 motifs in

these proteins.

The lack of CBM1 motifs on enzymes that may be critical to

early penetration and invasion by biotrophic and hemibiotrophic

fungi is becoming firmly established with the release of a wide

range of genome sequences. Scanning numerous phytopathogenic

fungal genomes we find that most lack CBM1 altogether. In

special cases CBM1 can be identified with cellulolytic enzymes

from phytopathogenic fungi, however they are found in necro-

trophic pathogens. For example, Pyrenophora tritici-repentis, causal

agent of tan spot disease of wheat, harbors a glycosyl hydrolase

family 61 with a C-terminal CBM1 (accession XP_001936606).

This particular fungus has a number of cellulolytic enzymes with

CBM 1. Putative cellulolytic proteins with CBM 1 can also be

detected in necrotrophic fungi such as Phaeosphaeria nodorum

(accession EAT77212) and Verticillium dahliae (accession

BQ109945).

Cellulolytic enzymes are not the only catalytic proteins that may

contain a CBM1 region. In one very well documented case [12],

the phytopathogenic fungus Colletotrichum gloeosporiodes f. sp. malvae

was found to express two different pectin lyase genes, one included

a CBM1 (accession AF158256). This is of particular interest as this

phytopathogen undergoes a transition from hemibiotroph to

necrotroph during disease progression. The pectin lyase with a

CBM1 was only expressed during the necrotrophic phase.

The apparent negative selection against the presence of proteins

with CBM1 motifs in phytopathogenic fungi is most likely due to

their elicitor activity when recognized by potential host plants [13].

Plants do not encode CBM1 motifs, thus recognition and response

to these motifs would be expected to limit the invasive ability of a

fungus. Recent studies on CBEL (Carbohydrate-Binding Elicitor

Lectin), a glycoprotein with two CBM1 regions, that is found in

numerous Phytophthora species and is included in this genome

survey, further supports the idea that CBM1 can act as a type of

elicitor form referred to as a ‘‘pathogen-associated molecular

pattern’’ or PAMP [8–9].

While the lack of elicitation by CBD1 or the synthetic peptide

seems contrary to our initial hypothesis that CBM1 is recognized

by plants [13], the basis for elicitor activity may reside in the

structural subtleties of various CBM1 domains (Figure 5). A

mutational analysis of Phytophthora parasitica var. nicotianae CBEL

indicated that the tyrosine (Y 52 and Y 188) in each CBM1 was

essential for elicitor activity. This tyrosine is conserved in the

 

Figure 1. Identification of Phytophthora infestans genomic
regions encoding the cellulose binding domain (Carbohydrate
Binding Module 1) motif. The CBD2 and CBD3 gene regions have no
corresponding ESTs.
doi:10.1371/journal.pone.0023555.g001

Figure 2. Sequence of a small cellulose binding domain protein
(CBD1) encoded by Phytophthora infestans. Signal peptide
cleavage site denoted by asterisk, underlined region represents peptide
sequence used for antibody production, italicized letters represent
predicted O-glycosylation region, and bold letters represent the
conserved CBM1 sequence.
doi:10.1371/journal.pone.0023555.g002

Phytophthora Cell Wall Protein
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Trichoderma elicitors endoglucanase 1 (EG1) [13] and swollenin

(SW) [14–15] as well as P. infestans CBEL. It is also present in P.

infestans CBD4, which carries two CBM1 regions and, as with the

other Phytophthora proteins containing a CBM1, has no apparent

catalytic regions. A homologue of P. infestans CBD4 is found in P.

sojae (accession AY183419) and was shown to elicit necrosis when

expressed in planta through a Potato Virus X expression vector

[16]. The tyrosine is also present in other CBM1 domains that

haven’t yet been tested for elicitor activity. The specific tyrosine,

whose substitution eliminates elicitor activity, is absent in CBD1

from the four species of Phytophthora we have reviewed (Figure 3).

Earlier mutational analysis of the CBM1 region from Trichoderma

demonstrated that the same tyrosine (referred to as Y32 within the

conserved CBM1) affects side chain conformations on the ‘‘rough’’

outer face of the CBM1 [17–19]. The inner ‘‘smooth’’ face of

CBM 1 is involved in cellulose binding, while the outer face does

not interact directly with cellulose. Therefore, while not essential

for cellulose binding, this tyrosine plays a role in the three

dimensional structure of the CBM1, suggesting that a specific

structure must be retained for plant recognition. This further

suggests that the cellulose binding activity, per se, may not be

important to plant responses.

