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Extracellular vesicles (EVs)-based therapeutics are based on the premise that EVs
shed by stem cells exert similar therapeutic effects and these have been proposed
as an alternative to cell therapies. EV-mediated delivery is an effective and efficient
system of cell-to-cell communication which can confer therapeutic benefits to their
target cells. EVs have been shown to promote tissue repair and regeneration in various
animal models such as, wound healing, cardiac ischemia, diabetes, lung fibrosis, kidney
injury, and many others. Given the unique attributes of EVs, considerable thought
must be given to the preservation, formulation and cold chain strategies in order to
effectively translate exciting preclinical observations to clinical and commercial success.
This review summarizes current understanding around EV preservation, challenges
in maintaining EV quality, and also bioengineering advances aimed at enhancing the
long-term stability of EVs.

Keywords: nanomedicine, exosomes, extracellular vesicles, biomaterials, cryopreservation, regenerative
medicine, biologics

INTRODUCTION

Interest in extracellular vesicles (EVs) has escalated over the last decade. This has been particularly
the case in clinical applications, including the application of EV biology to biomarker discovery,
vaccine development, drug delivery, and EV-based therapeutics. EVs are key players in intercellular
communication and they are protected from degradation by their lipid bilayer membrane that
envelop bioactive cargo. These include proteins, sugars, lipids, and nucleic acids. EVs can be
classified based on their size, i.e., apoptotic bodies (>1000 nm), microvesicles (100 – 1000 nm),
and exosomes (30 – 150 nm) (Kalra et al., 2016; Tkach and Théry, 2016). The field of EV research
is rapidly gaining momentum and overlaps with the newer field of bioengineering where synthetic
liposomes, biomimetic vesicles, and nanoparticles have been utilized to package bioactive cargo. In
this review, we assess current strategies employed for EV preservation and bioengineering advances
aimed at enhancing long term stability of EVs intended for clinical use.

Composition and Cargo of EVs
Extracellular vesicles are ideal intercellular transporters of biomolecules. They express surface
molecules that enable tissue- or cell-specific targeting. Upon reaching their recipient cells, EVs
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can induce signaling via receptor-ligand interaction, or be
internalized by endocytosis to deliver their cargo. The term
“exosomes” is generally used to describe most EVs globally. In
an attempt to standardize nomenclature and improve accuracy
of data interpretation, the International Society of Extracellular
Vesicles (ISEV) published a set of guidelines in 2014 that
outlined the so-called minimal requirements to define EVs
(Lötvall et al., 2014). The collective term of EVs will be used
throughout this review since the definition of exosomes remains
contentious. Given the increasing interest in EVs and their
potential use in regenerative medicine, isolated EVs must be
carefully characterized – this necessarily requires a complex
combination of protein profiling (proteomics, western blotting,
or flow cytometry), imaging, and nanoparticle tracking analysis.

Extracellular vesicles are secreted by virtually all cell types
and present in all bodily fluids. An online public database,
ExoCarta1 (Keerthikumar et al., 2016) has been created to curate
this diverse body of data, with the goal of facilitating and
encouraging collaborative research. This public repository is
being continuously updated with new contributions from various
EV researchers.

Extracellular vesicles are enriched in membrane proteins
and cellular proteins, including the tetraspanins CD63, CD9,
CD81, Alix, Tsg101, MHC1 and heat shock proteins (van Niel
et al., 2006; Raposo and Stoorvogel, 2013). The protein cargo
of EVs include cell-specific proteins which are responsible for
specific fates and functions, such as: cell adhesion (integrins,
ICAM), signal transductions (G proteins, β-catenin, protein
kinases), and intracellular trafficking (RAB, GTPases, annexins)
(van Niel et al., 2018). The lipid contents of EVs include
ceramides, sphingomyelins, phosphatidylserine, and cholesterol
(Laulagnier et al., 2004; Subra et al., 2007). This unique lipid
composition is thought to facilitate the uptake of EVs by
recipient cells. The lipid composition of EV membranes also play
significant roles in intercellular signaling and provide structural
stability (Skotland et al., 2017). Furthermore, the surfaces of EVs
are surrounded by polysaccharides and glycan (Batista et al.,
2011). The nucleic acid cargo in EVs such as mitochondrial
DNA, genomic DNA, mRNA, miRNA, and long non-coding
RNA have already been documented extensively. Importantly,
exosomal RNA play functional roles in EV-mediated cellular
communication where exosomal mRNA can be translated into
proteins in recipient cells and exosomal microRNA (miR) may
regulate gene expression in recipient cells (Valadi et al., 2007).

EVs Molecular Cargo Involved in
Therapeutic Benefits/Immunomodulation
EV-mediated delivery is an effective and efficient system to confer
therapeutic benefits to their target destinations. The contents of
EV cargo can be heavily influenced by their producer cells and
different cell types will secrete a range of functional effects on
recipient cells. The ability of EVs to interact with recipient cells
is likely to be affected by the presence of adhesion molecules (e.g.,
integrins) on the surface of EVs, and this will contribute to the
cell or tissue specificity of EVs (van Niel et al., 2018).

1http://www.exocarta.org

Extracellular vesicles exhibit intrinsic therapeutic benefits, for
example, EVs can be used as gene delivery vehicles without
inducing adverse immune reactions. This contrasts with the more
commonly used gene therapy vehicles such as viral vectors and
lipid nanoparticles which are immunogenic (Kumar et al., 2014).

