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Abstract

Outliers in neuroimaging represent spurious data or the data of unusual phenotypes

that deserve special attention such as clinical follow-up. Outliers have usually been

detected in a supervised or semi-supervised manner for labeled neuroimaging

cohorts. There has been much less work using unsupervised outlier detection on

large unlabeled cohorts like the UK Biobank brain imaging dataset. Given its large

sample size, rare imaging phenotypes within this unique cohort are of interest, as

they are often clinically relevant and could be informative for discovering new pro-

cesses. Here, we developed a two-level outlier detection and screening methodology

to characterize individual outliers from the multimodal MRI dataset of more than

15,000 UK Biobank subjects. In primary screening, using brain ventricles, white mat-

ter, cortical thickness, and functional connectivity-based imaging phenotypes, every

subject was parameterized with an outlier score per imaging phenotype. Outlier

scores of these imaging phenotypes had good-to-excellent test–retest reliability, with

the exception of resting-state functional connectivity (RSFC). Due to the low reliabil-

ity of RSFC outlier scores, RSFC outliers were excluded from further individual-level

outlier screening. In secondary screening, the extreme outliers (1,026 subjects) were

examined individually, and those arising from data collection/processing errors were

eliminated. A representative subgroup of 120 subjects from the remaining non-

artifactual outliers were radiologically reviewed, and radiological findings were identi-

fied in 97.5% of them. This study establishes an unsupervised framework for investi-

gating rare individual imaging phenotypes within a large neuroimaging cohort.
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1 | INTRODUCTION

Outliers are defined as observations differing by a large amount from

most other observations (Tan, Steinbach, & Kumar, 2006). By this def-

inition, outliers constitute a small portion of a dataset and are
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exceptional patterns in some sense. Detecting outliers is of interest in

brain imaging for two major reasons. First, outliers can occur due to

imaging artifacts or noise. For example, head motion adversely affects

brain morphometry, diffusion, and connectivity measurements

(Power, Schlaggar, & Petersen, 2015; Reuter et al., 2015; Yendiki,

Koldewyn, Kakunoori, Kanwisher, & Fischl, 2014) and causes outliers

in these data. Second, and more importantly, some outliers represent

unusual phenotypes that deserve special attention. For example, an

anomalous MRI may indicate the presence of neurological disease that

requires clinical attention. Certain unusual phenotypes may also be

interesting for follow-up to determine the underlying mechanism for

the large deviations of their brain MRI from the population.

Outlier detection methods applied in brain imaging can be catego-

rized in many ways. One common way is based on whether the

method makes use of labeled datasets to train the outlier detection

model: supervised methods use labeled datasets that contain both

labeled outliers and labeled non-outliers for training; semi-supervised

methods use labeled datasets that only contain labeled non-outliers

for training; and unsupervised methods use unlabeled datasets for

training (Goldstein & Uchida, 2016). Using the available diagnostic

labels for all subjects or at least the non-outlier subjects, outlier detec-

tion studies have employed a variety of algorithms, such as one-class

support vector machine, Gaussian process regression, or

autoencoders, and these have been applied in a supervised or semi-

supervised manner to quantify the outlierness of healthy individuals

or patients (Marquand, Rezek, Buitelaar, & Beckmann, 2016; Mourao-

Miranda et al., 2011; Pinaya, Mechelli, & Sato, 2019; van Hespen

et al., 2021). However, diagnostic labels are not always available, mak-

ing the supervised or semi-supervised approaches challenging to

implement across the board. Unsupervised outlier detection methods

are needed for unlabeled brain imaging datasets, for example, the UK

Biobank (UKB), an ongoing large epidemiological cohort (Miller

et al., 2016).

The UKB is enrolling 500,000 subjects 40–69 years of age for

extensive phenotyping and subsequent long-term monitoring of

health outcomes (Allen et al., 2012). In this cohort, 100,000 subjects

are currently in the process of being invited back for MRI imaging,

making it the largest multimodal MRI cohort in the world (Littlejohns

et al., 2020). By enrolling a large population of this age range, this

unlabeled brain imaging dataset includes healthy and presymptomatic

subjects, as well as a small fraction of subjects with different clinically

relevant diseases. Over time, many more subjects in this cohort will

become identified with a clinically relevant disease (Miller

et al., 2016). Given its large sample size, the UKB cohort enables a

unique opportunity for developing unsupervised outlier detection

methods to identify rare imaging phenotypes. These rare imaging phe-

notypes could be clinically relevant or informative for discovering new

processes and mechanisms.

In the present study, a two-level outlier detection and screening

methodology was developed to characterize individual outlying MRI

results across multiple brain imaging phenotypes among more than

15,000 UKB subjects. We made use of the multimodal MRI data to

derive ventricular, white matter, and gray matter-based imaging

phenotypes of the brain (Figure 1a). Every subject was parameterized

with an “outlier score” per imaging phenotype in an unsupervised

manner without any prior labels (Figure 1b). This outlier score quan-

tifies how far an individual deviates from most other subjects. Test–

retest reliability of outlier scores of each imaging phenotype was

characterized in the subjects that had repeat MRI scans, and any less

reliable imaging phenotype was not used for further individual-level

outlier screening. Individual extreme outlier subjects were catego-

rized according to whether there were data collection/processing

errors, or whether the individual had radiological findings or

appeared normal as determined by a board-certified neuroradiologist

(Figure 1c). Similar outlier detection and screening procedures were

also carried out separately in the Human Connectome Project (HCP)

dataset (Van Essen et al., 2013), and the extreme outlier subjects

from this young adult cohort that might be interesting for follow-up

are also described.

2 | MATERIALS AND METHODS

2.1 | Main dataset

The multimodal brain MRI data of 19,406 subjects (9,170 males and

10,236 females; age 44–80) at the initial imaging visit were down-

loaded from the UKB. This included T1-weighted (T1w) MPRAGE and

T2-weighted (T2w) FLAIR structural MRI, spin-echo echo-planar imag-

ing (EPI) diffusion MRI (dMRI), and gradient-echo EPI resting-state

functional MRI (rsfMRI) data. Some subjects only had usable T1w data

available in this sample, resulting in a reduced initial sample size of

other MRI modalities. Following exclusions based on automatic quality

control described below in Section 2.3, the final sample size for each

imaging modality varied from 15,166 to 19,076 (hereafter referred to

as UKB discovery group for this final sample). The detailed number of

exclusions and the demographic information of the final sample are

summarized in Table S1. The data were acquired on identical 3 T Sie-

mens Skyra MRI scanners, and detailed acquisition protocols can be

found elsewhere (Alfaro-Almagro et al., 2018). The UKB study was

approved by the North West Multi-centre Research Ethics Commit-

tee, and informed consent was obtained from all participants. The pre-

sent study was approved by the Office of Human Subjects Research

Protections at the National Institutes of Health (ID#: 18-NINDS-

00353).

2.2 | Image preprocessing and extraction of
imaging phenotypes

The following six commonly used brain imaging phenotypes were

extracted from imaging preprocessing outputs: ventricular volume

(VV), white matter lesion volume (WMLV), fractional anisotropy (FA),

mean diffusivity (MD), cortical thickness (CTh), and resting-state func-

tional connectivity (RSFC). The detailed procedures are described as

follows.
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The raw T1w MPRAGE and T2w FLAIR images were

preprocessed by the HCP structural pipeline (v4) (Glasser et al., 2013)

based on FreeSurfer (v6) (Fischl, 2012). For the subjects without

usable T2w FLAIR images, the ventricles were segmented from their

T1w images using FreeSurfer. The ventricular segmentations were

manually inspected for each subject, and 213 subjects with large seg-

mentation defects in their enlarged ventricles were reprocessed with

“-bigventricles” flag in FreeSurfer to correct the defects. Each sub-

ject's VV was calculated by summing the volumes of lateral ventricles,

temporal horns of the lateral ventricles, choroid plexuses, third ventri-

cle, and fourth ventricle. WMLV was calculated by the Brain Intensity

Abnormality Classification Algorithm (BIANCA, Griffanti et al., 2016),

a k-nearest-neighbor-based automated supervised method, using T2w

FLAIR images but also T1w images as its inputs. Unsmoothed CTh

values in the standard CIFTI grayordinate space (with folding-related

effects corrected) were averaged within the region of interests (ROIs)

of the HCP multimodal parcellation atlas (360 regions) (Glasser

et al., 2016), and these ROI-wise CTh values were used for primary

screening.

The dMRI data underwent FSL eddy-current and head-movement

correction (Andersson & Sotiropoulos, 2016), gradient distortion cor-

rection, diffusion tensor model fitting using the b = 1,000 shell

(Basser, Mattiello, & LeBihan, 1994), and Tract-Based Spatial Statistics

(TBSS) analyses (Smith et al., 2006). The TBSS skeletonized images

were averaged within the ROIs of the Johns Hopkins University white

matter atlas (Mori et al., 2008). Here, the original MD values were

multiplied by 10,000 to convert to the unit of 10�4 mm2/s. The FA or

MD maps of 27 major white matter ROIs (Table S2) were used for pri-

mary screening.

