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Background: Fibrous cap thickness (FCT), bestmeasured by intravascular optical coherence tomography (OCT), is
the most important determinant of plaque rupture in the coronary arteries. Statin treatment increases FCT and
thus reduces the likelihood of acute coronary events. However, substantial statin-related FCT increase occurs
in only a subset of patients. Currently, there are no methods to predict which patients will benefit. We use
transcriptomic data from a clinical trial of rosuvastatin to predict if a patient's FCT will increase in response to
statin therapy.
Methods: FCT was measured using OCT in 69 patients at (1) baseline and (2) after 8–10 weeks of 40 mg
rosuvastatin. Peripheral bloodmononuclear cellswere assayed viamicroarray.We constructedmachine learning
models with baseline gene expression data to predict change in FCT. Finally, we ascertained the biological func-
tions of the most predictive transcriptomic markers.
Findings:Machine learningmodelswere able to predict FCT responders using baseline gene expressionwith high
fidelity (Classification AUC = 0.969 and 0.972). The first model (elastic net) using 73 genes had an accuracy of
92.8%, sensitivity of 94.1%, and specificity of 91.4%. The second model (KTSP) using 18 genes has an accuracy of
95.7%, sensitivity of 94.3%, and specificity of 97.1%. We found 58 enriched gene ontology terms, including
many involved with immune cell function and cholesterol biometabolism.
Interpretation: In this pilot study, transcriptomic models could predict if FCT increased following 8–10 weeks of
rosuvastatin. These findings may have significance for therapy selection and could supplement invasive imaging
modalities.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Acute coronary events most commonly result from atherosclerotic
plaque rupture with luminal thrombosis and vessel occlusion.
The plaques vulnerable to rupture demonstrate several distinct
histomorphological signatures: Fibrous cap thickness (FCT) is the most
important determinant of plaque vulnerability, followed by measures
of the extent of plaque inflammation and necrotic core size [1,2]. FCT
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is best assessed in vivo by optical coherence tomography (OCT) [3–5].
However, since OCT is an invasive intravascular imaging test, it is not
routinely performed. FCT is known to increase in response to statin
(HMG-CoA reductase inhibitor) therapy. This increase in FCT is indica-
tive of plaque stabilization. However, observable increases in FCT
occur in only a subset of patients following statin therapy, and it
would be important to identify these subjectswithout an invasive imag-
ing modality [6].

Plaque morphology and composition cannot generally be identified
by traditional coronary artery angiography, and numerous imagingmo-
dalities, such as intravascular ultrasound (IVUS) [7], OCT [8], and near
infrared spectroscopy (NIRS) have been employed in clinical practice
[9,10]. Of all the imaging strategies, only OCT imaging is capable of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context
Evidence before this study

Acute myocardial infarction (“heart attack”) results from the rup-
ture of atherosclerotic plaques in the coronary arteries,with subse-
quent aggregation of platelets and formation of a clot that blocks
the flow of blood through the artery, ultimately leading to tissue
death in the heart.
One of the key determinants of plaque rupture in the coronary ar-
teries is the thickness of the fibrous cap that forms on top of
plaque. When fibrous cap thickness (FCT) is larger, the plaque is
more stable and less likely to rupture, and thus less likely to
cause myocardial infarction. Drugs such as the statins function
to increase FCT and thus reduce the risk of cardiovascular events.
However, it is known that statins only increase fibrous cap thick-
ness in a subset of patients. Not every patient prescribed a statin
will have a beneficial increase in FCT.
Unfortunately, accurate measurement of FCT is difficult in living
patients. The best method to measure FCT is called optical coher-
ence tomography, which requires threading an imaging wire into
the coronary arteries to directly image the atherosclerotic plaque.
Thus, it would be beneficial if a test could be performed that
would be able to predict whether a patient's FCT will respond to
statins without performing this invasive procedure.

Added value of this study

In this study, we demonstrate that gene expression data from
patient's peripheral blood mononuclear cells can be used with
high accuracy to demonstrate whether patients' fibrous caps will
thicken in response to statin therapy.We do this by using twoma-
chine learning algorithms on the gene expression data, comparing
their findings to findings obtained through invasive OCT imaging
studies done on the same patients. We also demonstrate that clin-
ical variables alone are not sufficient for predicting FCT response,
nor do they add further utility to the gene expression based predic-
tive models.