There are a number of different strategies to identify and
validate EV-mediated cargo delivery into recipient cells. For
example, labeling EVs with a tracking dye can result in
a quantifiable increase in fluorescence in the recipient cells
once exosome uptake occurs. Alternatively, EV-associated RNA
labeled with a radioactive tracer can be used to demonstrate
uptake by recipient cells (Valadi et al., 2007). For the purposes
of this review, we have summarized recent studies describing the
therapeutic use of EVs from human cell types in Table 1.

EV-based therapeutics have been proposed as an alternative
to cellular therapy, where the latter refers to the use of intact,
living cells. In particular, cell therapy exploits the ability of the
cellular products to secrete a complex repertoire of bioactive
factors including EVs. However, the widespread use of cell
therapies has been limited by challenges in the scalability and
reproducibility of cell manufacturing. A paradigm shift toward
cell-free therapies has now captured the attention of this sector,
where the potential of EVs is being explored (Gnecchi et al.,
2016; Kusuma et al., 2017). In comparison to cells, EVs have
a simplified cold chain process, and have a lower risk profile
due to the unlikelihood of spontaneous DNA transformation or
immune rejection. Furthermore, EVs can be used directly, either
alone or in combination with other pharmacological agents (Fais
et al., 2016).

EV-BASED THERAPEUTICS

Preclinical Evaluation of EV-Based
Therapeutics
Stem cell-derived EVs have been shown to modulate the
immune response from both the innate and adaptive immunity.
Favaro et al. (2014, 2016) showed that BMMSCs-EVs induced
regulatory dendritic cell (DC) phenotypes with the ability
to inhibit T cell activity, while ESC-EVs can reportedly
promote M2 macrophage polarization, upregulate Treg numbers
and downregulate splenocyte proliferation (Zhang et al.,
2014a). Additionally, MSC-EVs were reported to promote
Treg proliferation and inhibit autoreactive T cell activity (Del
Fattore et al., 2015), as well as induce polymyxin-resistant
MyD88-dependent secreted embryonic alkaline phosphatase
expression in THP-1 cells (Zhang et al., 2014b). In a
mouse model of myasthenia gravis, MSC-EVs reduced T cell-
dependent immunoactivation, ameliorated autoimmune injury,
and prolonged survival time (Sudres et al., 2017). Additionally,
Shigemoto-Kuroda et al. (2017) showed that MSC-EVs modulate
immune responses in two different autoimmune mouse models.
In a mouse model of type I diabetes, they showed that MSC-
EVs delayed the onset of type I diabetes through modulation
of IL-1β mediated pancreatic B-cell destruction. Similarly, they
showed that 30 µg of MSC-EVs attenuated uveoretinitis triggered
by Th1/Th17 activation (Shigemoto-Kuroda et al., 2017).
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TABLE 1 | Individual human-derived EVs cargo components and their therapeutic effects.

EV cargo EV source Recipient Therapeutic claim Reference

Proteins

Peptide-MHC complexes Dendritic cells pulsed
with diphtheria toxin

Mice Induced diphtheria-toxin antibody
production

Colino and Snapper, 2006

APOBEC3G (antiviral protein) Human CD4+ T cells Jurkat T cells Resistance to HIV Khatua et al., 2009

Fas hBMMSCs Fas-deficient mice Ameliorated osteopenia Liu et al., 2015

EMMPRIN CMPCs and MSCs HMECs and HUVECs Increased angiogenesis and endothelial
cell migration

Vrijsen et al., 2016

AT1R HEK293T cells Mice Modulated blood pressure Pironti et al., 2015

Dll4 U87GM and HUVECs HUVECs Increased Notch signaling and
angiogenesis

Sheldon et al., 2010

MHC class I and II B cells T cells Induced T cell proliferation and TH2-like
cytokine production

Admyre et al., 2007

Cystinosin (and CTNS mRNA) hAMMSCs and
hBMMSCs

Cystinotic fibroblasts Reduced cystine accumulation Iglesias et al., 2012

Neprilysin hADMSCs Mouse neuroblastoma cells Decreased intracellular β–amyloid
peptide

Katsuda et al., 2013

CD73 hBMMSCs GVHD mice Promoted adenosine-based
immunosuppression

Amarnath et al., 2015

Nucleic acids

mtDNA hBMMSCs Macrophages Reduced mitochondrial ROS generation Phinney et al., 2015

lncRNA Hela cells C33A cells Enhanced cell viability Hewson et al., 2016

mRNA (Wnt4) UC-MSCs Mice Accelerated wound re-epithelisation
and cell proliferation

Zhang et al., 2015a

mRNA (IL-10) hBMMSCs and
UC-MSCs

Kidney tubular cells Increased cell recovery following injury Ragni et al., 2016

mRNA (IGF-1R) hBMMSCs Cisplatin-damaged PTECs Enhanced cell proliferation Tomasoni et al., 2013

miR-150 Monocytes Endothelial cells Promote angiogenesis Li et al., 2013

miR-143, miR-145 Endothelial cells Aortic SMCs Reduced atherosclerotic lesions Hergenreider et al., 2012