The rsfMRI data were preprocessed by the UKB rsfMRI pipeline

(v1) (Alfaro-Almagro et al., 2018), and the volumetric FIX-denoised

data (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) were brought

to the standard CIFTI grayordinate space using Ciftify (v2.3.2) (Dickie

et al., 2019). For each subject, the standard deviation (SD) of percent

change time series of each grayordinate was calculated, and the

grayordinates with this SD greater than 0.1 were considered as noisy

grayordinates. These noisy grayordinates were masked from further

analyses. Using a well-established RSFC-based parcellation scheme

(333 parcels) (Gordon et al., 2016), RSFC was quantified by the Pear-

son cross-correlation coefficient between the ROI-averaged time

series of each pair of parcels, with or without global signal regression,

respectively. In addition, RSFC was quantified using partial correla-

tions with Tikhonov regularization (ρ = 0.5; FSLNets) (Pervaiz,

Vidaurre, Woolrich, & Smith, 2020). Due to the symmetry of the RSFC

F IGURE 1 Schematic illustration of outlier detection and screening pipeline. (a) Brain imaging phenotypes used for outlier detection.
(b) Primary screening: calculation of outlier scores. (c) Secondary screening: investigation of individual extreme outliers
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matrices, the upper triangular parts of these matrices

(333 � 332/2 = 55,278 elements) from each of these three RSFC

evaluation methods were used for primary screening, respectively.

2.3 | Automatic quality control

Recent research has shown the importance of quality control in big

neuroimaging datasets (Maximov et al., 2021; Monereo-Sanchez

et al., 2021). Exclusion of poor quality data was performed based on

eight quality control metrics. First, for all imaging phenotypes, because

their preprocessing all relied on usable T1w images (Alfaro-Almagro

et al., 2018), the subjects with low image quality of their T1w images

were excluded for further analyses. The quality of T1w images was

evaluated quantitatively using the Computational Anatomy Toolbox

(CAT12) (Dahnke, Yotter, & Gaser, 2013; Gaser & Dahnke, 2016),

which generated a single aggregated metric on a 100-point scale for

the overall quality of each T1w image, with 100 the best possible. The

T1w images with scores below 75 were excluded (Gaser &

Dahnke, 2016; Gilmore, Buser, & Hanson, 2021).

For FA and MD, two head motion parameters and one registra-

tion quality parameter were used for quality control. These two head

motion parameters were each subject's mean and largest values of the

volumetric movements between adjacent dMRI frames. The registra-

tion quality parameter was each subject's mean deformation of the

TBSS nonlinear registration. For CTh, FreeSurfer's Euler number,

which summarized surface reconstruction quality (Rosen et al., 2018),

was used for quality control. In addition, because T1w/T2w ratio mye-

lin maps were sensitive to subtle errors of registration or surface

placement (Glasser et al., 2013), following the multidimensional outlier

detection method described below in Section 2.4, an outlier score of

myelin map was calculated per subject and was used for CTh quality

control. For RSFC, two head motion parameters were used for quality

control. These two head motion parameters were each subject's mean

and largest values of the framewise displacement between adjacent

EPI volumes. For the seven quality control metrics described above,

data in the range above the upper inner fence of the distribution of

that metric were excluded from further analyses. Here, the upper

inner fence was the third quartile (Q3) plus 1.5 times the interquartile

range (IQR) of the distribution, and the observations above it are com-

monly defined as mild (greater than Q3 + 1.5 � IQR, but smaller than

Q3 + 3 � IQR) or extreme outliers (greater than Q3 + 3 � IQR) in sta-

tistics (Tukey, 1977). This upper inner fence threshold was applied in

the quality control of neuroimaging data (Monereo-Sanchez

et al., 2021).

2.4 | Primary screening: Calculation of outlier
scores

In primary screening, every subject that passed the quality control

was parameterized with an outlier score per imaging phenotype. The

outlier score quantified the degree of outlierness in that imaging

phenotype, and extreme outliers were identified based on the outlier

scores. In statistics, extreme outliers in distribution are defined as the

observations above the Q3 plus three times the IQR of that distribu-

tion (Tukey, 1977). For a unidimensional imaging phenotype (VV,

WMLV), using VV as an example, the number of IQRs away from the

Q3 of the VV distribution was used to define VV outlier scores:

Outlier score¼VV�Q3
IQR

ð1Þ

In this way, the unit of outlier score is IQR, and an extreme outlier has

an outlier score of greater than 3. WMLV outlier scores were calcu-

lated similarly.

For each multidimensional imaging phenotype (FA, MD, CTh,

RSFC), an autoencoder was used to calculate the outlier scores

(Hawkins, He, Williams, & Baxter, 2002). Setting the dimensionality of

the imaging phenotype as M and the number of subjects in the UKB

discovery group as N, the inputs to the autoencoder were the values

of that imaging phenotype across the whole group (M � N), and the

autoencoder was trained to replicate this input at its output. By defi-

nition, outliers only comprised a small portion of a dataset; therefore,

the trained autoencoder cannot replicate these outliers as good as the

non-outliers. This resulted in larger replication errors for the outlying

subjects. These replication errors (also known as “autoencoder recon-
struction error”) were measured by the root mean square errors

between each input and the autoencoder-predicted output. Because

these replication errors were unidimensional, similar to the calculation

of outlier scores for unidimensional imaging phenotypes, the number

of IQRs away from the Q3 of the replication error distribution was

used to define outlier scores:

Outlier score¼ error�Q3
IQR

ð2Þ

Still, the unit of outlier score is IQR, and an extreme outlier has an out-

lier score of greater than 3.

In the above analyses, to control for the effects of covariates

(age, brain volume, and the image quality metrics described in

Section 2.3) on outlier detection, their correlations with VV, WMLV,

and the autoencoder replication errors of multidimensional imaging

phenotypes were evaluated (Figure S1). The covariates with correla-

tion >0.3 were regressed out from VV, WMLV, or the replication

errors before applying Equation (1) or (2). As a result, age, brain vol-

ume, and CAT12's T1w image quality metric were regressed out from

VV. Age was regressed out from WMLV. Age was also regressed out

from the autoencoder replication errors of MD. FreeSurfer's Euler

number was regressed out from the autoencoder replication errors

of CTh.

Each autoencoder used in the present study was comprised of an

input layer (M dimensions), a hidden layer of 10 neurons, and an out-

put layer (M dimensions). A sparsity proportion of 0.05 was used, and

the sparsity regularization coefficient was set to 1. The L2 weight reg-

ularization coefficient was set to 0.001. The sigmoid function was

used as the activation function, and the mean squared error function

adjusted for sparse autoencoder was used as the loss function. A
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scaled conjugate gradient descent algorithm (Moller, 1993) was used

for training the autoencoder. The autoencoders were implemented

using the “trainAutoencoder” function in the MATLAB and were

trained using a GPU cluster (https://hpc.nih.gov). When the input

dataset was too large to fit into the GPU memory, multiple

autoencoders were used. In these scenarios, the input data were split

into four to five smaller subgroups in a stratified manner, preserving

the ratio of age and sex in each subgroup. For each subgroup, an

autoencoder was trained using the data of that subgroup as the input.

The trained autoencoders were then applied to the full dataset and

the output of the whole group was obtained by averaging the outputs

from each of these autoencoders.

2.5 | Evaluation of reliability of outlier scores and
elimination of less reliable imaging phenotype

A subgroup (1,391 subjects) of the UKB discovery group subjects had

a repeat MRI session (also known as “retest”) 2–3 years after the ini-

tial imaging visit (also known as “test”). The test and retest data of

these subjects were used to evaluate long-term reliability of outlier

scores. Unlike the primary screening, in the reliability analysis, the vol-

ume measurements of unidimensional imaging phenotypes or the

autoencoder replication errors of multidimensional imaging pheno-

types were no longer adjusted for covariates. For each unidimensional

imaging phenotype, the Q3 and IQR were calculated from the full test

data and applied to calculate outlier scores for both test data and, for

subjects who were scanned twice, retest data. For each multi-

dimensional imaging phenotype, the autoencoders trained on the full

test data were applied to the retest data. The reliability was quantified

by intraclass correlation coefficient (ICC; Shrout & Fleiss, 1979)

between the outlier scores of the test and retest data using a one-

way random effects model:

ICC 1,1ð Þ¼ MSb�MSw
MSbþ k�1ð ÞMSw

ð3Þ

where MSb is the between-subject mean square, MSw is the within-

subject mean square, and k is the number of observations per subject

(McGraw & Wong, 1996). Reliability was defined as excellent

(ICC > 0.8), good (0.8 > ICC > 0.6), moderate (0.6 > ICC > 0.4), fair

(0.4 > ICC > 0.2), or poor (ICC < 0.2) (Guo et al., 2012) in the present

study.

Any imaging phenotype with moderate/fair/poor outlier score

reliability was excluded from further analysis of individual outliers.

This resulted in the exclusion of RSFC (for details, see Section 3.2).

2.6 | Secondary screening: Investigation of
individual extreme outliers

The automatic quality control described in Section 2.3 excluded most

data collection/processing errors. However, a small number of errors

could remain in this large cohort. For example, potentially low quality

T2w FLAIR images and potential segmentation errors of white matter

lesions were not accounted for because of the lack of a well-

established tool for automatic assessment of the quality of T2w FLAIR

images or white matter lesion segmentation. To capture potential data

collection/processing errors that may occur in extreme outliers, for

each remaining imaging phenotype, the extreme outlier subjects were

first manually inspected and the ones with the errors were eliminated.

For each VV extreme outlier subject, ventricle segmentation was visu-

ally inspected by overlaying the border of the segmented ventricle

mask on the T1w image. For each WMLV extreme outlier subject,

white matter lesion segmentation was visually inspected by overlaying

the border of the segmented lesion mask on the T2w FLAIR image.

The FA or MD extreme outlier subjects were visually checked for reg-

istration and field of view (FOV) coverage. For CTh extreme outlier

subjects, their white/pial surface segmentation was visually checked

via HCP pipeline structural quality control scenes (https://github.

com/Washington-University/StructuralQC; v1.4.0).