Implications of all the available evidence

This study demonstrates that change in FCT status in response to
high-intensity rosuvastatin therapy can be predicted with very
high fidelity in our sample of patients. After further study and val-
idation, models such as ours may allow patients to have their FCT
response approximated without undergoing invasive imaging. Be-
fore this test could be used in the clinic, it would need to success-
fully be shown of benefit through randomized, controlled clinical
trials and the gene expression panel would need to be commercial-
ized for clinical use.
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measuring FCT. Noninvasive approaches such as computed tomography
angiography [11] are able to identify the extent of necrotic core and ex-
pansive remodeling of the lesion sites, andmagnetic resonance imaging
is able to identify lipid-rich plaques [12]. However, the resolution of the
non-invasive imaging modalities is not sufficient for the assessment of
FCT. It is therefore important to develop biomarker surrogates of FCT
that could distinguish patients who would or would not benefit from
statin therapy.

Lipid lowering agents, most prominently statins, increase the FCT of
thin-cap fibroatheromas [13–15]. Statins primarily inhibit the rate-
limiting enzyme in cholesterol biosynthesis, HMG-CoA reductase, and
also demonstrate pleiotropic effects [6,16]. The degree of FCT thickening
(and therefore protection) caused by statins is positively correlated
with the statin dose [17]. Unfortunately, not all patients respond
equivalently to statin therapy, and the poor responders experience
greater atheroma progression and higher rates of adverse cardiovascu-
lar outcomes [18,19].

Using OCT imaging, we also observed that only a subset of patients
increased the FCT with statin therapy [6]. Usually the statin response
is measured by changes in serum lipid levels following the initiation of
statin therapy. However, even though there is likely some correlation,
serum lipid levels do not directly predict the change in plaque FCT
[20]. It is therefore important to non-invasively distinguish responders
fromnon-responders [21], so that non-respondersmay seek other ther-
apeutic options. We present a predictive model for FCT response to
statin therapy utilizing imaging, clinical data, and gene expression
(transcriptomics) from the previously described patients included in
the Yellow II clinical trial [6].

2. Materials and methods

2.1. Ethics statement

Written informed consent was obtained from all patients. This study
was approved by the Institutional Review Board of the Icahn School of
Medicine at Mount Sinai.

2.2. Study design and procedure

We analyzed patient data from the Yellow II clinical trial which has
been previously described [6]. Briefly, 85 patients with stable multi-
vessel coronary artery disease underwent percutaneous coronary inter-
vention (PCI) for an obstructive lesion. Lesions had greater than or equal
to 70% stenosis as measured via angiographic visual assessment and
fractional flow reserve. In the same procedure, a second “non-culprit”
lesion was imaged with OCT imaging, and peripheral blood mononu-
clear cell (PBMC) gene expression was characterized by microarray.
Trial patients were then assigned to 40 mg daily rosuvastatin therapy.
Full trial inclusion criteria and details are deposited at clinicaltrials.org
under the clinical trial identifier NCT01567826. Notably, 69 patients
had previously been exposed to lower-intensity statin therapy, primar-
ily atorvastatin (n = 29) and simvastatin (n = 23). At eight to ten
weeks post-enrollment the patients underwent a staged PCI, the non-
culprit lesion was re-imaged with OCT, and PBMC gene expression
was again characterized by microarray. We ultimately obtained com-
plete gene expression and OCT imaging data for 69 of these patients.

2.3. Microarray preparation and gene expression data

PBMCswere isolated from fasting blood samples by density gradient
centrifugation using Ficollpaque, and mRNA was isolated using the
TRIzol protocol. We used the Illumina HT-12 v4microarray for gene ex-
pression profiling. We chose PBMCs because they are readily obtainable
and gene expression signatures are robust across tissues [22]. All data
preparation was conducted in R version 3.3.3 [23]. Quality control
and normalizationwas accomplished with the lumi Bioconductor pack-
age [24,25] with a variance-stabilizing transformation applied to
background-adjusted probe intensities [26]. Normalization was
performed with the quantile method. We corrected for batch effects
resulting from staged microarray preparation using the ComBat para-
metric empirical Bayes technique in the R package sva [27]. Probe-to-
gene mapping was conducted with the nuID mapping scheme imple-
mented in lumi. The gene expression values are deposited in the NIH
Gene Expression Omnibus (GEO) database with ID GSE86216.