Let-7c hMSCs Mice Reduced renal fibrosis Wang et al., 2016

miR-21, miR-210 iPSCs Cardiomyocytes Rescued ischemic cardiomyocytes Wang et al., 2015

miR-146a hMSCs Macrophages M2 polarization and increased survival
in septic mice

Song et al., 2017

miR-21-3p UCB plasma Mice Enhanced angiogenesis and promoted
wound healing

Hu et al., 2018

miR-22 hMSCs Cardiomyocytes Improved cardiac function Feng et al., 2014

miR-1343 HL-60 neutrophil-like
cells

Lung fibroblasts Inhibition of TGF-β signaling and
myofibroblast differentiation

Stolzenburg and Harris, 2017

miR-100 hMSCs Breast cancer cells Suppression of angiogenesis and
downregulation of VEGF

Pakravan et al., 2017

miR-19a hMSCs Cardiomyocytes Restored cardiac contractile function
and reduced infarct size

Yu et al., 2015

miR-21-5p hMSCs iPSCs-derived cardiomyocytes
and iPSCs-derived fibroblasts

Increased engineered cardiac tissue
contractility via PI3K signaling

Mayourian et al., 2018

miR-126, miR-296 EPCs Islet endothelium Increased angiogenesis and
revascularisation of islets

Cantaluppi et al., 2012

miR-146a CDCs Injured mouse hearts Inhibited apoptosis, promote
cardiomyocytes proliferation and
angiogenesis

Ibrahim et al., 2014

miR-196a hBMMSCs Rats with calvarial bone defects Stimulated bone formation Qin et al., 2016

miR-23b hBMMSCs Human breast cancer cell line Induced dormant phenotype Ono et al., 2014

miR-125a hADMSCs HUVECs Promoted angiogenesis Liang et al., 2016

miR-122 hADMSCs Hepatocellular carcinoma cells Increased sensitivity to
chemotherapeutic agents

Lou et al., 2015

EMMPRIN, extracellular matrix metalloproteinase inducer; CMPCs, cardiomyocyte progenitor cells; HMECs, human microvascular endothelial cells; HUVECs, human
umbilical vein endothelial cells; AT1R, angiotensin II type I receptor; Dll4, Delta-like 4 Notch ligand; hAMMSCs, human amniotic mesenchymal stem cells; hBMMSCs,
human bone marrow MSCs; hADMSCs, human adipose tissue MSCs; mtDNA, mitochondrial DNA; UC-MSCs, umbilical cord MSCs; PTECs, proximal tubular epithelial
cells; SMCs, smooth muscle cells; iPSCs, induced pluripotent stem cells; UCB, umbilical cord blood; EPCs, endothelial progenitor cells; CDCs, cardiosphere-derived
cells.
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In murine models of kidney injury, MSC-derived EVs
protected against renal injury by reducing levels of creatinine,
uric acid, lymphocyte response and fibrosis through shuttling
miR-let7c to induce renal tubular cell proliferation (Wang
et al., 2016). In a murine model of carbon tetrachloride-
induced hepatic injury, concurrent treatments of MSC-EVs
attenuated the injury by increasing the proliferation, survival
and prevented the apoptosis of hepatocytes (Tan et al., 2014).
In animal models of lung injury, MSC and hAEC-EVs have
been shown to reduce pulmonary inflammation, improved lung
tissue recovery and supported the proliferation of alveolar type
II and bronchioalveolar stem cells (Rubenfeld et al., 2005; Cruz
et al., 2015; Monsel et al., 2015; Tan et al., 2018). In models
of stroke, MSC-EVs delivery of miR-133b directly to neurite
cells reportedly enhanced the outgrowth of neurites resulting
in increased proliferation of neuroblasts and endothelial cells
(Xin et al., 2013). Additionally, Anderson et al. showed through
a comprehensive proteomic analysis that MSC-derived EVs
mediated angiogenesis via NF-κB signaling (Anderson et al.,
2016), while Zhang et al. (2015b) showed that UC MSC-EVs
mediated angiogenesis via the Wnt4/β-catenin pathway.

The possibility for EV-based therapeutics to be developed
from immune cells is also currently being explored. EVs from
dendritic cells have been engineered in various ways to help
combat autoimmune diseases. These include stimulating DCs
with IFNγ to express miRNAs which stimulate myelination,
and reduce oxidative stress (Pusic et al., 2014). Immature DCs
(iDCs)-EVs, which have not conformed to their mature role
in expressing MHC and co-stimulatory molecules, displayed
immunosuppressive properties in autoimmune diseases. For

instance, in a mouse model of autoimmune neuromuscular
disorder; myasthenia gravis (MG) iDC-derived EVs prevented
MG disorder by suppressing lymphocyte reactivity in vivo (Bu
et al., 2015). Immune cell-derived EVs are relatively easy to isolate
and as such can be beneficial as potential targets for autoimmune
and cancer treatments.

Clinical Application of EV-Based
Therapeutics
There is currently only a handful of clinical trials based on
therapeutic EVs registered; all of which are currently still
recruiting (Fais et al., 2016; Lener et al., 2015). However only
one official trial has been reported to date using ascites-derived
exosomes for the treatment of colorectal cancer (Dai et al., 2008).
Additionally, in a letter to the editor, the use of stem cell-derived
EV administered under compassionate care to patients suffering
from graft vs. host disease (GvHD) recorded no adverse effects
(Kordelas et al., 2014). The first study was dated back to 2008 (Dai
et al., 2008), while the second was published in 2014 (Kordelas
et al., 2014). Since then, there is a modest increase in the number
of clinical trials with five out of seven using biologically derived
EVs while the remaining are plant based EVs. These trials are
currently recruiting and are expected to commence in the near
future.