A subgroup (120 subjects) of the remaining non-artifactual

extreme outlier subjects were radiologically reviewed. This subgroup

included all top-ranked extreme outlier subjects and randomly sam-

pled non-top extreme outlier subjects to ensure a wide coverage

(Figure S2). T1w MPRAGE and T2w FLAIR images, as well as the ages

of these subjects, were provided to a board-certified neuroradiologist

(D. S. R.). The instructions to the neuroradiologist were to identify any

major findings that might plausibly account for the extreme outlier

score—not to identify subtle abnormalities that would have required

dedicated review on clinical-grade display systems. When the neuro-

radiologist was uncertain of the diagnosis, UKB health outcomes data

(UKB Category 1712) were used in an attempt to determine the diag-

nosis. These data recorded the first occurrence of various diseases,

including neuropsychiatric and neurological disorders. Based on the

radiological review results, the subjects in the subgroup were further

divided into two subgroups: a subgroup of the extreme outlier sub-

jects with radiological findings (117 subjects), and another subgroup

of the extreme outlier subjects which appeared normal to the neuro-

radiologist (3 subjects). The cases from these two subgroups that

would be interesting for follow-up were highlighted.

2.7 | Evaluation of the relationships between
outlier scores of different imaging phenotypes

The relationships between outlier scores of different imaging pheno-

types were quantified using Pearson cross-correlation coefficients in

the UKB discovery group. Two representative relationships of outlier

scores, WMLV versus VV, and WMLV versus FA, were also visualized

using scatterplots. In each scatterplot, three zones were defined to

categorize extreme outlier subjects. For WMLV versus VV, Zone I

covered the subjects who were VV extreme outliers but with normal

WMLV (WMLV outlier score < 1.5), Zone II covered the subjects who

were both VV and WMLV extreme outliers, and Zone III covered the

subjects who were WMLV extreme outliers but with normal VV

(VV outlier score < 1.5). The density of subjects in each zone was
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calculated by dividing the number of subjects by the area of the zone

as follows:

DensityZone I ¼
Number of subjects in Zone I

1:5�min WMLV outlier scoreð Þð Þ � max VVoutlier scoreð Þ�3ð Þ
ð4Þ

DensityZone II ¼
Number of subjects in Zone II

max WMLV outlier scoreð Þ�3ð Þ � max VVoutlier scoreð Þ�3ð Þ
ð5Þ

DensityZone III ¼
Number of subjects in Zone III

max WMLV outlier scoreð Þ�3ð Þ� 1:5�min VVoutlier scoreð Þð Þ
ð6Þ

To evaluate the differences in densities across the three zones, a

bootstrap procedure with replacement on subjects was used to gener-

ate 100,000 bootstrap samples of the original sample size. For each

bootstrap sample, the density of each zone was recomputed. A one-

way analysis of variance (ANOVA) was then performed to evaluate

the differences across the zones using the bootstrap samples. Similar

analyses were also carried out to evaluate the relationship between

WMLV and FA outlier scores.

2.8 | Outlier detection and screening in the HCP
dataset

Similar outlier detection procedures were carried out separately in the

HCP dataset to identify interesting extreme outliers in this young

adult cohort (for details, see Supplementary Methods). Briefly, 3 T

MRI data from the 1,200 Subjects Release (1,113 subjects: 507 males

and 606 females; age 22–37) were used (Glasser et al., 2016). Because

of the lack of HCP T2w FLAIR data and poor WMLV segmentation

accuracy when only using T1w images (Hotz et al., 2021), WMLV was

excluded from the outlier detection of the HCP dataset. All the HCP

extreme outliers (12 subjects) without data collection/processing

errors were radiologically reviewed, and the cases that would be inter-

esting for follow-up were highlighted.

3 | RESULTS

3.1 | Properties of outlier score distributions

The results presented throughout the rest of the manuscript were

obtained using the UKB discovery group unless otherwise specified.

The outlier score histogram of each imaging phenotype is shown in

Figure 2. These distributions were all right-skewed and more lep-

tokurtic than a standard normal distribution (see Table 1 for skewness

and kurtosis values). The percentage of extreme outliers ranged from

a lowest of 0.2% in RSFC, to a highest of 3.9% in WMLV (Table 1).

These percentages are all much higher than a standard normal distri-

bution predicts, because the criterion of Q3 + 3 � IQR for defining

extreme outliers (referred to as “outlier” hereafter) in each distribu-

tion is equivalent to about 4.7 times the SD plus the mean in a stan-

dard normal distribution. One would predict only 0.0001% of the data

above mean + 4.7 � SD in a standard normal distribution. Taken

together, the results suggest that the outlier score distributions were

all more outlier-prone than a standard normal distribution.

3.2 | Long-term test–retest reliability of outlier
scores

A subgroup of the discovery group subjects had a repeat MRI session

2–3 years after the initial visit. The outlier scores of test versus retest

of each imaging phenotype are visualized in the scatterplots of

Figure 3a–f, respectively. VV outlier scores had excellent test–retest

reliability, as indicated by the close-to-one value of the ICC

(ICC = 0.98) between test and retest outlier scores. The test–retest

reliabilities of WMLV and FA outlier scores were lower than VV but

still excellent (WMLV ICC = 0.82; FA ICC = 0.86). The test–retest

reliabilities of MD and CTh outlier scores were lower than the former

three but still in the range of good reliability (MD ICC = 0.72; CTh

ICC = 0.64).

However, RSFC outlier scores had a low test–retest ICC

(ICC = 0.40, Figure 3f). Because of this low reliability, among the sub-

jects with available test–retest data, no subject had both test and

retest RSFC identified consistently as an outlier. This change in test–

retest outlier scores was found to be correlated with the change of

global signal amplitude (r = .43, Figure 3g). Here, global signal ampli-

tude was defined as the SD of the global signal (Wong, Olafsson,

Tal, & Liu, 2013). Indeed, the RSFC outlier score itself was found to be

correlated with global signal amplitude (r = .51, Figure 3h). This asso-

ciation was unlikely due to head motion, because the subjects with

large head motion were excluded in the automatic quality control. The

association between RSFC outlier score and global signal amplitude

also persisted when using partial correlations to evaluate RSFC,

although they became negatively correlated in this case (r = �.69,

Figure S3a). Global signal regression reduced their association, but

RSFC outlier score was still moderately correlated with global signal

amplitude (r = .42, Figure S3b). Remarkably, when we carried out sim-

ilar analyses on the HCP dataset, the results were very similar

(Figure S3c–h). Thus, RSFC was eliminated for further individual-level

outlier screening due to its low individual test–retest reliability.

3.3 | Summary of the screening results of
individual outliers

The total number of outliers across all individual imaging phenotypes

(excluding RSFC) was 1,258. Because there were subjects who were

outliers in more than one imaging phenotype, there were 1,026 dis-

tinct subjects that made up these 1,258 outliers.

Through the screening of each outlier, 87 outliers were associated

with data collection/processing errors. This was true despite the use
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of automatic quality control to exclude poor quality data before out-

lier detection. Interestingly, none of the VV outliers were associated

with data collection/processing errors. More frequent data collection/

processing errors were found in the WMLV, FA, or MD outliers as

compared to the VV outliers (Table 2). The errors were found to be

most frequent (22.2%, 12/54) in the CTh outliers. Some of the errors

occurred at the data acquisition stage, due to head motion artifacts

(Figure S4a) or the selection of a wrong FOV (Figure S4b). Others

occurred at the data processing stage, such as incorrect segmentation

(Figure S4c) or incorrect registration (Figure S4d).

Of the remaining 1,171 outliers (954 distinct subjects) that did

not have data collection/processing errors, 120 distinct subjects were

reviewed by a board-certified neuroradiologist (Table 2). These

120 subjects included all top-ranked outliers and randomly sampled

non-top-ranked outliers, and the outlier scores of this representative

subgroup spanned almost the whole range above Q3 + 3 � IQR of

F IGURE 2 Outlier score histograms. (a) Ventricular volume (VV). (b) White matter lesion volume (WMLV). (c) Fractional anisotropy (FA).
(d) Mean diffusivity (MD). (e) Cortical thickness (CTh). (f) Resting-state functional connectivity (RSFC). The zoom panels show the outlier score
histograms of extreme outlier subjects

1772 MA ET AL.



the outlier score distribution in each imaging phenotype (see

Figure S2 for details). In this subgroup, 117 subjects (97.5%, 117/120)

were identified with radiological findings, and these findings covered

a diverse category of phenotypes, such as large ventricles, masses,

cysts, white matter lesions, infarcts, encephalomalacia, and prominent

sulci. Representative individual outlier subjects are reported in the

next few subsections per imaging phenotype.

3.4 | Individual outliers of VV

As an example, Figure 4a shows a VV outlier subject versus a normal

subject. This subject had significantly enlarged lateral ventricles com-

pared to a normal one (about 7.9 � IQR away between these two

subjects in VV outlier score distribution). Forty-one of the VV outliers

were reviewed by the neuroradiologist. Thirty-eight of the VV outliers

being read were identified with radiological findings of large ventri-

cles. Some of them had relatively clear etiology: A third ventricle mass

(possibly a choroid plexus papilloma), a fourth ventricle mass (possibly

an ependymoma), a colloid cyst, and a frontoparietal arachnoid cyst,

all of which could cause obstructive hydrocephalus, were found in

four VV outlier subjects, respectively (Figure 4b). The other major

pathologies identified in the VV outliers were infarcts, nodules, agene-

sis of corpus callosum, and white matter lesions (Figure S5a).