2.4. FCT imaging by OCT

OCT images were obtained with the C7-XR OCT device (St. Jude
Medical, Minneapolis, Minnesota) with continuous intracoronary con-
trast injection. The OCT catheter was placed at least 10 mm distal to
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the target lesion, after which each OCT pullback imaged 54 mm of the
vessel. OCT images were evaluated offline by an independent core labo-
ratory (Cardiovascular Research Foundation, New York, New York) and
analyzed at 1-mm intervals according to previously validated criteria for
plaques characterization with the St. Jude Medical review workstation.
The FCT of each lipid-rich plaque was measured three times at each
time point at its thinnest point (6 measurements in total). The average
value was then calculated for both baseline and follow-up time points
for each patient (mean baseline and follow FCT). Finally, we calculated
the change in FCT between baseline and follow-up timepoints by taking
the absolute value of the difference. Compared to baseline, the location
Fig. 1. Central figure illustrating the components of study. (a) An example OCT image of an at
(b) The study workflow. Blood transcriptomics and OCT imaging were performed at 69 patien
patients did not (non-responders). (c) Predictive modeling of FCT response. We combined
predict responder type. (d) Graphical explanation of extensive sensitivity testing. We iterativ
dataset in order to understand the variability of the results.
of the thinnest portion of the fibrous cap at follow-up remained the
same in 65 of 69 patients (94.2%).

2.5. Responder identification

Each patient was identified as either a statin responder or non-
responder depending upon whether FCT increased or did not increase
from baseline time point to follow-up time point (Fig. 1b). We dichoto-
mized this measurement because it is clinically meaningful to ascertain
whether a patient's FCT will change in response to statin therapy, and
thus whether statin therapy benefits a given patient. For example, in
herosclerotic plaque, before and after 8–12 weeks of high intensity rosuvastatin therapy.
ts at baseline and follow-up periods. 35 patients had increased FCT (responders), and 34
clinical variables and transcriptomic data and used two machine learning methods to
ely performed the strategy depicted in panel (c) upon randomly selected subsets of our



Table 1
Clinical variables of individuals in dataset, stratified by Responder/Non-responder type.

Non-responder Responder Total P-Value⁎

(n = 34) (n = 35) (n = 69)

Gender
Female 9 (26.5%) 13 (37.1%) 22 (31.9%) 0.489
Male 25 (73.5%) 22 (62.9%) 47 (68.1%)

Age at event (Years)
Mean (SD) 67.1 (9.58) 62.9 (11.2) 65.0 (10.6) 0.11

Weight (kg)
Mean (SD) 87.3 (17.0) 79.0 (13.6) 83.1 (15.8) 0.03

Smoking
Current/Former 16 (47.1%) 15 (42.9%) 31 (44.9%) 0.913
Never 18 (52.9%) 20 (57.1%) 38 (55.1%)