Current methods for EV manufacturing are inadequate.
Indeed, scalable manufacturing of clinical grade EVs to meet
market demands will be a major challenge for this emerging
sector for the foreseeable future (Figure 1). Given the unique
attributes of EVs, considerable thought must be given to the

FIGURE 1 | Workflow summary of EVs production for clinical use. Schematic of the development of EV therapeutics from preclinical testing to scalable bioprocesses
including (A) development of large scale manufacturing of clinical grade EVs through various types of bioreactors, (B) characterization, quality analysis and content
screening including factors involved in immunomodulation, angiogenesis, regeneration, tumor antigen presentation, (C) preservation in appropriate storage
conditions to maintain the stability and integrity of these factors to meet clinical-scale demands.

Frontiers in Pharmacology | www.frontiersin.org 4 October 2018 | Volume 9 | Article 1199

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01199 October 25, 2018 Time: 15:3 # 5

Kusuma et al. Novel Preservation Strategies for Extracellular Vesicles

preservation, formulation, and cold chain strategies in order to
effectively translate exciting preclinical observations to clinical
and commercial success.

CURRENT PRESERVATION STRATEGIES
FOR EVs

Conventional Methods for EVs
Preservation
Since the commercial and clinical applications of EVs require
standard criteria for long-term storage, cryopreservation
methods have become a subject of growing interest. This section
will describe the current understanding around EV preservation,
challenges in maintaining EV stability, and their impact on
long term storage and cold chain processes. Table 2 highlights
the current preservation methods used in EV for therapeutics
purposes.

Cryopreservation
Cryopreservation with cryoprotectants (CPAs) is a widely
accepted procedure to maintain protein stability and prevent
osmotic damage (Elliott et al., 2017). Optimum EV dehydration
can be achieved in the presence of CPAs by increasing viscosity,
impacting the kinetics of ice nucleation, and allowing regulated
extracellular ice growth during controlled cooling. However,
excessively low concentrations of CPAs may result in chilling
shock, which is defined as the damage caused by the freezing
process. On the other hand, excessively high concentrations of
CPAs can be toxic. Thus, a balance is needed to achieve optimal
cryopreservation (Best, 2015).

CPAs refer to a diverse range of sugars, diols, and amino
acids which work to stabilize biomolecules in a variety of ways
depending on their molecular mass, examples of CPA application
in molecular and cell biology is described on Table 3. Penetrating
CPAs (pCPA) have low molecular weights (<100 Da) and work
by permeating across the lipid bilayer membranes to stabilize
the biomolecules (Figure 2). In contrast, non-penetrating CPAs
(npCPA) remain external to the vesicle due to their high
molecular mass (180–594 Da) and prevent cryodamage from
hyperosmotic lysis (Jan et al., 2008; Motta et al., 2014). Notably,
there is a growing body of evidence suggesting a combination of
both pCPAs and npCPAs is more effective (Table 3) (Willison and
Rowe, 1980; Ha et al., 2005).

A wide range of substances have been used as stabilizers
in conventional cryopreservation methods. Specifically,
disaccharides are a safe choice for EV-based therapeutics.
Trehalose, a natural non-reducing disaccharide, is an FDA-
approved CPA for a wide range of proteins and cell products
(Eroglu et al., 2000; Buchanan et al., 2004; Motta et al., 2014;
Bosch et al., 2016). Following reports showing the importance
of adding pCPAs and npCPAs, trehalose was suggested as an
ideal candidate to preserve hematopoietic and embryonic stem
cells as well as other progenitor cells for therapeutic applications
(Buchanan et al., 2004, 2005). Trehalose prevented aggregation
by avoiding internal ice formation in biological particles such as

liposomes and EVs (Bosch et al., 2016). The addition of trehalose
also increased the colloidal stability of EVs (Hood et al., 2014).

Lyophilisation/Freeze Drying
Freeze-drying or lyophilisation is currently thought to be the
most reliable method to preserve thermolabile materials such as
proteins, peptides, vaccines, colloidal carriers, EVs and viruses
(Khairnar et al., 2013; Hansen et al., 2015). The first step in
lyophilisation involves the freezing or solidification of the EVs,
when cooling rate correlates inversely with the size of the ice
crystal. The crystallized material is then sublimated directly into
water vapor. Freezing and dehydration stresses generated during
lyophilisation may result in destructive effects on the structure of
biomolecules within the EV, and thus necessitates the use of CPAs
in the formulation to protect the EVs and their cargo (Wu et al.,
2015a).

The stability of lyophilised EVs significantly extends their shelf
life, lowers storage demands, and costs owing to a simplified
cold chain. For example, the best storage temperature reported
for lyophilised EVs isolated from cardiospheres was 4◦C (Kreke
et al., 2016). The most common stabilizers used in lyophilisation
are disaccharides such as glucose, lactose, sucrose and trehalose,
which work by replacing the hydration sphere around the EVs
through a hydrogen bonding interaction with phospholipid head
groups to form an amorphous sugar glass. The glassy state
produced in the presence of disaccharides prevent fusion of
products or protein destabilization (Jain and Roy, 2009).