In addition, a few VV outliers that were read would be potentially

interesting for follow-up because they had large ventricles of

unknown etiology and they did not present any other noticeable

pathology (Figure 4c, left panel). Such VV outliers of unknown

TABLE 1 Summary of outlier score distributions for the main dataset (UKB discovery group)

Phenotype VV WMLV FA MD CTh RSFCa

Number of subjects 19,076 18,166 15,432 15,432 16,200 15,166

Skewness 1.92 4.28 7.38 7.01 0.99 1.01

Kurtosis 11.47 36.56 227.61 156.27 6.20 6.01

Number of outliers 190 (1.0%) 706 (3.9%) 134 (0.9%) 174 (1.1%) 54 (0.3%) 33 (0.2%)

Abbreviations: CTh, cortical thickness; FA, fractional anisotropy; MD, mean diffusivity; RSFC, resting-state functional connectivity; UKB, UK Biobank; VV,

ventricular volume; WMLV, White matter lesion volume.
aFull correlations without global signal regression.

F IGURE 3 Long-term test–retest reliability of outlier scores. (a) Ventricular volume (VV). (b) White matter lesion volume (WMLV).
(c) Fractional anisotropy (FA). (d) Mean diffusivity (MD). (e) Cortical thickness (CTh). (f) Resting-state functional connectivity (RSFC). For (a–f), in
each scatterplot, each subject's outlier score of the initial imaging visit (also known as “test”; year 2014+) is plotted against the outlier score of
the first repeat imaging visit (also known as “retest”; year 2019+). ICC: intraclass correlation between outlier scores of the two visits. Red dashed
line: Q3 + 3 � IQR. (g) The scatterplot of test–retest global signal amplitude (GSA) change versus test–retest RSFC outlier score change. For (a–g),
only the UK Biobank (UKB) subjects that had both test and retest data available are shown in these scatterplots. (h) The scatterplot of GSA versus
RSFC outlier score (RSFC calculated using full correlations)
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TABLE 2 Summary of radiological review results of the outlier subjects in the main dataset

Phenotype VV WMLV FA MD CTh

Outliers without data issue 190 (100%) 640 (90.7%) 129 (96.3%) 170 (97.7%) 42 (77.8%)

Outliers read by neuroradiologist 41 62 37 37 18

Radiological comments Normal 2 1

Large ventricles 38 18 9 8 5

White matter lesions 27 62 29 31 9

Mass 2 1 1

Cyst 4 1 1 2 1

Infarct 6 16 9 11 4

Encephalomalacia 3 3

Prominent sulci 2 1 3 1 3

Other findings 4 9 11 10 3

Note: Empty entries are zeros.

Abbreviations: CTh, cortical thickness; FA, fractional anisotropy; MD, mean diffusivity; RSFC, resting-state functional connectivity; VV, ventricular volume;

WMLV, White matter lesion volume.

F IGURE 4 Individual outliers of ventricular volume (VV). (a) Structural images of an example of a VV outlier subject (left column) and an example of a
normal VV subject (right column). (b) Structural images showing radiological findings in four representative VV outlier subjects. (c) Structural images of VV
outlier subjects interesting for follow-up. Left column: A subject with large ventricles of unknown etiology. Right column: Structural images of a family in
the Human Connectome Project (HCP) dataset (monozygotic twins and their non-twin brother). The twins had large ventricles of unknown etiology, but
their non-twin brother had normal VV. The structural images in (a), (b), and the left column of (c) are reproduced by kind permission of UK Biobank ©

1774 MA ET AL.



etiology were also present in the HCP dataset. In one family

(Figure 4c, right panel), female monozygotic twins were both VV out-

liers, but their non-twin brother had normal VV; in another family

(Figure S5b), one twin of a male monozygotic twin pair was a VV out-

lier, but the other twin and his non-twin brother both had normal

VV. These twin data open the possibility of probing genetic and envi-

ronmental causes underlying the anomalously large VV. Taken

together, the results indicate VV outliers were associated with multi-

ple different brain pathologies, and some of them had uncertain etiol-

ogy requiring additional follow-up investigation.

3.5 | Individual outliers of white matter-based
imaging phenotypes

Outlier detection of white matter-based imaging phenotypes was per-

formed with WMLV, FA, and MD, respectively. As an example,

Figure 5a shows a WMLV outlier subject versus a normal subject

(about 26.7 � IQR away between these two subjects in WMLV outlier

score distribution). The outlier subject had irregular periventricular

white matter lesions extending into the deep white matter with large

confluent areas, whereas the example normal subject had only tiny

lesions on the periventricular caps. Figure 5b shows regional FA devi-

ation maps of an FA outlier subject versus a normal subject (about

9.9 � IQR away between these two subjects in FA outlier score distri-

bution). For this representative outlier subject, regional FA negatively

deviated in all 27 white matter ROI used in this study, whereas the FA

of the representative normal subject had almost no deviations.

Figure S6a shows regional MD deviation maps of an MD outlier sub-

ject versus a normal subject (about 5.5 � IQR away between these

two subjects in MD outlier score distribution), in which a large posi-

tive MD deviation was observed in the left superior longitudinal fas-

ciculus of this outlier subject.

A proportion of the white matter outliers without any data acqui-

sition or processing errors were reviewed by the neuroradiologist, and

most of them were identified with radiological findings: This includes

all the reviewed WMLV outliers, 94.6% (35/37) of the reviewed FA

outliers, and all the reviewed MD outliers (Table 2). For instance, likely

multiple sclerosis was identified in a subject who was an outlier in

WMLV, FA, and MD (Figure 5c). The diagnosis of multiple sclerosis

was confirmed by the UKB health outcomes data. Lacunar infarcts

and moderate small vessel disease were identified in another subject

who was also an outlier in all three white matter-based imaging phe-

notypes (Figure 5c). A parahippocampal cyst was identified in an MD

outlier subject (Figure 5c). Encephalomalacia (Figure 5c) was identified

in a subject who was an outlier in both FA and MD.

The etiology of the findings in some white matter outliers was

uncertain. For example, the left panel of Figure 5d shows an outlier

subject in WMLV, FA, and MD measures, who was read as having

severe biparietal atypically distributed white matter lesions of

unknown etiology. Other than the subjects with radiological findings,

a small number of the white matter outlier subjects reviewed

appeared normal to the neuroradiologist (Figure 5d, right panel, and

Figure S6b). For example, the right panel of Figure 5d shows an FA

outlier subject had an anomalously low FA value in the genu of corpus

callosum specifically, but his T1w and T2w FLAIR images were

normal-appearing. All these outliers of unknown etiology and normal-

appearing outliers would be interesting for follow-up to determine the

mechanism or whether they eventually present with specific clinical

symptoms. Taken together, these results indicate that the non-

artifactual outliers of white matter-based imaging phenotypes were

associated with a large variety of different radiological findings.

Normal-appearing outliers, each with unique FA or MD patterns, only

constituted a small fraction of the white matter outliers.

3.6 | Individual outliers of CTh

We next examined the individuals with outlying CTh. As an example,

Figure 6a shows regional CTh deviation maps of an outlier subject

versus a normal subject (about 5.5 � IQR away between these two

subjects in CTh outlier score distribution). Widespread negative CTh

deviations, representing thinner cortices in these regions, were

observed in this outlier subject. Among the non-artifactual CTh outlier

subjects that were read, 94.4% (17/18) of them were identified with

radiological findings, such as prominent sulci, atrophy, or an infarct

affecting the nearby cortices (Figure 6b). Taken together, these results

suggest that most non-artifactual CTh outliers were associated with

radiological findings.

3.7 | Outlier score relationships across imaging
phenotypes

The relationship of outlier scores across different imaging phenotypes

was assessed via pairwise Pearson correlation coefficients (Figure 7a).

The correlation between some white matter-based imaging pheno-

types (WMLV vs. MD) was moderate (.4 < r < .6), indicating they can

capture similar outlying patterns in the white matter. All the other cor-

relations were weak (.2 < r < .4) or very weak (r < .2), indicating they

were complementary and provided independent information.

To further illustrate these relationships, Figure 7b shows a

scatterplot of WMLV versus VV outlier scores, which were weakly

correlated (r = .25). Very few subjects were both VV and WMLV out-

liers, as evidenced by the sparser data in Zone II than Zone I or III

(Figure 7b). Indeed, the density of Zone II was significantly lower than

the other two zones (p ≈ 0, one-way ANOVA of 100,000 bootstrap

samples, Figure S7a). It is therefore likely that the biological processes

that led to large increases in WMLV are commonly independent of

those that led to very enlarged VV. To illustrate another weak correla-

tion, Figure 7c shows a scatterplot of WMLV versus FA outlier scores

(r = .36). The density of Zone II was significantly lower than Zone III

(p ≈ 0, one-way ANOVA of 100,000 bootstrap samples, Figure S7b)

but was close to Zone I. Figure S7c shows two examples of the out-

liers in Zone II. The upper panel of Figure S7c shows a subject that

was an outlier in both VV and WMLV. This subject, diagnosed with
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F IGURE 5 Individual outliers of white matter-based imaging phenotypes. (a) T2w FLAIR images of an example of a white matter lesion
volume (WMLV) outlier subject (left column) and an example of a normal WMLV subject (right column). The red line represents the boundary of
white matter lesions. (b) Regional fractional anisotropy (FA) deviation maps (overlaid on T2w FLAIR images) of an example of an FA outlier subject
(left column) and an example of a normal FA subject (right column). (c) Structural images showing radiological findings in representative WMLV,
FA, or mean diffusivity (MD) outlier subjects of multiple sclerosis (a WMLV, FA, and MD outlier), lacunar infarcts with moderate small vessel
disease (a WMLV, FA, and MD outlier), cyst (an MD outlier), and encephalomalacia (an FA and MD outlier). (d) WMLV, FA, or MD outlier
interesting for follow-up. Left column: T2w FLAIR images of an outlier subject with severe biparietal nontypical distributed white matter lesions
of uncertain etiology (a WMLV, FA, and MD outlier). Right column: regional FA deviation map (overlaid on T2w FLAIR images) of an FA outlier
subject that was radiologically normal. FA was anomalously low in the genu of corpus callosum and the cause was unknown. For the regional FA
deviation maps in (b) and (d), each map visualizes how the FA values in a subject deviate from the autoencoder-predicted FA values. For display
purposes, in FA deviation maps, each white matter region of interest (ROI) is displayed in its full size instead of only the Tract-Based Spatial
Statistics (TBSS) skeleton. The structural images in this figure are reproduced by kind permission of UK Biobank ©
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ventriculomegaly and moderate white matter disease, had both per-

iventricular and deep white matter lesions. The lower panel of

Figure S7c shows a subject that was an outlier in all VV, WMLV, FA,

and MD. The radiological read determined there was small vessel dis-

ease evidenced by the white matter lesions, and possible Alzheimer's

disease evidenced by the parieto-temporal atrophy.