Systolic BP (mmHg)
Mean (SD) 145 (22.2) 137 (24.8) 141 (23.7) 0.17

Diastolic BP (mmHg)
Mean (SD) 73.3 (12.6) 69.5 (10.2) 71.4 (11.5) 0.17

Total Cholesterol (mg/dL)
Mean (SD) 147 (42.0) 146 (35.6) 147 (38.6) 0.93

HDL Cholesterol (mg/dL)
Mean (SD) 39.9 (10.6) 41.9 (13.9) 40.9 (12.3) 0.52

LDL Cholesterol (mg/dL)
Mean (SD) 83.3 (39.6) 80.8 (32.3) 82.1 (35.8) 0.78

Hemoglobin A1c (%)
Mean (SD) 7.06 (1.39) 6.80 (1.58) 6.93 (1.48) 0.48

hs-CRP (mg/L)
Mean (SD) 3.42 (0.643) 3.52 (0.522) 3.47 (0.582) 0.48

⁎ P values for continuous variables computed with the two-sample t-test. P values for
categorical variables computed with the Chi-square test of independence.
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2014, Kim et al. published a machine learning model using the expres-
sion levels of 100 genes to predict how LDL cholesterol levels in lympho-
blastic cell lines changes following statin therapy [21]. This model for
LDL cholesterol was able to classify the highest 15% of responders
from the lowest 15% of responders with area under the ROC curve
(AUC) up to 0.98 [28]. However, the model's utility diminished as they
attempted to differentiate more moderate responders from moderate
non-responders, with an AUC only modestly better than a random clas-
sifier (AUC b 0.6) for fully dichotomized data. Thus, for this initial step
we chose to predict the binary outcome of response to statin therapy
with increased FCT or not, instead of attempting to model the quantita-
tive increase in cap thickness.

2.6. Statistical analysis

We used the glmnet [29] package in R [23] version 3.3.3 to fit elastic
net regularized generalized linear models using a logistic link function
via penalized maximum likelihood to transcriptomic data. The elastic
net mixes the regression penalty of ridge regression with that of the
least absolute shrinkage and selection operator (LASSO) regression.
Elastic net coefficient estimates are computedbyminimizing Eq. (1). Lo-
gistic regression in glmnet specifically solves the problem given in
Eq. (2) for a sequence of λ values at a given α value. We search the
mixing parameter α sequence in steps of 0.01 from α = 0 (full ridge
regression) to α = 1 (full LASSO regression) for the value which mini-
mizes the binomial deviance of the model, computed via leave-one-
out cross validation (LOOCV) (Supplemental Material).

β ¼ argmin y−Xβj jj j2 þ λ2 βj jj j2 þ λ2 βj jj j1
� �

ð1Þ

min β0;βð Þ− 1
N

XN
i¼1

yiðβ0 þ xTi

" !
− log 1þ eβ0þxTi β

� �
�

þ λ 1−αð Þ βj jj j22=2þ a βj jj j1
� �

ð2Þ

To fit K top scoring pair (KTSP) classifiers, we used the switchbox
[30] Bioconductor R package. KTSP is an extension of the original Top
Scoring Pairs (TSP) classification algorithm [31]. Briefly, given a matrix
of expression values Xwith dimension genes x samples where columns
1 to N1 are samples belonging to outcome class 1 and columns N1+1 to
N2 are samples of class 2, KTSP finds the best pair of genes i and j
which maximize the value Δij, as given in Eq. (3).

Δij ¼j Pij 1ð Þ−Pij 2ð Þ j ð3Þ

where Pij(1) and Pij(2) are given by Eqs. (4) and (5):

Pij 1ð Þ ¼ Pr xibxjjclass ¼ 1
� � ¼ 1

N1

XN1

n¼1

I xinbxjn
� � ð4Þ

Pij 2ð Þ ¼ Pr xibxjjclass ¼ 2
� � ¼ 1

N2

XN2

n¼N1þ1

I xinbxjn
� � ð5Þ

For the extension to K pairs of genes, the next highest top-scoring
pairs of genes are added to the classifier for a given range of K. The ad-
dition of genes is penalized by choosing the value of K which produces
a classifier that maximizes τ = δi/σi, where δi is sum of K pairwise
gene scores as given in Eq. (3) and σi is the maximum-likelihood esti-
mator of the variance [32].

2.7. Incorporation of clinical variables into predictive models

To assess whether inclusion of clinical variables may help to alter or
improve predictive performance, we conducted two additional analy-
ses. First, we built an elastic net regression model as described above
composed of only clinical variables. Second, we built another elastic
net regression model as described above including both clinical vari-
ables as well as the transcriptomic data from the original elastic net
model. A full list of clinical variables is included in the Supplemental
Material.

2.8. Gene function analysis

We sought to ascertain the biological function of genes found to be
predictive of FCT response by characterizing their Gene Ontology En-
richments. We used the TopGO R package to perform weighted Fisher
Exact tests. We used the TopGO “weight01” algorithm to account for
the hierarchical nature of Gene Ontology functional group assignments
and to protect against false discovery from multiple hypothesis testing.