Trehalose has been suggested as the most effective
disaccharide to preserve EVs during lyophilisation (Chen
et al., 2010; Bosch et al., 2016). This promising technique is
an FDA-approved method for a range of proteins, liposomes
and nanoparticles that enables their use in the pharmaceutical
industry (Van Backstal et al., 2017).

Spray Drying
Spray drying is a common method for producing a wide variety of
therapeutic agents including vaccines, peptides and proteins for
inhaled delivery (Broadhead et al., 1992; Chan et al., 1997; Salama
et al., 2009). This single-step process substantially reduces the
need for expensive equipment and lengthier multi-step processes.
Spray drying is scalable and operators are able to tune the particle
size of the final product by controlling the spray droplet size
and solute concentration, thereby providing a major point of
difference from lyophilisation where the particle size reduction
can occur only through mechanical milling (Costantino et al.,
2000).

Spray drying involves an initial step of atomising the solution
containing EVs. These droplets are rapidly converted into
a dry powder using heated gas (Lee, 2002). Spray drying
is a continuous process and can be both automated and
instrumented for enhanced process control. The reduction
in moisture content of particles formed during the spray
drying process generally increases the stability of the
biopharmaceuticals in these particles: the residual moisture
acts as a plasticiser to reduce glass transition temperature of
the particle solid state, and its presence may also enhance
chemical instability. Critical process parameters such as the
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TABLE 2 | Current storage and preservation methods for EVs.

Preservation
method

Storage temperature Storage solution EV source Isolation method Reference

Conventional
Freezing

−80◦C PBS BMMSCs Ultracentrifugation Vallabhaneni et al.,
2015

−80◦ C PBS hAECs Ultracentrifugation Zhao et al., 2017

Ultrafiltration

−80◦C PBS iMSCs Ultracentrifugation Hu et al., 2015

Sucrose gradient

Ultrafiltration

−80◦C PBS MSCs Ultracentrifugation Zhu et al., 2014;
Pachler et al., 2017

−80◦C PBS Cardiac fibroblasts and
iPSCs

PEG precipitation Hu et al., 2016

4◦C, −80◦C PBS MSCs Ultracentrifugation Xin et al., 2012

−80◦C PBS imDCs Ultracentrifugation Tian et al., 2014

Ultrafiltration

−80◦C PBS Mouse BMDCs Ultrafiltration/diafiltration Viaud et al., 2009

−80◦C PBS Mouse BMDCs Ultracentrifugation Damo et al., 2015

Ultrafiltration

−80◦C PBS BMDCs Ultracentrifugation Naslund et al., 2013

−80◦C 0.9% normal saline Dendritic cells Ultracentrifugation on a
D2O/sucrose cushion

Morse et al., 2005

−80◦C 0.9% NACl MSCs PEG precipitation Ophelders et al., 2016

−20◦C PBS Brain endothelial cells Invitrogen R© Total
Exosome RNA and
Protein Isolation Kit

Yang et al., 2015

−80◦C Total Exosome Isolation
reagent

EPCs Ultracentrifugation
using Total Exosome
Isolation reagent
(GENESEED, China)

Ke et al., 2017

−80◦C Serum-free medium
199 + 25 mM HEPES

ADMSCs Ultracentrifugation Eirin et al., 2017

−80◦C Serum-free medium
199 + 25 mM HEPES

HUVECs Ultracentrifugation Zhang et al., 2014c

−80◦C RPMI + 1% DMSO HK-2 Ultracentrifugation Lindoso et al., 2014

+4◦C, −80◦C PBS + 25 mM
Trehalose

MIN6 cells Ultracentrifugation Bosch et al., 2016

−80◦C Serum-free Medium
199

MSC Ultracentrifugation Bruno et al., 2009,
2012Fibroblasts

−80◦C Medium 199 EPCs Ultracentrifugation Deregibus et al., 2012

Fibroblasts

−80◦C Not disclosed ESC-derived MSCs Chromatography Arslan et al., 2013

Ultrafiltration

−80◦C Not disclosed EPCs Ultracentrifugation Li et al., 2016

Filtration

+4◦C, +37◦C, −20◦ C Not disclosed HEK293T, ECFC,
MSCs

Ultracentrifugation Sokolova et al., 2011

+60◦C, +37◦C, +4◦C, −20◦C, −80◦C Not disclosed HEK293T ExtraPEG reagent Cheng et al., 2018

Freeze drying +4◦C, −20◦C, −80◦C Plasmalyte A, Ringers,
Plasmalyte
A + Dextrose

Cardiosphere-derived
cells

Ultrafiltration Kreke et al., 2016

Diafiltration

−20◦C Laemmli Buffer TM cells Ultracentrifugation Stamer et al., 2011

−80◦C PBS LIM1215 cells Ultracentrifugation Lydic et al., 2015

BMMSC, human bone marrow mesenchymal stem cells; hAECs, human amniotic epithelial cells; iMSCs, iPSCs, imDCs, BMDCs, ADMSCs: adipose tissue MSCs;
HUVECs, human umbilical vein endothelial cells; HK-2, human kidney cell line; MIN6, murine pancreatic beta cell line; ESC-derived MSCs, human embryonic stem cell-
derived MSCs; HEK293T, human embryonic kidney cells; ECFC, endothelial colony forming cells; TM, human trabecular mesh cells; LIM1215, human colorectal cancer
cell line.
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TABLE 3 | Cryoprotective agents (CPA) used in cryopreservation of biological materials.