4 | DISCUSSION

In this study, a semiautomated, two-level outlier detection and

screening methodology was used to investigate outliers in the MRI

phenotypes of VV, WMLV, FA, MD, CTh, and RSFC (Figure 1). Outlier

score distributions were all more outlier-prone than a standard normal

distribution (Figure 2). Except for RSFC, outlier scores of these imag-

ing phenotypes had good-to-excellent reliability as assessed by test–

retest ICC of outlier scores (Figure 3). Due to the low test–retest

reliability of RSFC outlier scores, RSFC outliers were excluded from

further individual-level outlier analyses (Figures 3 and S3). Through

the screening of individual outliers, outliers of most imaging pheno-

types were associated with no or very few data collection/processing

errors, whereas the errors were found to be most frequent in CTh

outliers (Table 2). Among the non-artifactual outliers being reviewed

radiologically, most were associated with radiological findings

(Table 2, Figures 4bc, 5c, 6b, and S5), though a small fraction appeared

normal to the neuroradiologist (Figure 5d, right panel, and Figure S6b).

The outlier scores of different imaging phenotypes were mostly inde-

pendent, indicating that they each added information (Figure 7).

4.1 | Evaluation of unsupervised outlier detection

A common practice to evaluate an unsupervised outlier detection

approach is to apply the method to a labeled dataset to calculate

F IGURE 6 Individual outliers of cortical thickness (CTh). (a) Regional CTh deviation maps (displayed on inflated cortical surfaces) of an
example of a CTh outlier subject (first row) and an example of a normal CTh subject (second row). A regional CTh deviation map visualizes how
the CTh values in a subject deviate from the autoencoder-predicted CTh values. (b) Structural images showing radiological findings in four
representative CTh outlier subjects. These images are reproduced by kind permission of UK Biobank ©
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outlier scores without using the labels first, and these labels were

used later as the ground truth when evaluating the performance of

the unsupervised method (Aggarwal, 2017; Goldstein &

Uchida, 2016). However, in the present study, the UKB data were

unlabeled. Gibson et al. examined 1,000 subjects of this cohort radio-

logically (Gibson et al., 2017), but unfortunately, we were unsuccess-

ful in obtaining their radiological annotations. It should be noted that

the outliers defined in the present study were composed of not only

the subjects with radiological findings, but also the subjects with data

collection/processing errors that were not eliminated by the auto-

matic quality control, as well as the radiologically normal-appearing

outlier subjects, who still had large deviations from the group average

(Figure 5d, right panel). These radiologically normal-appearing outlier

subjects are interesting because they could be the ones at higher risk

to develop noticeable pathologies (de Groot et al., 2013). Therefore,

instead of using any existing labels, we opted to evaluate our

approach by quantifying how well the outlier scores align with the

amounts of deviations from the group averages. For unidimensional

imaging phenotypes, the outlier scores were linearly transformed from

unidimensional volume measurements, so they exactly quantified such

deviations. For multidimensional imaging phenotypes, the amount of

individual deviations can be measured by the correlation distance

between each subject and the group average, and the autoencoder-

derived outlier scores were found to be significantly correlated with

such individual deviations (Figure S8). The outlier scores also showed

larger dynamic ranges than the amounts of deviations from the group

averages (slopes >1; Figure S8), indicating that they were more sensi-

tive in distinguishing small differences of outlierness than using the

amounts of deviations from the group averages. Taken together, these

results confirm that the outlier scores reliably characterized the

degree of individual deviations from the group averages in this

unlabeled dataset.

4.2 | The approach to screen individual outliers in
a large neuroimaging dataset

Large-scale neuroimaging datasets have emerged in recent years, with

anywhere from 1,000 (Di Martino et al., 2014; Holmes et al., 2015;

Van Essen et al., 2013) to more than 10,000 subjects (Hagler

et al., 2019; Miller et al., 2016). Most studies using these datasets

generally focus on the average imaging characteristics at a group level.

There has been much less work on studying outlying individuals and

the associated imaging phenotypes in these large neuroimaging

datasets (Marquand et al., 2016; Mourao-Miranda et al., 2011; Pinaya

et al., 2019; van Hespen et al., 2021). To begin to fill this gap, we set

out to investigate individual outliers from more than 15,000 UKB

subjects.

Outlier detection was performed for all the commonly studied,

well-established brain imaging phenotypes. The data of these imaging

phenotypes were well-curated, as most acquisition and processing

errors were excluded from the data using eight quantitative quality

control metrics, and the image quality metrics that were correlated

with the outlier scores were regressed out (Figure S9). However, a

small fraction of the acquisition and processing errors were not

accounted for in the automatic quality control. Our outlier detection

approach was able to capture more data collection/processing errors

(Figure S4) that were missed in the quality control. In addition, the

outlier score assigned to each individual can be utilized as a useful

summary index for assessing the effectiveness of different data den-

oising strategies at the individual level. For example, three common

processing strategies regarding the global signal in RSFC were evalu-

ated in this way (Figures 3g–h and S3). Taken together, our method is

valuable for curating large neuroimaging datasets.

F IGURE 7 Relationship between outlier scores of different
imaging phenotypes. (a) Correlations between the outlier scores of
different imaging phenotypes. The two representative relationships
shown in (b) and (c) are encircled with red boxes. (b) White matter
lesion volume (WMLV) outlier score plotted against ventricular
volume (VV) outlier score. Zone I covered the VV outliers with normal
WMLV. Zone II covered the subjects who were outliers in both VV
and WMLV. Zone III covered the WMLV outliers with normal
VV. (c) WMLV outlier score plotted against fractional anisotropy
(FA) outlier score. Zone I covered the FA outliers with normal WMLV.
Zone II covered the subjects who were outliers in both FA and
WMLV. Zone III covered the WMLV outliers with normal FA
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A neuroradiologist read the structural images of non-artifactual

outliers. A large percentage (97.5%, 117/120) of them had radiological

findings, such as large ventricles, masses, cysts, white matter lesions,

infarcts, encephalomalacia, and prominent sulci. Most of these brain

pathologies likely would have led to a recommendation to see a physi-

cian for follow-up. For example, a VV outlier subject (Figure 4b) was

diagnosed with a colloid cyst causing hydrocephalus, and the neurora-

diologist's read recommended this individual to see a neurosurgeon

for follow-up. The aforementioned manual radiological screening

study (Gibson et al., 2017) of the first 1,000 UKB subjects showed

that only 1.8% of the UKB subjects screened via systematic radiolo-

gist review had radiological findings in their brain MRIs. The much

higher percentage (97.5%) of the subjects identified with radiological

findings among our outlier subjects indicates that our method can

effectively identify a subgroup that is greatly enriched with radiologi-

cal findings from a large dataset.

4.3 | Potential underlying mechanisms of outlier
subjects with unknown etiology or were radiologically
normal

Among the outliers identified with radiological findings, a few pres-

ented with unknown etiology. For example, eight UKB and five HCP

VV outlier subjects had very large ventricles of uncertain etiology. The

VV of these UKB subjects, ranging between 87.4 and 142.4 ml, was

comparable to the upper range of VV in Alzheimer's disease patients

(Schott et al., 2005). The VV of these HCP subjects was between 45.4

and 56.2 ml, which were still much larger than the volumes of normal

young healthy subjects. Interestingly, the data also showed

unexplained variations of VV between two monozygotic twin pairs in

these HCP VV outlier subjects. Two female individuals within the first

monozygotic twin pair had anomalously large VV (Figure 4c, right

panel), suggesting shared congenital, developmental, or environmental

causes. In another monozygotic twin pair, only one twin had anoma-

lous large VV (Figure S5b). This is probably due to environmental

influences or a de novo mutation early in development.

Another interesting case of unknown etiology was a UKB subject

who was an outlier for WMLV, FA, and MD (Figure 5d, left panel). In

this subject, severe bilateral, confluent, and symmetrical white matter

lesions were identified in the parietal white matter. Such lesion pat-

terns were different from small vessel disease or multiple sclerosis,

but were similar to reported cases of X-linked adrenoleukodystrophy

(Geraldes et al., 2018). In the health outcomes data, this male subject

was also reported to have hearing loss, a possible symptom of X-

linked adrenoleukodystrophy, again indicating the possibility of this

rare genetic disorder in this outlier subject with unknown etiology.

Two UKB FA outliers, two HCP FA outliers, and one HCP MD

outlier were not identified with any data collection/processing issues

or radiological findings, which are potentially interesting for investi-

gating the underlying mechanisms of their large FA or MD deviations.

For these FA outliers, anomalously low FA values were found either in

the corpus callosum, superior longitudinal fasciculus, cingulum, poste-

rior thalamic radiation, or limbs of the internal capsule (Figure 5d, right

panel, and Figure S6b). A previous study showed that low FA in

normal-appearing white matter preceded the conversion of low FA

regions into white matter lesions (de Groot et al., 2013). Therefore,

these FA outlier subjects may be at risk to develop lesions later in the

regions of anomalously low FA. For the MD outlier subject, many

small perivascular spaces were found on his structural MRI image.

