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ABSTRACT The draft genome sequences of eight Salmonella enterica isolates from
various sources were evaluated for the influence of incompatibility group I1 (IncI1)
plasmids on virulence. Strains SE142, SE143, SE144, and SE146 originated from
swine, SE36N and SE89N from poultry-related sources, and SE991 and SE1148 from
human patients.

Salmonella enterica is one of the top five bacterial pathogens contributing to
foodborne illnesses. Salmonella is also a leading foodborne pathogen associated

with hospitalizations and deaths in the United States (1, 2). Food products originating
from diverse sources like poultry, swine, and cattle are commonly associated with
disease outbreaks caused by Salmonella enterica (2). Some serotypes of Salmonella,
including Enteritidis, Typhimurium, and Heidelberg, are more prevalent as foodborne
pathogens than other serotypes, such as Kentucky (3). Isolates containing certain
mobile genetic elements, such as plasmids, have been associated with clinical mani-
festations of Salmonella infection (4). Plasmids encode genes responsible for antimi-
crobial resistance and virulence, which may have clinical significance associated with
severe manifestations of diseases (5). Incompatibility group I1 (IncI1) plasmids have
been reported to carry genes related to antimicrobial resistance and virulence (6).

Eight strains of Salmonella enterica containing IncI1 plasmids were sequenced
(Table 1). Four of these strains were isolated from swine, two from poultry-related
sources, and two from human patients. Previous studies showed that SE1148 and SE146
carried IncI1 plasmids and antimicrobial resistance genes (5). In addition to resistance
genes, SE146 also contained an IncX4 plasmid which encodes a VirB/D4 type 4 secretion
system that is likely involved in the increased virulence potential of this strain (7).
Strains SE142, SE143, SE144, and SE146 were found to contain one or more plasmids
and were resistant to commonly used antimicrobial agents (8). Overall analysis of the
whole-genome sequences of these strains will improve our current understanding of
the potential role of IncI1 plasmids in the pathogenicity of Salmonella enterica isolated
from various foods and hosts.

To conduct the sequencing, total DNA was extracted using a DNeasy blood and
tissue kit (Qiagen, Valencia, CA, USA). Nextera XT DNA sample kits (Illumina, San
Diego, CA, USA) were used to construct a DNA library. Sequencing reactions were
carried out at the DNA Sequencing Core at the University of Arkansas for Medical
Sciences (UAMS) (Little Rock, AR, USA) and the Division of Microbiology, National
Center for Toxicological Research (NCTR) (Jefferson, AR, USA) on an Illumina MiSeq
instrument to generate 2 � 250 (UAMS) or 2 � 300 (NCTR) paired-end reads (9).
Trimming and de novo assembly of the paired-end reads was performed using CLC
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Genomics Workbench versions 8.5.1 and 9 (Qiagen, Germantown, MD, USA). The Rapid
Annotation using Subsystem Technology (RAST) server (10), the Pathosystems
Resource Integration Center (PATRIC) (11), and the NCBI Prokaryotic Genome
Automatic Annotation Pipeline (PGAAP) (12) were employed to annotate the draft
genomes of these strains (Table 1). The average G�C content of these strains is
estimated to be 51.81%, as determined by PATRIC. Table 1 lists individual G�C
content (%) and numbers of contigs, coding sequences, and functional proteins for
respective strains.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession numbers listed in Table 1.
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TABLE 1 Summary of the genome sequence analysis of Salmonella enterica strains containing IncI1 plasmids

Strain Serovar Source
Location, yr
of isolation

No. of
contigs

Assembly
size (bp)

G�C
content (%)

No. of
CDSa

No. of functional
proteins Accession no.

SE142 Heidelberg Swine Indiana, 2002 205 5,197,369 51.85 5,450 4,683 NPFC00000000
SE143 Heidelberg Swine Minnesota, 2002 306 5,361,922 51.69 5,718 4,779 NPEL00000000
SE144 Heidelberg Swine Minnesota, 2002 111 5,279,737 51.82 5,488 4,673 NPEQ00000000
SE146 Heidelberg Swine Minnesota, 2002 221 5,356,597 51.59 5,704 4,801 NPEM00000000
SE36N Typhimurium Chicken West Virginia, 2000 158 5,160,965 51.90 5,358 4,705 NPER00000000
SE89N Kentucky Poultry house water West Virginia, 2000 120 5,146,652 51.69 5,799 4,811 NPES00000000
SE991 Heidelberg Human feces Arkansas, 2009 98 5,053,493 51.82 5,161 4,493 NPEP00000000
SE1148 Heidelberg Human blood Wisconsin, 2007 166 4,867,737 52.17 4,995 4,435 NPEO00000000
aCDS, coding sequences.
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