Penetrating CPA Non-penetrating CPA Cocktails Commercially available CPA

Nanoparticles Glycerol(Sameti et al., 2003) Trehalose, sucrose, fructose,
glucose, sorbitol (10%) (Fonte et al.,
2012)

20% Trehalose/Fructose (Date
et al., 2010)

Gelatine(Schwarz and Mehnert,
1997)

Mannitol (Alihosseini et al., 2015) Trehalose/Sucrose (Almalik
et al., 2017)

Hydroxypropyl-β-cyclodextrin
(Abdelwahed et al., 2006a,b)

Trehalose (Subedi et al., 2009) 10% DMSO/0.2 M sucrose
(Marquez-Curtis et al., 2015)

Polyvinyl alcohol
(Quintanar-Guerrero et al., 1998;
Abdelwahed et al., 2006a)

Mannitol-dextrose-sucrose in ratio
of 1:3, 1:2, and 1:1 (Patel et al.,
2011)

Glucose (Quintanar-Guerrero et al.,
1998; Kesenci et al., 2001;
Abdelwahed et al., 2006a)

Lactose (Cui et al., 2003; (Hu et al.,
2018)

Fructose (Zimmermann et al., 2000)

Dextran (Roy et al., 1997; Chacón
et al., 1999)

Sucrose (Quintanar-Guerrero et al.,
1998; Kesenci et al., 2001;
Abdelwahed et al., 2006a)

Sorbitol (Storm et al., 1995;
Kesenci et al., 2001; Panyam and
Labhasetwar, 2012) Aerosil
(colloidal silicon dioxide)
(Schaffazick et al., 2003)

Liposomes Sucrose (Gala et al., 2015)

Trehalose (Harrigan et al., 1990;
Hau et al., 2003; Nounou and
El-Khordagui, 2005; El-Nesr et al.,
2010; Nidhi et al., 2011)

Glucose, lactose, trehalose, and
mannitol (Stark et al., 2010)

Mammalian cells DMSO (Bruder et al., 1997;
Bozzo, 1999; Rust et al., 2006;
Hendriks et al., 2010; Martinello
et al., 2010; Thirumala et al.,
2010; Chase et al., 2011; Xu
et al., 2012; Dariolli et al., 2013;
Chang et al., 2015)
Ectoin (Heinrich et al., 2007; Sun
et al., 2012; Bissoyi and
Pramanik, 2013)
Hydroxyectoin (Sun et al., 2012)
0.5, 1, or 1.5 M EG or propylene
glycol or DMSO (Woods et al.,
2010)

Trehalose (Beattie et al., 1997;
Eroglu et al., 2000; Ann, 2005;
Katenz et al., 2007; Motta et al.,
2014; Tanaka et al., 2014; Rao
et al., 2015; Cardoso et al., 2017;
Martinetti et al., 2017)

DMSO + Trehalose (Chen
et al., 2016)
2% DMSO in DMEM (Thirumala
et al., 2010) Proline
(1%) + ectoin (10%) (Freimark
et al., 2011)
Ectoine + trehalose + PEG (El
Assal et al., 2014)
PVP (Damjanovic and Thomas,
1974; Ray et al., 2016; Wiki)
DMSO + 0.2 M sucrose
(Roy et al., 2014)
1,2-propanediol (Huang et al.,
2015)
Sucrose (Carrasco-Ramírez
et al., 2016)
0–10% DMSO + 0-10% HES
(Naaldijk et al., 2012) DMSO or
glycerol (5 or 10%) + sucrose
(30 or 60 mM) + Trehalose (60
or 100 mM) (De Lara Janz
et al., 2012)
10% DMSO or 10% glycerol or
10% ethylene glycol (Ding et al.,
2010)

Cellbanker (commercial-DMSO
based) (Kotobuki et al., 2005;
Edamura et al., 2014; Nam
et al., 2014)
50% Cryoprotective Medium
(Lonza, Allendale, NJ,
United States), 25%
RPMI-1640, and 25% FBS
(Jong et al., 2017)

Embryos and oocytes PG/DMSO/EG (Trad et al., 1999) PVP (Kim et al., 2008)

Trehalose (Eroglu et al., 2002)

(Continued)
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TABLE 3 | Continued

Penetrating CPA Non-penetrating CPA Cocktails Commercially available CPA

Proteins Proline (Pemberton et al., 2012) Sucrose (Crowe et al., 1987)

Trehalose (Jain and Roy, 2009; Lee,
2014)

Tissues DMSO (Casado-Díaz et al., 2008;
Woods et al., 2010; Shen et al.,
2012; Badowski et al., 2014;
Choudhery et al., 2014;
Lindemann et al., 2014)

40% EG/18% ficoll/0.3 M
sucrose/20% FBS (Moon et al.,
2008)
10% DMSO/10% EG/0.5 M
sucrose (Dulugiac et al., 2015)

5% EG/35% PG/6% sucrose

5% EG/35% PG/5%
sucrose/1% PVA (Wang et al.,
2011)

40% EG/18% ficoll/0.3M
sucrose/20% FBS (Kaviani
et al., 2014; Shivakumar et al.,
2015)

10% DMSO/5%
Glycerol/0.2,0.5 M sucrose
(Roy et al., 2014)

10% DMSO/5% Glycerol
(Chatzistamatiou et al., 2014)

EVs DMSO (Wu et al., 2015b) Trehalose (Bosch et al., 2016)

Albumin (Lörincz et al., 2014)

PG, propylene glycol; DMSO, dimethyl sulphoxide; EG, ethylene glycol; PVP, Polyvinyl pyrrolidine.

rate at which EV solution is being fed into the system, the
atomisation pressure and outlet temperature, can all affect
the stability of the EVs and their cargo. These critical process
parameters must therefore be identified and maintained
within a narrow window (Masters, 1972). Behfar (2016)
patented a technique to encapsulate the platelet rich solution
EVs as a candidate for wound healing (US20160324794A1).
However, further investigation is needed to apply this technique
more broadly to the manufacturing and storage of EV-based
therapeutics.