3. Results

3.1. FCT responder prediction

Clinical values for our patient cohort are available in Table 1. The
mean increase in FCT for rosuvastatin-responders was 36.9 ± 69.8 μm.
The mean change in FCT for rosuvastatin non-responders was −4.41
± 7.05 μm. A plot demonstrating the distribution of FCT values is avail-
able in the Supplementary Material. LDL cholesterol and total choles-
terol levels were not significantly different between responder and
non-responders, either at baseline, follow-up, or when examining
change in lipid levels from baseline to follow-up (SupplementaryMate-
rial, Table S3). Using transcriptomic data to predict FCT response,we ob-
tained a final model with leave-one-out-cross-validation (LOOCV) area
under the receiver operating characteristic curve of 0.975. We thus
could classify individuals as FCT statin responders or non-responders
with high fidelity. The elastic net model using 73 genes had an accuracy
of 92.8%, sensitivity of 94.1%, and specificity of 91.4%. Similarly, the KTSP
classifier could discriminate between responders and non-responders
with high performance, obtaining LOOCV accuracy of 95.7%, sensitivity
of 94.3%, and specificity of 97.1% (Fig. 2a). Notably, this classifier re-
quired only 18 genes. Fig. 3 provides a visual demonstration of how
well this small number of genes divide responders and non-responders.
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Fig. 2. Predictive Model Receiver Operating Characteristic Curves. The receiver operating
characteristic (ROC) curves for the elastic net and K top scoring pairs predictive models
are shown in (a). ROC scores were computed for KTSP by dividing the number of votes
by number of potential votes (i.e. gene pairs) in the classifier as the predicted
probability. Sensitivity testing using elastic net (b) and KTSP (c) showed performance is
highly robust to sampling error.
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3.2. Sensitivity testing

When constructing predictive models, the potential for overfitting
the training dataset is of high concern, especially when sample sizes
are small. We conducted extensive cross validation and sensitivity test-
ing to characterize the stability of our predictive models to patient sam-
pling (Fig. 1d). Briefly, our strategy for sensitivity testing was to
(1) randomly split the data in half; (2) build a predictive model on
half of the data, using LOOCV to select the most robust model; (3) test
this model on the remaining held out 50% of data to obtain a true test-
set validation of the model. We then repeated steps 1–3 1000 times to
gain insight into the sensitivity of this model-building procedure and
distributions of the model statistics (Fig. 2b and c).

We could predict FCT responder status in a held-out test set with
high discrimination. Themedian elastic net AUCwas 0.969, and theme-
dian KTSPAUCwas 0.972. Our sensitivity analysis revealed that even the
lower-performing models still performed with high accuracy on the
held-out testing set: 97% of the elastic net models has AUCs of better
than 0.886, and 97% of the KTSP models had AUCs better than 0.946.

3.3. Incorporation of clinical variables into predictive models

After discovering that the transcriptome-onlymodel provided excel-
lent results for predictive models, we explored whether clinical vari-
ables could either augment or replace our transcriptome-based
predictive models. We included 49 different clinical and laboratory pa-
rameters. A full table of clinical variables is given in the supplementary
material Table S2. We followed identical training procedures to those
described above for the transcriptome-only model. An elastic net
trained on transcriptome plus clinical data produced identical results
to the elastic net trained on transcriptome data alone. The elastic net
training algorithm did not select any clinical variables for inclusion in
the final predictivemodel, instead choosing the same 73 genes. An elas-
tic net trained on the clinical variables only and then used to predict FCT
response performed very poorly (AUC = 0.16, Accuracy = 0.33,
Sensitivity = 0.09, Specificity = 0.57) (Supplementary Fig. 3). In fact,
the very poor AUCof thismodelmean that is performedwell below ran-
dom chance (AU = 0.5). Theoretically, simply flipping each of this
model's predictions would have made it perform moderately well
(AUC 0.83). However, it would be statistically unfair to reverse model
predictions after looking at the outcome of the trained model on the
test set.