Figure 3. Identification of a small CBM1 protein in Phytophthora species. Disulfide bonds occur between C8:C25 and C19:C35.
doi:10.1371/journal.pone.0023555.g003

Figure 4. Immunofluorescent detection of hyphae and sporangia of P. infestans. Primary antibodies were prepared to a peptide
representing the amino terminus (after signal peptide cleavage) of CBD1. Samples were viewed by confocal microscopy after incubation with FITC
labeled secondary antibodies. A) hyphae and sporangia emerging from infected potato leaf tissue B) hyphae along the transition zone between
symptomatic (upper right) and asymptomatic (lower left) infected leaf tissue.
doi:10.1371/journal.pone.0023555.g004

Phytophthora Cell Wall Protein
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It should be noted that while CBM1 can act as an elicitor of

plant defenses, the CBM1 needs to be exposed to allow for

interaction with a yet undetermined plant molecule. The CBM1

on extracellular, cellulolytic enzymes is fully exposed after

secretion and movement away from the microbial source, while

the Phytophthora CBM1 containing proteins are wall bound, with no

specific evidence that the CBM1 region is protruding or otherwise

exposed. While a null response to a Phytophthora CBM1 would

indicate that it was not an elicitor, a positive elicitation by

introduction of Phytophthora CBM1 proteins as peptides, recombi-

nant proteins or vectored recombinant proteins fail to represent

the wall bound nature of these proteins. Therefore Phytophthora

may be a successful biotroph during initial host infection by

‘‘hiding’’ the potential elicitor-positive CBM1 domains found in

CBD4 and CBD5 in the hyphal wall. The CBD1 protein has a

modified CBM1 domain that is ‘‘elicitor-negative’’, allowing for

localization on the surface of the hyphae.

The P. infestans CBD1 protein contains a signal peptide and a

region with high probability of O-glycosylation, features suggesting

extracellular localization. Proteins with O-glycosylation have been

found associated with cell walls although it is unresolved as to

whether Phytophthora has the machinery for O-glycosylation

[20]. Interestingly, the three CBM1 proteins in Phytophthora infestans

that are expressed; CBD1, CBD4 and CBD5 (CBEL), have

Phytophthora homologues that have been associated with the cell

wall [this study, 8, 20,].

Other proteins containing CBM regions have been associated

with cell walls. One protein from Schizosaccharomyces pombe

(accession NP 593986) contains two CBM1 regions and a GPI

anchor, suggesting involvement at the cell membrane:wall

interface. Another CBM-containing protein involved in synthesis

of the cellulosic stalk of Dictyostelium discoideum (accession EAL

61319) is similar in size to P. infestans CBD1, however it contains a

CBM49 [21–22]. The Stramenopiles Aphanomyces (www.polebio.

scsv.ups-tlse.fr/aphano/) and Saprolegnia have numerous proteins

with one or more CBM1 regions [23–24] that will likely be found

associated with their cell walls. A single protein with two CBM1

regions was found in Pythium ultimum, while none were found in a

search of Hyalanoperonospora aradopsidis. Notable is the fact that these

proteins do not have a catalytic domain, thus the principal purpose

of CBM1 proteins in the Stramenopiles seems to be in cell wall

structure. In two organisms with distance relationship to the

Stramenopiles [5–6], one can find the CBM1 domain. The brown

alga Porphyra has a protein with three distinct CBM1 domains [25]

and the diatom, Ostreococcus lucimarinus has a protein with two

CBM1 modules and a leucine-rich repeat region (accession

ABO94230). The additional CBM modules can provide much

higher affinity for cellulose [26].

The presence of CBM1 may allow for interaction with cellulose

outside of the cell wall. One protein, CBEL, was associated with

adhesion to cellulosic substrates, however this protein harbors a

lectin-like region that may also contribute to adhesion [27]. In the

case of CBD4, as well as for CBEL, there are two CBM1 regions,

which may allow for tethering of two separate glucan molecules. It

will be interesting to determine where the CBM1 is situated

relative to the rest of the protein, and if the CBM1 is embedded or

exposed on the hyphal surface.