These perivascular spaces were not abnormal but could be responsi-

ble for the increased MD. Taken together, all the outliers discussed

above would benefit from follow-up assessments to study underlying

mechanisms and to see if they progress to any known clinical

phenotype.

4.4 | Generalizability of outlier detection to new
UKB subjects

Since the UKB will ultimately enroll 100,000 subjects for brain imag-

ing, it is important to verify that the outlier detection method used on

the first more than 15,000 subjects in the present study can be

applied to the rest of this population. Therefore, we made use of the

second 20,000 UKB subjects released recently as a separate group for

assessing the generalizability (referred to as UKB replication group; see

Table S3 for detailed demographic information). These two groups

were of comparable size and had no overlapping subjects. For each

unidimensional imaging phenotype, generalizability was assessed by

directly comparing the outlier score distribution obtained from the

discovery group against the distribution obtained from the replication

group, and no significant difference was found between these two

distributions (Figure S10a,b. Two-sample Kolmogorov–Smirnov tests:

for VV, p = .41; for WMLV, p = .62). For each multidimensional imag-

ing phenotype, first, the generalizability of the discovery group sub-

jects' outlier scores was evaluated by the ICC between two sets of

their outlier scores calculated separately using two different

autoencoders: one autoencoder trained using the discovery group

itself, and another autoencoder trained using the replication group.

The results showed that the ICC ranged from 0.87 to 0.99

(Figure S10c–e). Second, the generalizability of the replication group

subjects' outlier scores was evaluated by the ICC between two sets of

their outlier scores calculated separately using two different

autoencoders: one autoencoder trained using the replication group

itself, and another autoencoder trained using the discovery group.

The results showed that the ICC ranged from 0.96 to 0.99

(Figure S10c–e). Taken together, these results indicate that the UKB

replication group is consistent with the UKB discovery group, and the

results suggest that our trained outlier detection models can be gener-

alized to new UKB subjects.

4.5 | Impact of neuroimaging data processing
software on outlier detection

The choice of neuroimaging data processing software can have a sub-

stantial impact on analysis results (Botvinik-Nezer et al., 2020;

Velazquez, Mateos, Pasaye, Barrios, & Marquez-Flores, 2021). Using
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FreeSurfer and CAT12 as examples, both software tools can quantify

CTh from MRI data, but they presented systematic differences in CTh

estimations (Righart et al., 2017; Seiger, Ganger, Kranz, Hahn, &

Lanzenberger, 2018). Therefore, it is interesting to evaluate whether a

different data processing software could change the outlier detection

results. To this end, for each imaging phenotype, we chose an addi-

tional neuroimaging data processing software different from the one

used in the main Methods for obtaining an additional set of

preprocessed data (for processing details, see Supplementary

Methods) and then carried out outlier detection on them. The results

showed that outlier detection in most imaging phenotypes was not

affected in a major way by using a different data processing software,

as indicated by the strong positive correlations (r: .78–.95) between

these two sets of outlier scores (Figure S11a–d), as well as the rela-

tively high Dice similarity coefficients (DC: 0.71–0.83) between the

two sets of outliers (Table S5). An exception was CTh, which only had

a moderate positive correlation (r = .46) between FreeSurfer-based

outlier scores versus CAT12-based outlier scores (Figure S11e) and a

low Dice similarity coefficient (DC = 0.13) between the outliers

(Table S5). This could be explained by the aforementioned systematic

CTh difference between the two software (Righart et al., 2017; Seiger

et al., 2018). We opted to use FreeSurfer-based results in the present

study because its surface-based approach is advantageous in alleviat-

ing partial volume effects (Velazquez et al., 2021).

4.6 | Technical considerations

There are a few technical considerations in the present study. First,

for the subjects without usable T2w FLAIR images, ventricles were

segmented using only T1w images. This choice should not affect

the outlier detection of VV, because in our additional analysis of

comparing T1w-only ventricle segmentation versus T1w and T2w

combined ventricle segmentation in 18,031 UKB subjects, a close-

to-one correlation (r = .999) was found between the VV values

obtained from these two approaches. Second, spatial smoothing

was not applied on the CTh data because more smoothing can

degrade neuroanatomical features and individual variability of CTh

(Zeighami & Evans, 2021), and it is generally suggested to avoid

spatial smoothing in the HCP-style approach (Coalson, Van Essen, &

Glasser, 2018). Third, we used the HCP multimodal parcellation

atlas (Glasser, Coalson, et al., 2016) for parcellating CTh, because it

is one of the most comprehensive atlases of human cortical areas.

Since this choice may be arbitrary, we performed CTh outlier detec-

tion using another well-established parcellation atlas (Fan

et al., 2016), and choosing this different atlas did not significantly

affect the results: A strong positive correlation (r = .77) was found

between these two sets of outlier scores derived based on different

atlases (Figure S12), and the two sets of outliers also showed rela-

tively high similarity (DC = 0.55). Nevertheless, finding an optimal

parcellation for outlier detection remains an open research topic in

the field.

4.7 | Conclusions

The present study characterized individual outliers across multiple

brain MRI phenotypes from more than 15,000 subjects. Every subject

was parameterized with an outlier score per imaging phenotype to

quantitate the outlierness. Outlier score distributions were all more

outlier-prone than a standard normal distribution. The approach

enabled the assessment of test–retest reliability via the outlier scores,

which ranged from excellent reliability for VV, WMLV, and FA, to

good reliability for MD and CTh. RSFC was excluded for individual-

level outlier screening due to its low test–retest reliability. The

individual-level analyses of the outliers revealed that a small number

of outliers were due to data collection/processing errors, demonstrat-

ing the usefulness of outlier detection in curating large neuroimaging

datasets. Most of the remaining non-artifactual outliers were due to

different brain pathologies as determined by a neuroradiologist, indi-

cating that our approach can effectively identify a subgroup that is

greatly enriched with radiological findings from a large unlabeled

cohort. Several outliers had unknown etiology or were normal-appe-

aring, and these outliers are candidates for follow-up to determine the

mechanism or whether they eventually progress to a clinical pheno-

type. Our analysis suggests that unsupervised outlier detection of

large neuroimaging datasets is valuable for data curation, reliability

assessment, and identification of individuals for medical follow-up or

further study of novel mechanisms. Outlier detection methods should

contribute to the effort of developing automatic processes to analyze

and interpret brain imaging data in large population cohorts.

ACKNOWLEDGMENTS

This study was supported by NIH/NINDS Intramural Research Pro-

gram (Project numbers: NS002989 and NS003119). The authors

thank Dr. Adam Thomas for helping with access to the UK Biobank

datasets and for providing data storage resources. This research was

conducted using the UK Biobank data under application number

22875. HCP data were provided (in part) by the HCP, WU-Minn Con-

sortium (PIs: David Van Essen and Kamil Ugurbil; 1U54MH091657)

funded by 16 NIH Institutes and Centers that support the NIH Blue-

print for Neuroscience Research; and by the McDonnell Center for

Systems Neuroscience at Washington University. In addition, the

authors would like to thank UKB-Neuroimaging and HCP-Users mail-

ing lists for helpful information. This work used NIH Biowulf high-

performance computing resources (https://hpc.nih.gov).

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

AUTHOR CONTRIBUTIONS

Zhiwei Ma, Daniel S. Reich, Jeff H. Duyn, and Alan P. Koretsky:

Designed the study. Zhiwei Ma, Daniel S. Reich, and Sarah Dembling:

Performed the analyses. Zhiwei Ma: Drafted the initial manuscript.

Zhiwei Ma, Daniel S. Reich, Sarah Dembling, Jeff H. Duyn, and Alan

P. Koretsky: Revised the manuscript.

1780 MA ET AL.

https://hpc.nih.gov


DATA AVAILABILITY STATEMENT

Access to the UK Biobank data can be requested via Access Manage-

ment System at https://bbams.ndph.ox.ac.uk/ams/. The Human

Connectome Project data are publicly available for download upon

registration at https://db.humanconnectome.org.

ORCID

Zhiwei Ma https://orcid.org/0000-0003-2928-402X

Daniel S. Reich https://orcid.org/0000-0002-2628-4334

Alan P. Koretsky https://orcid.org/0000-0002-8085-4756

REFERENCES

Aggarwal, C. C. (2017). Outlier analysis (2nd ed.). New York, NY: Springer.

https://doi.org/10.1007/978-3-319-47578-3

Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L. R.,

Griffanti, L., Douaud, G., … Smith, S. M. (2018). Image processing and

quality control for the first 10,000 brain imaging datasets from UK

Biobank. NeuroImage, 166, 400–424. https://doi.org/10.1016/j.

neuroimage.2017.10.034

Allen, N., Sudlow, C., Downey, P., Peakman, T., Danesh, J., Elliott, P., …
Biobank, U. (2012). UK Biobank: Current status and what it means for

epidemiology. Health Policy and Technology, 1(3), 123–126. https://
doi.org/10.1016/j.hlpt.2012.07.003

Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to

correction for off-resonance effects and subject movement in diffu-

sion MR imaging. NeuroImage, 125, 1063–1078. https://doi.org/10.
1016/j.neuroimage.2015.10.019

Basser, P. J., Mattiello, J., & LeBihan, D. (1994). Estimation of the effective

self-diffusion tensor from the NMR spin echo. Journal of Magnetic Res-

onance. Series B, 103(3), 247–254. https://doi.org/10.1006/jmrb.