3.4. Gene ontology term enrichment

Our elastic net regression model utilized 73 gene expression values
(Table 2). The final KTSP model used only 18 genes (nine pairs of top-
scoring genes) (Table 3). 12 of the 18 genes from the KTSP algorithm
were present in the elastic net regression selected genes (Fig. 4). We
performed Gene Ontology (GO) biological process enrichment testing
upon significant elastic net covariates to understand biological pro-
cesses whichmay regulate the fibrous cap thickening response to statin
therapy. GO terms are a controlled vocabulary of curated genes and
gene products mapped to specific biological processes, molecular func-
tions, and cellular components. We found 58 significant GO term en-
richments at p b .05, including many involved with (1) immune cell
function (GO terms: locomotion involved in locomotory behavior; T
cell homeostasis; positive regulation of MHC class I biosynthesis;
positive regulation of NK T cell activation; negative regulation of T cell
mediated cytotoxicity; monocyte activation), and (2) cholesterol
metabolism (cholesterol catabolic process; cholesterol import;
C21-steroid hormone metabolic process; SREBP signaling pathway),
and (3) protein modification (protein phosphorylation; protein
adenylylation; protein K11-linked ubiquitination; N-terminal



AT
OH7

TP53
TG1

MEI1
PBX2

CALB
2

TIM
M17

B

AP1M
1

PMPCA

TNPO2

LO
C72

94
02

SNORD57

ZRANB2
GNL2

PPIG
RBAK

OSBPL8

TA
OK1

CXORF38

Genes

P
at

ie
nt

s

−4 −2 0 2 4

Gene Expression Z Score

FCT Non−responder
FCT Responder

R
es

po
nd

er
s

N
on

−
re

sp
on

de
rs

Fig. 3. Heatmap of 18 Genes Selected by K-Top-Scoring-Pairs Algorithm (KTSP). Patient samples and genes were grouped using hierarchical clustering. Gene expression values were
normalized for plotting by dividing the gene'smicroarray signal intensityminus themean signal intensity for that gene by the standard deviation of signal intensity for that gene (Z score).

46 K.W. Johnson et al. / EBioMedicine 44 (2019) 41–49
peptidyl-lysine acetylation; protein K48-linked ubiquitination). A full
table of GO terms with associated p values is available in the Supple-
mentary Material, Table S4.

4. Discussion

In this post-hoc analysis of the Yellow-II study, we demonstrate that
gene expression (when characterized via microarray with statistical
models capable of dealing with high-dimensional gene expression
data) can be used to reliably predict whether a given patient's fibrous
cap thickness will increase with statin treatment. Our study is one of
the first attempts to use predictive modeling techniques applied to
transcriptomic data to predict plaque response to lipid lowering ther-
apy. Transcriptomic profiling has been used for many years in cardio-
vascular research to identify genes differentially expressed between
cases and controls in a variety of diseases [33], or somewhat more re-
cently to analyze putative biological interactions using methods such
as weighted gene coexpression networks [34,35]. We attempted to, in-
stead of simply identifying statistically differentially expressed genes
across a condition, use gene expression data to predict outcomes. In
fact, statistically significant variables (e.g., differentially expressed
genes) are often poorly predictive variables [36], and often explain
only a fraction of the variance in the outcome. To accurately predict an
outcome, onemust instead explain a significant fraction of the outcome
variance, which is a more difficult task. In the present study, we explain
much of the variance in outcome as demonstrated by our high predic-
tion statistics (AUCs on the order of 0.95). For clinically applicable per-
sonalized medicine, a physician would be interested in a test which is
predictive of an outcome for an individual patient, such as the test we
present here.

Second, we demonstrate that the genes which aremost predictive of
FCT response to statin therapy are those broadly involved in immune
cell function, cholesterol biosynthesis andmetabolism, and cellular pro-
teinmodification processes such as phosphorylation and adenylation. A
number of researchers have linked fibrous cap production and degrada-
tion to inflammatory processes [37]. The same statin used in the Yellow
II trial—rosuvastatin—was demonstrated to reduce major cardiovascu-
lar events in the JUPITER study with elevated levels of the nonspecific
inflammatorymarker c-reactive protein (CRP) [38] but presumably nor-
mal cholesterol levels. Indeed, we have previously demonstrated in this
cohort an inverse relationship between CRP levels and FCT [6,39].
Through MRI-PET/CT and mathematical fluid-structure-interaction
modeling it was observed that in mice that cap inflammation can lead
to increased cap strain, especially in the presence of thin-caps and
hypertension [40]. The CANTOS trial of the Interleukin-1β (IL-1β)
monoclonal antibody successfully demonstrated that selective anti-



Table 2
Elastic Net covariates.