In addition to a possible role in cell wall synthesis, these proteins

may play a role in hyphal permeability. While many fungi can

survive in relative dry conditions, Phytophthora is referred to as a

‘‘water mold’’ and thrives under very moist and even aquatic

conditions. The water mold fungi lack the wall associated

hydrophobins present in other fungi that aid in desiccation

survival. They are also more permeable to various compounds,

including antibiotics [28]. The CBM1 proteins could play a role in

regulating porosity of the hyphae. Another possible function is

hyphal protection from enzymatic attack. The Cladosporium fulvum

AVR4 protein has been shown to be a chitin binding protein that

protects the hyphae from host chitinases during plant infection by

binding to the surface of the hyphal wall [29–30]. The CBM1

proteins may help protect the overall integrity of the cell wall

during attack by plant glucanases, however does not seem to be

Figure 5. Comparison of a selection of cellulose binding domain (Carbohydrate Binding Module 1) proteins by alignment of
conserved regions. PiCB1, Phytophthora infestans (CBD1) ABW76417; SpCB1, Saprolegnia parasitica AAZ94039; Pp1a, Pp1b and Pp1c, Porphyra
purpurea AAA61792; Ae1a and Ae1b, Aphanomyces euteiches Ae_11AL5933; Scp1a and Scp1b, Schizosaccharomyces pombe NP_593986; Ol1a and
Ol1b, Ostreococcus lucimarinus ABO94230; TaSW, Trichoderma asperellum ACB05430; TrEG1, Trichoderma reesei AAA34212; PiCB4a and PiCB4b,
Phytophthora infestans (CBD4) ACL80756; PiCBELa and PiCBELb, Phytophthora infestans (CBD5) ACM68430; PuA and PuB, Pythium ultimum (CBD4)
ADOS01001693. Arrow indicates previously reported site of mutation of tyrosine residue (ref. 17), found on the outer, non-cellulose binding face of
the CBM1 of TrEG1. Designations of a, b and c refer to repeated CBM motifs within the same protein.
doi:10.1371/journal.pone.0023555.g005
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secreted outside the hyphal wall like AVR4. These proteins may

also assist in protecting the cell wall from glucanases produces by

saprophytic fungi that attack Phytophthora [31].

Materials and Methods

Culture conditions and inoculations
Liquid cultures of Phytophthora infestans were incubated at 20uC

for three weeks in pea broth as previously described [10]. Infected

plant tissue was prepared by inoculating detached leaflets of potato

(cv. Green Mountain) with sporangia harvested from solid medium

cultures as previously described [10]. Leaflets were maintained on

moist paper towels in enclosed glass dishes for 5 days. Samples

were harvested from infected leaves in the region spanning

symptomatic to asymptomatic tissues, and fixed in methanol until

further use.

Gene identification and cloning
The carbohydrate binding module (CBM) family 1 motif (www.

cazy.org) was used for tBLASTn searches of the genome of

Phytophthora infestans (www.broad.mit.edu/annotation/genome/

phytophthora_infestans). Additional genes encoding conserved

CBM1 domains [32] were identified from searches in GenBank

(www.ncbi.nlm.nih.gov/index.html).

The two small CBM1 encoding genes were cloned from P.

infestans total RNA, extracted according to manufacturer’s

protocols for the Illustra kit (GE Healthcare, Buckinghamshire,

UK). A cDNA pool was generated from total RNA using

Superscript reverse transcriptase (Invitrogen, Carlsbad, CA,

USA) and oligo dT reverse primer. DNA copies were generated

from cDNA (100 ng) using forward primer cb1f (CGGTCCAAG-

CAGCACGCAGTCTCCG) and reverse primer cb1r (GGAA-

TCGCTAGAGCTCCAGTCG). The PCR product was generat-

ed using Go Taq polymerase (Promega, Madison, WI, USA) with

cycle parameters of 93 C for 3 min. followed by 35 cycles of 59 C

for 30 sec., 72 C for 1 min., 93 C for 30 sec., and a final cycle of

72 C for 7 min. The product was cloned into TOPO TA cloning

vector pCR-4 (Invitrogen) and transformed into E. coli. Plasmids

were isolated from overnight shake cultures of transformed E. coli

and sequenced.

Antibodies and immunolocalization
The amino terminal portion of the processed protein was

chosen as the antigenic target. The peptide sequence

SNLRNGDSSVPVRT-C was synthesized and used to raise

antibodies in rabbits (GenScript Corp., Piscataway, New Jersey,

USA) with a final ELISA titer of 1:6000.

Infected leaf tissue sections were rehydrated after methanol

fixation by transfer to 50 mM Tris (pH 7.0). Samples were placed

on concave microscope slides and incubated for 1 h at room

temperature in Tris buffer (pH 7.0) plus 50 mM NaCl and 0.1%

bovine serum albumin. Buffer was removed with an absorbent

tissue and replaced with fresh buffer plus rabbit anti-CBD1

peptide (1:300 dilution). Control samples were incubated with pre-

immune serum. Samples were incubated for one hour, buffer

removed and the sample rinsed three times for five minutes with

fresh buffer. Secondary goat anti-rabbit, FITC labeled antibodies

(Sigma, St. Louis, MO, USA) were added at a 1:400 dilution and

incubated for one hour. Samples were rinsed as previous and

maintained in fresh buffer for confocal microscopy.