1994.1037

Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J.,

Johannesson, M., … Schonberg, T. (2020). Variability in the analysis of

a single neuroimaging dataset by many teams. Nature, 582(7810), 84–
88. https://doi.org/10.1038/s41586-020-2314-9

Coalson, T. S., Van Essen, D. C., & Glasser, M. F. (2018). The impact of tra-

ditional neuroimaging methods on the spatial localization of cortical

areas. Proceedings of the National Academy of Sciences of the

United States of America, 115(27), E6356–E6365. https://doi.org/10.
1073/pnas.1801582115

Dahnke, R., Yotter, R. A., & Gaser, C. (2013). Cortical thickness and central

surface estimation. NeuroImage, 65, 336–348. https://doi.org/10.

1016/j.neuroimage.2012.09.050

de Groot, M., Verhaaren, B. F., de Boer, R., Klein, S., Hofman, A., van der

Lugt, A., … Vernooij, M. W. (2013). Changes in normal-appearing white

matter precede development of white matter lesions. Stroke, 44(4),

1037–1042. https://doi.org/10.1161/STROKEAHA.112.680223

Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., …
Milham, M. P. (2014). The autism brain imaging data exchange:

Towards a large-scale evaluation of the intrinsic brain architecture in

autism. Molecular Psychiatry, 19(6), 659–667. https://doi.org/10.

1038/mp.2013.78

Dickie, E. W., Anticevic, A., Smith, D. E., Coalson, T. S., Manogaran, M.,

Calarco, N., … Voineskos, A. N. (2019). Ciftify: A framework for

surface-based analysis of legacy MR acquisitions. NeuroImage, 197,

818–826. https://doi.org/10.1016/j.neuroimage.2019.04.078

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., … Jiang, T. (2016). The

Human Brainnetome Atlas: A new brain atlas based on connectional

architecture. Cerebral Cortex, 26(8), 3508–3526. https://doi.org/10.

1093/cercor/bhw157

Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://doi.org/
10.1016/j.neuroimage.2012.01.021

Gaser, C., & Dahnke, R. (2016). CAT-A computational anatomy toolbox for

the analysis of structural MRI data. Presented at the 22nd Annual

Meeting of the Organization for Human Brain Mapping.

Geraldes, R., Ciccarelli, O., Barkhof, F., De Stefano, N., Enzinger, C.,

Filippi, M., … Jacqueline Palace on behalf of the MAGNIMS Study

Group. (2018). The current role of MRI in differentiating multiple scle-

rosis from its imaging mimics. Nature Reviews. Neurology, 14(4), 213.

https://doi.org/10.1038/nrneurol.2018.39

Gibson, L. M., Littlejohns, T. J., Adamska, L., Garratt, S., Doherty, N., UK

Biobank Imaging Working Group, … Sudlow, C. L. (2017). Impact of

detecting potentially serious incidental findings during multi-modal

imaging. Wellcome Open Research, 2, 114. https://doi.org/10.12688/

wellcomeopenres.13181.3

Gilmore, A. D., Buser, N. J., & Hanson, J. L. (2021). Variations in structural

MRI quality significantly impact commonly used measures of brain

anatomy. Brain Informatics, 8(1), 7. https://doi.org/10.1186/s40708-

021-00128-2

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J.,

Yacoub, E., … Van Essen, D. C. (2016). A multi-modal parcellation of

human cerebral cortex. Nature, 536(7615), 171–178. https://doi.org/
10.1038/nature18933

Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L., Auerbach, E. J.,

Behrens, T. E., … Van Essen, D. C. (2016). The Human Connectome

Project's neuroimaging approach. Nature Neuroscience, 19(9), 1175–
1187. https://doi.org/10.1038/nn.4361

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,

Andersson, J. L., … WU-Minn HCP Consortium. (2013). The minimal

preprocessing pipelines for the Human Connectome Project.

NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.

2013.04.127

Goldstein, M., & Uchida, S. (2016). A comparative evaluation of

unsupervised anomaly detection algorithms for multivariate data. PLoS

One, 11(4), e0152173. https://doi.org/10.1371/journal.pone.0152173

Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F.,

Kelley, W. M., & Petersen, S. E. (2016). Generation and evaluation of a

cortical area parcellation from resting-state correlations. Cerebral Cor-

tex, 26(1), 288–303. https://doi.org/10.1093/cercor/bhu239
Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J.,

Douaud, G., Sexton, C. E., … Smith, S. M. (2014). ICA-based artefact

removal and accelerated fMRI acquisition for improved resting state

network imaging. NeuroImage, 95, 232–247. https://doi.org/10.1016/
j.neuroimage.2014.03.034

Griffanti, L., Zamboni, G., Khan, A., Li, L., Bonifacio, G., Sundaresan, V., …
Jenkinson, M. (2016). BIANCA (Brain Intensity AbNormality Classifica-

tion Algorithm): A new tool for automated segmentation of white mat-

ter hyperintensities. NeuroImage, 141, 191–205. https://doi.org/10.

1016/j.neuroimage.2016.07.018

Guo, C. C., Kurth, F., Zhou, J., Mayer, E. A., Eickhoff, S. B., Kramer, J. H., &

Seeley, W. W. (2012). One-year test-retest reliability of intrinsic con-

nectivity network fMRI in older adults. NeuroImage, 61(4), 1471–1483.
https://doi.org/10.1016/j.neuroimage.2012.03.027

Hagler, D. J., Jr., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A.,

Dick, A. S., … Dale, A. M. (2019). Image processing and analysis

methods for the Adolescent Brain Cognitive Development Study.

NeuroImage, 202, 116091. https://doi.org/10.1016/j.neuroimage.

2019.116091

Hawkins, S., He, H., Williams, G., & Baxter, R. (2002). Outlier detection using

replicator neural networks. Berlin: Springer.

Holmes, A. J., Hollinshead, M. O., O'Keefe, T. M., Petrov, V. I.,

Fariello, G. R., Wald, L. L., … Buckner, R. L. (2015). Brain genomics sup-

erstruct project initial data release with structural, functional, and

behavioral measures. Scientific Data, 2, 150031. https://doi.org/10.

1038/sdata.2015.31

Hotz, I., Deschwanden, P. F., Liem, F., Mérillat, S., Kollias, S., & Jäncke, L.

(2021). Performance of three freely available methods for extracting

MA ET AL. 1781

https://bbams.ndph.ox.ac.uk/ams/
https://db.humanconnectome.org
https://orcid.org/0000-0003-2928-402X
https://orcid.org/0000-0003-2928-402X
https://orcid.org/0000-0002-2628-4334
https://orcid.org/0000-0002-2628-4334
https://orcid.org/0000-0002-8085-4756
https://orcid.org/0000-0002-8085-4756
https://doi.org/10.1007/978-3-319-47578-3
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.hlpt.2012.07.003
https://doi.org/10.1016/j.hlpt.2012.07.003
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1006/jmrb.1994.1037
https://doi.org/10.1006/jmrb.1994.1037
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1073/pnas.1801582115
https://doi.org/10.1073/pnas.1801582115
https://doi.org/10.1016/j.neuroimage.2012.09.050
https://doi.org/10.1016/j.neuroimage.2012.09.050
https://doi.org/10.1161/STROKEAHA.112.680223
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1016/j.neuroimage.2019.04.078
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1038/nrneurol.2018.39
https://doi.org/10.12688/wellcomeopenres.13181.3
https://doi.org/10.12688/wellcomeopenres.13181.3
https://doi.org/10.1186/s40708-021-00128-2
https://doi.org/10.1186/s40708-021-00128-2
https://doi.org/10.1038/nature18933
https://doi.org/10.1038/nature18933
https://doi.org/10.1038/nn.4361
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1371/journal.pone.0152173
https://doi.org/10.1093/cercor/bhu239
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1016/j.neuroimage.2016.07.018
https://doi.org/10.1016/j.neuroimage.2016.07.018
https://doi.org/10.1016/j.neuroimage.2012.03.027
https://doi.org/10.1016/j.neuroimage.2019.116091
https://doi.org/10.1016/j.neuroimage.2019.116091
https://doi.org/10.1038/sdata.2015.31
https://doi.org/10.1038/sdata.2015.31


white matter hyperintensities: FreeSurfer, UBO detector and BIANCA.

bioRxiv, 2020.2010.2017.343574. doi:https://doi.org/10.1101/2020.

10.17.343574

Littlejohns, T. J., Holliday, J., Gibson, L. M., Garratt, S., Oesingmann, N.,

Alfaro-Almagro, F., … Allen, N. E. (2020). The UK Biobank imaging

enhancement of 100,000 participants: Rationale, data collection, man-

agement and future directions. Nature Communications, 11(1), 2624.

https://doi.org/10.1038/s41467-020-15948-9

Marquand, A. F., Rezek, I., Buitelaar, J., & Beckmann, C. F. (2016). Under-

standing heterogeneity in clinical cohorts using normative models:

Beyond case-control studies. Biological Psychiatry, 80(7), 552–561.
https://doi.org/10.1016/j.biopsych.2015.12.023

Maximov, I. I., van der Meer, D., de Lange, A. G., Kaufmann, T., Shadrin, A.,

Frei, O., … Westlye, L. T. (2021). Fast qualitY conTrol meThod foR

derIved diffUsion Metrics (YTTRIUM) in big data analysis:

U.K. Biobank 18,608 example. Human Brain Mapping. 42(10), 3141–
3155. https://doi.org/10.1002/hbm.25424

McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some

intraclass correlation coefficients. Psychological Methods, 1(1), 30–46.
https://doi.org/10.1037/1082-989X.1.1.30

Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E.,

Xu, J., … Smith, S. M. (2016). Multimodal population brain imaging in

the UK Biobank prospective epidemiological study. Nature Neurosci-

ence, 19(11), 1523–1536. https://doi.org/10.1038/nn.4393
Moller, M. F. (1993). A scaled conjugate-gradient algorithm for fast super-

vised learning. Neural Networks, 6(4), 525–533. https://doi.org/10.