Covariate Coefficient Covariate Coefficient Covariate Coefficient

(Intercept) −90.652 ZSCAN12L1 −0.047 WDR23 0.322
RNF113A −1.155 GSDM1 −0.045 CBX5 0.365
MEI1 −1.042 RNU6–15 −0.041 XRCC5 0.397
PBX2 −0.711 DTX3L −0.026 EIF2A 0.401
STARD5 −0.587 SPATA13 0.006 NOL7 0.424
TIMM17B −0.568 HSPH1 0.012 FMO2 0.477
RNU4ATAC −0.557 CLK1 0.016 C6ORF27 0.496
FICD −0.455 SMAP1 0.089 MEF2A 0.549
HCST −0.408 TINP1 0.104 CSE1L 0.577
CALB2 −0.401 TMEM189-UBE2V1 0.112 SNORD57 0.633
TP53TG1 −0.399 SLC46A3 0.118 HSPA9 0.635
DHX37 −0.393 KIAA0020 0.118 AQP12B 0.656
USP48 −0.393 PPP3CB 0.126 TMEM183A 0.661
FOXO4 −0.299 XCR1 0.13 TAOK1 0.73
HNRNPUL2 −0.29 UBE2D3 0.148 C14ORF68 0.74
MRPS16 −0.268 CXORF38 0.157 CREBBP 0.801
MT1G −0.26 C19ORF12 0.181 SFRS2 0.829
RNU6-1 −0.222 NR2C2 0.204 MBNL3 0.837
AURKAIP1 −0.204 SR140 0.223 YARS2 0.878
FNIP2 −0.133 GTF2A1 0.236 CLN6 0.981
UBE2B −0.129 ZRANB2 0.236 RBAK 1.012
SLC39A3 −0.108 SEC31A 0.253 KCTD7 1.069
LOC148413 −0.074 ZKSCAN1 0.273 LOC729402 1.118
AKR1D1 −0.066 TP53RK 0.307 IRX6 2.525
ZNF264 −0.053 GNL2 0.313
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inflammatory therapy can reduce the incidence of adverse cardiovascu-
lar events [41]. Other recent work has focused upon the role of IL-1β-
modulated neutrophils in the atherosclerotic plaque [42], or the roles
of neutrophil extracellular traps [43,44]. Another recent paper has dem-
onstrated that neutrophil reprogramming canmodulate chronic inflam-
mation in atherosclerosis [45]. We note that two important proteins
related to neutrophil extravasation, XCR1 and XRCC5, were important
in our elastic net predictive model. On the other hand, at least one re-
cent paper has experimentally demonstrated in mice the unexpected
finding that IL-1βmay actually reduce protective remodeling of athero-
scleroticfibrous caps [46].Whatever theultimate effect of this particular
inflammatory mediator, it is evident that inflammatory processes play
an important role in the development of atherosclerosis, and it is thus
not surprising that these genes also can be used for prediction of FCT re-
sponse. Similarly, OCT imaging and intravascular ultrasound imaging
have demonstrated that synthesis and absorption of cholesterol were
related to plaque vulnerability and FCT, and also that HDL-C was an in-
dependent marker for FCT; these findings echo previous results of the
YELLOW-II study [6,47–50]. A number of other genes used by both the
elastic net and KTSP algorithmsmay be of interest for further investiga-
tion of their role in the formation of atherosclerotic fibrous caps. For ex-
ample, TAOK1 is a ubiquitously expressed kinase with important
identified roles in modulation of interleukin-17 [51]. Interestingly,
TAOK1 has been shown in vascular smooth muscle to be differentially
expressed following the administration of captopril and is also involved
in the angiotensin-II-mediated mitogen-activated protein kinsase sig-
naling pathway [52]. The gene ZRANB2 has shown to regulate the
Table 3
K Top-Scoring Pairs (KTSP) Gene Pairs.