Cell wall isolation and extraction
Harvested mycelial mats (3 g wt weight per sample) were rinsed

twice by immersion in 30 ml of distilled water, and retained in

30 ml of distilled water on ice. Hyphae were comminuted for

1 min. with a Polytron homogenizer (Brinkmann, Westbury, NY,

USA). Hyphal fragments were pelleted (3000 g, 10 min) followed

by resuspension in 10 ml distilled water. The sample was sonicated

for 20 sec. (Sonic Materials, Danbury, CT, USA ) followed by

pelleting of hyphal fragments. The sample was washed with 40 ml

distilled water and pelleted, subjected to a second round of

sonication, washing and pelleting. The final samples, comprised of

purified hyphal walls, were then used for extraction of wall-bound

protein.

Each final sample (2.5 g wt weight) was extracted by individual

extraction methods. Alkaline extraction was performed overnight

at 4 C in 15 ml of 30 mM NaOH (pH 11.5), or 0.1 M Tris base

(pH 9.5). Cellulose binding domain elution methods were

performed overnight at 4 C in 15 ml using 10% polyethylene

glycol or 0.25 M NaCl. Samples were also boiled for 5 min in

15 ml of 10% sodium dodecyl sulfate.

Samples from each treatment were pelleted (3000 g, 10 min)

and the supernatant (10 ml) transferred to clean 50 ml polypro-

pylene tubes. Ice-cold acetone (30 ml) was added to each

supernatant, and tubes placed in a freezer (220 C) overnight.

Samples were centrifuged and the pellet was air dried.

Samples were resuspended in 0.2 ml Tris (pH 6.0), and 25

microliters added to an equal volume of Laemmeli buffer and

placed in boiling water for 5 min. Samples were briefly centrifuged

and loaded onto 4–20% gradient acrylamide gels (Life Therapeu-

tics, Frenchs Forest NSW, Australia). Gels were run for three

hours at 75 V, followed by electroblotting (3 h at 75 V) to

nitrocellulose. Western blots were blocked with TBS plus 0.1%

bovine serum albumin, incubated with anti-CBD1, rinsed and

incubated with alkaline phosphatase labeled secondary antibody

(Pierce, Rockford, IL, USA). After rinsing in Tris (pH 9.5) bands

were detected by addition of Western Blue AP substrate

(Promega).

Expression in plant leaf by Agrobacterium infiltration
The TOPO-cbd1 plasmid (10 ng) was used with Xba1

containing forward primer cbfa (TCTAGACCTTTAGCCA-

TAATGACC) and the Sac1 containing reverse primer cbra

(GAGCTCTCACAACTCCAGTCGAATGAC). A PCR product

was generated using Go Taq polymerase (Promega) and

amplification performed with cycle parameters of 93 C for

2 min. followed by 35 cycles of ; 53 C for 30 sec., 72 C for

1 min., 93 C for 30 sec., and a final cycle of 72 C for 7 min. The

product was cloned into TOPO TA cloning vector (Invitrogen,

Carlsbad, CA, USA) and transformed into E. coli. Plasmid was

isolated from overnight cultures of transformed E. coli and digested

with Xba1 and Sac1 (Fermentas, Baltimore, MD, USA). The

shuttle vector pBI121 (Invitrogen) was also digested with Xba1 and

Sac1, releasing the beta-glucuronidase coding region. The

restriction digested pBI121 was gel purified, along with the

restriction digested CBD-encoding insert. The cbd insert was

ligated into pBI121 and electroporated into Agrobacterium tumefaciens

LBA4404 (Invitrogen). Cells were infiltrated with a syringe into the

apoplast of leaves from tobacco (Nicotiana tabacum) and potato

(Solanum tuberosum).

Synthetic peptide infiltration
A synthetic peptide of 36 amino acids (GVRAWAQCG-

GLYYLGKTKCQQHTFCKQLSEFISVCF) spanning the con-

served cellulose binding domain region (aa. 80–116) was

synthesized (GenScript). This region encompasses the full

CBM1. Peptide was dissolved in 50 mM sodium acetate pH 5.0

Phytophthora Cell Wall Protein
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to a final concentration of 500 nM and infiltrated into the apoplast

of leaves from tobacco and potato, using a needle-free syringe.
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