Challenges Associated With EVs
Preservation
In order for EV-based therapeutics to be manufactured and
used reproducibly, storage conditions must have minimal impact
on EV structural integrity. The following section will discuss
parameters known to affect EV composition, biological potency
and structural integrity.

Storage Temperature and Shelf Life
There have been a number of studies conducted to determine
the most favorable storage conditions for EVs. Focusing
on EVs with intended therapeutic applications, EVs from
human embryonic kidney (HEK) 293T cells, endothelial colony
forming cells (ECFCs) and MSCs report −20◦C as the highest
temperature in which EVs are stable (Sokolova et al., 2011).
These results are in line with the standard preservation
temperature reported by ISEV for EVs storage. In contrast,
another study has reported that −70◦C is the best long-term
storage temperature for EVs isolated using the Exo-Quick kit

(System Biosciences, Palo Alto, CA, United States) (Lee et al.,
2016).

Freeze Thaw Stress
While freeze-thaw cycles do not affect the stability of EVs
isolated from plasma and exosomal miRNA and different cell
types like HEK293T, ECFCs and MSCs (Sokolova et al., 2011;
Lv et al., 2013; Ge et al., 2014), other studies show that EVs
can be structurally susceptible due to the exposure of vulnerable
phosphatidylserine to repeated freeze-thaw cycles (Wu et al.,
2015b; Maroto et al., 2017). This is an area that must be
deconvoluted as EV-based therapeutics are being developed, in
order to establish a clear product stability profile as required by
regulatory bodies.

A BIOENGINEERING APPROACH TO
MANUFACTURING AND ENHANCING EV
STABILITY

Overcoming Aggregation in EV
Preparations
A preparation of EVs can be considered as a colloid – a solution in
which microscopically dispersed particles are suspended (Hood
et al., 2014). From this perspective, there are several known
phenomena that can be applied to EVs, providing a rationale
underlying the basis of possible approaches that can be used to
increase the stability and quality of stored EVs. One of the major
challenges in EV storage, particle aggregation, occurs when inter-
particle attraction is greater than repulsion. Such interactions
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FIGURE 2 | Penetrating vs. non-penetrating CPAs. Penetrating CPAs are low molecular weight molecules that can cross the lipid bilayer membrane and typically
must be soluble in water, non-toxic, and can remain in solution at very low temperature. Non-penetrating CPAs have higher molecular weight; and by definition they
do not permeate through the membrane and generally utilized at lower concentrations.

are governed by factors such as surface charge, hydrophobicity
and fluidity (Takeuchi et al., 2000). Strategies to prevent EV
aggregation must therefore modify these factors to increase inter-
particle repulsion and stabilize the colloidal solution.

Although EV biology is a relatively new field, EVs share many
overarching structural features with liposomes – lipid bilayered
vesicles that have been well-studied due to their utility as drug
delivery vehicles. Looking toward liposome studies, the use of
hydrophilic polymers as steric stabilizers may be a good strategy
for preservation of a colloidal system. When using polymers, it
is thought that the hydrophilic chains extend from the liposomes
out into the solution thereby stabilizing the system so that the
individual particles remain well-dispersed (Figure 3).

The most common polymer used in liposome stabilization
is PEG (polyethylene glycol). Advantages of PEG include the
fact that it is non-fouling, well-tolerated by the body, can
be obtained in a wide range of molecular weights and end-
group chemistries and that it is FDA approved for a range of
medical applications (Hasan, 2017). There are many examples
in which liposomes have been PEGylated, i.e., the PEG chains
are incorporated within the lipid bilayer during synthesis (e.g.,
PEGlyated liposomes to incorporate itraconazole, antifungal
agent, as well as dopamine-loaded PEGylated immunoliposomes;
Kang et al., 2016; Dzieciuch-Rojek et al., 2017). Although
effective, such a strategy is unsuitable for EV stabilization.
Coating the particles in polymer can have a similar effect and

would be a much more suitable strategy for EV preservation,
allowing EVs to be stabilized by the simple addition of polymer
to the isolated preparation. Other polymers that have been used
include the synthetic polymer PVA (polyvinylalcohol), and the
naturally derived polysaccharides OPP (O-palmitoylpullulan),
chitosan, and hyaluronic acid (Sehgal and Rogers, 1995; Takeuchi
et al., 2000; Manconi et al., 2017). Specific stabilization of EVs
has thus far been limited to the use of trehalose. Addition of
trehalose to solutions of EVs was proven to enhance colloidal
stability during electroporation, for the modification of EV cargo
(Hood et al., 2014). Addition of 25 mM trehalose to EVs derived
from pancreatic beta cells was observed to narrow the particle size
distribution (i.e., increase the stability) and improve the particle
yield (Bosch et al., 2016), presumably by also reducing loss of EVs
through interactions with the walls of the storage vessel.