1016/S0893-6080(05)80056-5

Monereo-Sanchez, J., de Jong, J. J. A., Drenthen, G. S., Beran, M.,

Backes, W. H., Stehouwer, C. D. A., … Jansen, J. F. A. (2021). Quality

control strategies for brain MRI segmentation and parcellation: Practi-

cal approaches and recommendations - insights from the Maastricht

study. NeuroImage, 237, 118174. https://doi.org/10.1016/j.

neuroimage.2021.118174

Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., … Mazziotta, J.

(2008). Stereotaxic white matter atlas based on diffusion tensor imag-

ing in an ICBM template. NeuroImage, 40(2), 570–582. https://doi.org/
10.1016/j.neuroimage.2007.12.035

Mourao-Miranda, J., Hardoon, D. R., Hahn, T., Marquand, A. F.,

Williams, S. C. R., Shawe-Taylor, J., & Brammer, M. (2011). Patient

classification as an outlier detection problem: An application of the

one-class support vector machine. NeuroImage, 58(3), 793–804.
https://doi.org/10.1016/j.neuroimage.2011.06.042

Pervaiz, U., Vidaurre, D., Woolrich, M. W., & Smith, S. M. (2020). Optimi-

sing network modelling methods for fMRI. NeuroImage, 211, 116604.

https://doi.org/10.1016/j.neuroimage.2020.116604

Pinaya, W. H. L., Mechelli, A., & Sato, J. R. (2019). Using deep

autoencoders to identify abnormal brain structural patterns in neuro-

psychiatric disorders: A large-scale multi-sample study. Human Brain

Mapping, 40(3), 944–954. https://doi.org/10.1002/hbm.24423

Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and

outstanding issues in motion correction in resting state fMRI.

NeuroImage, 105, 536–551. https://doi.org/10.1016/j.neuroimage.

2014.10.044

Reuter, M., Tisdall, M. D., Qureshi, A., Buckner, R. L., van der

Kouwe, A. J. W., & Fischl, B. (2015). Head motion during MRI acquisi-

tion reduces gray matter volume and thickness estimates. NeuroImage,

107, 107–115. https://doi.org/10.1016/j.neuroimage.2014.12.006

Righart, R., Schmidt, P., Dahnke, R., Biberacher, V., Beer, A., Buck, D., …
Muhlau, M. (2017). Volume versus surface-based cortical thickness

measurements: A comparative study with healthy controls and multi-

ple sclerosis patients. PLoS One, 12(7), e0179590. https://doi.org/10.

1371/journal.pone.0179590

Rosen, A. F. G., Roalf, D. R., Ruparel, K., Blake, J., Seelaus, K., Villa, L. P., …
Satterthwaite, T. D. (2018). Quantitative assessment of structural

image quality. NeuroImage, 169, 407–418. https://doi.org/10.1016/j.
neuroimage.2017.12.059

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F.,

Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional

MRI data: Combining independent component analysis and hierarchi-

cal fusion of classifiers. NeuroImage, 90, 449–468. https://doi.org/10.
1016/j.neuroimage.2013.11.046

Schott, J. M., Price, S. L., Frost, C., Whitwell, J. L., Rossor, M. N., &

Fox, N. C. (2005). Measuring atrophy in Alzheimer disease: A serial

MRI study over 6 and 12 months. Neurology, 65(1), 119–124. https://
doi.org/10.1212/01.wnl.0000167542.89697.0f

Seiger, R., Ganger, S., Kranz, G. S., Hahn, A., & Lanzenberger, R. (2018).

Cortical thickness estimations of FreeSurfer and the CAT12 toolbox in

patients with Alzheimer's disease and healthy controls. Journal of Neu-

roimaging, 28(5), 515–523. https://doi.org/10.1111/jon.12521
Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing

rater reliability. Psychological Bulletin, 86(2), 420–428. https://doi.org/
10.1037/0033-2909.86.2.420

Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E.,

Mackay, C. E., … Behrens, T. E. (2006). Tract-based spatial statistics:

Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4),

1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024

Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining

(1st ed.). Boston, MA: Pearson Addison Wesley.

Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E.,

Ugurbil, K., & WU-Minn HCP Consortium. (2013). The WU-Minn

Human Connectome Project: An overview. NeuroImage, 80, 62–79.
https://doi.org/10.1016/j.neuroimage.2013.05.041

van Hespen, K. M., Zwanenburg, J. J. M., Dankbaar, J. W., Geerlings, M. I.,

Hendrikse, J., & Kuijf, H. J. (2021). An anomaly detection approach to

identify chronic brain infarcts on MRI. Scientific Reports, 11(1), 7714.

https://doi.org/10.1038/s41598-021-87013-4

Velazquez, J., Mateos, J., Pasaye, E. H., Barrios, F. A., & Marquez-

Flores, J. A. (2021). Cortical thickness estimation: A comparison of

FreeSurfer and three voxel-based methods in a test-retest analysis

and a clinical application. Brain Topography, 34(4), 430–441. https://
doi.org/10.1007/s10548-021-00852-2

Wong, C. W., Olafsson, V., Tal, O., & Liu, T. T. (2013). The amplitude of the

resting-state fMRI global signal is related to EEG vigilance measures.

NeuroImage, 83, 983–990. https://doi.org/10.1016/j.neuroimage.

2013.07.057

Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2014).

Spurious group differences due to head motion in a diffusion MRI

study. NeuroImage, 88, 79–90. https://doi.org/10.1016/j.neuroimage.

2013.11.027

Zeighami, Y., & Evans, A. C. (2021). Association vs. prediction: The impact

of cortical surface smoothing and parcellation on brain age. Frontiers in

Big Data, 4, 637724. https://doi.org/10.3389/fdata.2021.637724

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Ma, Z., Reich, D. S., Dembling, S.,

Duyn, J. H., & Koretsky, A. P. (2022). Outlier detection in

multimodal MRI identifies rare individual phenotypes among

more than 15,000 brains. Human Brain Mapping, 43(5),

1766–1782. https://doi.org/10.1002/hbm.25756

1782 MA ET AL.

https://doi.org/10.1101/2020.10.17.343574
https://doi.org/10.1101/2020.10.17.343574
https://doi.org/10.1038/s41467-020-15948-9
https://doi.org/10.1016/j.biopsych.2015.12.023
https://doi.org/10.1002/hbm.25424
https://doi.org/10.1037/1082-989X.1.1.30
https://doi.org/10.1038/nn.4393
https://doi.org/10.1016/S0893-6080(05)80056-5
https://doi.org/10.1016/S0893-6080(05)80056-5
https://doi.org/10.1016/j.neuroimage.2021.118174
https://doi.org/10.1016/j.neuroimage.2021.118174
https://doi.org/10.1016/j.neuroimage.2007.12.035
https://doi.org/10.1016/j.neuroimage.2007.12.035
https://doi.org/10.1016/j.neuroimage.2011.06.042
https://doi.org/10.1016/j.neuroimage.2020.116604
https://doi.org/10.1002/hbm.24423
https://doi.org/10.1016/j.neuroimage.2014.10.044
https://doi.org/10.1016/j.neuroimage.2014.10.044
https://doi.org/10.1016/j.neuroimage.2014.12.006
https://doi.org/10.1371/journal.pone.0179590
https://doi.org/10.1371/journal.pone.0179590
https://doi.org/10.1016/j.neuroimage.2017.12.059
https://doi.org/10.1016/j.neuroimage.2017.12.059
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1212/01.wnl.0000167542.89697.0f
https://doi.org/10.1212/01.wnl.0000167542.89697.0f
https://doi.org/10.1111/jon.12521
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1016/j.neuroimage.2006.02.024
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1038/s41598-021-87013-4
https://doi.org/10.1007/s10548-021-00852-2
https://doi.org/10.1007/s10548-021-00852-2
https://doi.org/10.1016/j.neuroimage.2013.07.057
https://doi.org/10.1016/j.neuroimage.2013.07.057
https://doi.org/10.1016/j.neuroimage.2013.11.027
https://doi.org/10.1016/j.neuroimage.2013.11.027
https://doi.org/10.3389/fdata.2021.637724
https://doi.org/10.1002/hbm.25756

	Outlier detection in multimodal MRI identifies rare individual phenotypes among more than 15,000 brains
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Main dataset
	2.2  Image preprocessing and extraction of imaging phenotypes
	2.3  Automatic quality control
	2.4  Primary screening: Calculation of outlier scores
	2.5  Evaluation of reliability of outlier scores and elimination of less reliable imaging phenotype
	2.6  Secondary screening: Investigation of individual extreme outliers
	2.7  Evaluation of the relationships between outlier scores of different imaging phenotypes
	2.8  Outlier detection and screening in the HCP dataset

	3  RESULTS
	3.1  Properties of outlier score distributions
	3.2  Long-term test-retest reliability of outlier scores
	3.3  Summary of the screening results of individual outliers
	3.4  Individual outliers of VV
	3.5  Individual outliers of white matter-based imaging phenotypes
	3.6  Individual outliers of CTh
	3.7  Outlier score relationships across imaging phenotypes

	4  DISCUSSION
	4.1  Evaluation of unsupervised outlier detection
	4.2  The approach to screen individual outliers in a large neuroimaging dataset
	4.3  Potential underlying mechanisms of outlier subjects with unknown etiology or were radiologically normal
	4.4  Generalizability of outlier detection to new UKB subjects
	4.5  Impact of neuroimaging data processing software on outlier detection
	4.6  Technical considerations
	4.7  Conclusions

	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