Biomaterial Scaffolds for EV Stability and
Delivery
The matrix of tissues in the body hosts a population of
vesicles, often termed matrix bound vesicles (MBVs) (Shapiro
et al., 2015; Huleihel et al., 2016). In a similar manner to the
protection of growth factors by sequestration and release from
the extracellular matrix (ECM), the binding of these vesicles
has a vital role in enhancing their stability and biological
availability. Although, there is still debate as to whether MBVs
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FIGURE 3 | Stabilization strategy for EVs. (A) Particles in colloidal suspension. (B) Steric stabilization achieved by polymer chains attached to particles to decrease
inter-particle interactions.

possess all of the characteristics required to be defined as
an EV, there is also evidence that EVs can bind to ECM
components; for example, a study by Narayanan et al. showed
binding of MSC-derived EVs to bind to both fibronectin and
collagen type I in the ECM (Narayanan et al., 2016). Such
interactions between EVs and the ECM are likely mediated
by adhesion receptors, known to be present on the exosomal
membrane, including integrins, tetraspanins, and ICAM-1
(Escola et al., 1998; Thery et al., 1999, 2001; Rana and Zoller,
2013).

In the case of MBVs, interaction with the matrix has
proven to enhance their stability. MBVs can survive chemical,
enzymatic and detergent-based treatments and subsequently
induce changes in cellular behavior (Huleihel et al., 2016).
These intriguing findings indicate that incorporation of
EVs with ECM or biomaterial components may be a
powerful tool to both enhance EV stability and provide
a controlled spatiotemporal release within the body. This
premise is supported by a few early studies in which
EVs have been incorporated into biomaterial constructs
for delivery. For example, Zhang et al. (2016) stabilized
MSC-derived EVs by incorporation into porous tricalcium
phosphate (β-TCP) scaffolds. In doing so they demonstrated
that EVs could be released over several days and further
that the function of these EVs in promoting bone repair
was retained. In another study, Shi et al. combined MSC-
EVs with a hydrogel synthesized from chitosan and silk,
showing that EVs incorporated into the biomaterial could
be released over time and retained their function to improve
wound healing (Shi et al., 2017). Although, in its infancy,
these studies uniting EV biology and bioengineering
provide an exciting glimpse into future applications of
biomaterials to preserve and deliver EVs for therapeutic
application.

FUTURE DIRECTIONS

Given that EVs largely retain the properties of their cells of
origin, it is unsurprising that cell therapy companies have
jumped on this particular bandwagon in order to maximize
the proprietary cell lines. For example, Capricor Therapeutics
(Beverly Hills, CA, United States) are investigating the clinical
potential of CAP-2003, which refer to the EVs produced
by their proprietary cardiosphere-derived cells. Capricor has
made efforts to evaluate the regenerative potential of these
cardiosphere-derived EVs on diseases involving inflammation
and fibrosis (Ibrahim et al., 2014). Similarly, cell therapy company
specializing in neurological disease, ReNeuron, has sought to
do the same with EVs from their proprietary CTX neural cell
line, which are currently in Phase IIb clinical trials for US-based
patients living with post-stroke disabilities. It is likely that we
will need an emergence of EV-based therapeutics from other
cell therapy companies as the proverbial penny drops – there is
immense value in what was essentially considered a waste product
of cell manufacturing.

Regardless of whether EVs will be used for the purposes
of regenerative medicine, cancer vaccination, veterinary or
agriculture, there is an obvious need to develop methods
to reliably store, transport and apply the EVs. Of these
considerations, storage of the EVs is perhaps the most critical
aspect of the supply chain. The stability of the EVs in their
storage medium necessarily dictates the rigidity of the cold chain
and will have direct impact on the cost of goods. Investment
into technologies that refine the stability of EVs will likely
afford significant cost savings downstream. The storage medium
will also impact the final formulation of the EV therapeutic
as challenges around solubility of injectables and particle size
of aerosols must be considered. These factors will have knock-
on effects on biodistribution and therapeutic efficacy. As such,
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rigorous preclinical testing should be designed with this in
mind, in order to expedite product development and facilitate
regulatory approval.

CONCLUSION

The FDA approval of chimeric antigen receptor T cells (CAR-
T), Kymriah (Novartis) for refractory B-cell precursor acute
lymphoblastic leukemia in August 2017, heralded the dawn
of a new age for cell therapies. There are, however, broader
implications for these approved cell therapies. Chief amongst
these is the growing acceptance of cellular therapies and
regenerative medicine in mainstream clinical care. However,
the relative high cost of goods remains prohibitive for cellular
therapies. Challenges in scalable manufacturing, maintenance
of a master cell bank, complex cold chain logistics and
ambiguity around product release criteria, have led to lengthy
delays in realizing the potential of cellular therapies. While
regulatory hurdles for this new class of biologics remain a
challenge to be met, it is likely that the relative stability
of EVs will see a significantly expedited path to regulatory
approval. Furthermore, as critical questions around scalable

manufacturing and long-term preservation are answered, EV-
based therapeutics may offer a more affordable form of
regenerative medicine, thereby increasing market penetration
and patient access. In essence, the development of novel
preservation protocols tailored for EVs are likely to fast forward
the manufacturing process to establish EVs as commercially
viable therapeutics.
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