Gene Pair Score

TAOK1, MEI1 0.884
ZRANB2, PMPCA 0.884
GNL2, AP1M1 0.884
PPIG, PBX2 0.855
ATOH7, RBAK 0.826
LOC729402, CALB2 0.797
CXORF38, TNPO2 0.797
TIMM17B, OSBPL8 0.796
TP53TG1, SNORD57 0.796
process of vasculogenic mimicry in neoplams [53] and also to be in-
volved in the immunologic response to gram-negative bacteria [54].
The intracellular calcium-binding protein calbindin 2 (CALB2) plays a
role in a number of cellular functions, such as the buffering of intracellu-
lar calcium, and has been implicated in vascular smoothmuscle cell ad-
hesion [55], cardiogenic differentiation [56], cellular response to
ischemia [57], steroidogenesis [58]. Finally, we were interested in the
negative correlation between expression of steroidogenic acute
regulator-related lipid transfer domain protein (STARD5) and FCT re-
sponse. This family of proteins, which modulate intracellular lipid and
cholesterol transport, have been investigated for their roles in choles-
terol and lipid metabolism [59,60] as well as their function in athero-
genic lipid phenotypes [61] and fibroblast function [62]. This gene also
has been identified as an emerging cardiovascular disease risk bio-
marker [63].
Fig. 4. Genes Shared Between Elastic Net and KTSP predictive models. Venn diagram
showing the overlap of genes included in the elastic net and KTSP algorithms. 12 of 18
KTSP genes were also selected by the elastic net algorithm.
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4.1. Study limitations

Our study must be interpreted in the light of its limitations. The
major limitation to this study is the limited sample size, essentially
due to the invasive nature of repeated OCT imaging. We are exploring
options for external validation, which would require a second clinical
trial. However, we are comforted by the extensive cross validation ef-
forts we undertook to test that we are not overfitting our model to the
dataset. Furthermore, the gene expression results have been previously
validated in the Yellow II study [6]. Second, there are currently few
transcriptome-based tests utilized in cardiovascular medicine, and
likely none used in routine clinical cardiology. In this measure, cardio-
vascular disease has lagged behind other fields such as oncology,
which have rapidly embraced transcriptome characterization viamicro-
array and RNA sequencing [64]. However, there is no fundamental rea-
son that transcriptomic medicine will not ultimately prove to be useful
in cardiovascularmedicine, especially as future efforts toward precision
cardiology increase [65–67]. However, we caution that this pilot study
requires validation in a randomized, controlled clinical trial before its
results could be applied clinically.
5. Conclusions

Taken altogether, we believe our results represent a step toward en-
abling statin therapy recommendation based upon the patient's tran-
scriptome in chronic cardiovascular disease. OCT is a precise and
highly useful technique with a large body of existing literature, and it
would require further validation studies before a transcriptomic
approach could be used with confidence in the clinic. However, our
findings here are promising: a non-invasive, blood-based test appears
to detect with high sensitivity and specificity whether an individual pa-
tient in our sample will benefit from high intensity statin therapy. Since
FCT is associated with systemic cardiovascular disease outcomes and
risk of myocardial infarction, development of a non-invasive diagnostic
test for patient response is potentially of high clinical interest. We envi-
sion that predicted non-responders to statin therapy may benefit from
additional intervention, such as earlier introduction of PCSK9 inhibitors.
Funding sources

No specific funding sources exist for this project. Kipp Johnson is par-
tially supported by the Medical Scientist Training Program grant
2T32GM007280-41 to the Icahn School of Medicine atMount Sinai (Na-
tional Institute of General Medical Sciences (NIGMS), National Institute
of Health (NIH), United States). No funders had any role in study design,
data collection, data analysis, interpretation, writing of the report.
Declaration of interests

Dr. Annapoorna Kini received grants from AstraZeneca (Gaithers-
burg, MD) to conduct the initial Yellow II clinical trial of high-intensity
rosuvastatin therapy. Dr. Shameer Khader is an employee of
AstraZeneca. No other authors have any financial conflicts of interest
to disclose.
Author contributions

All authors contributed to study design and data analysis. Data col-
lection was performed by Yuliya Vengrenyuk, Samin Sharma, Jagat
Narula, and Annapoorna Kini. The first draft of the article was written
by Kipp Johnson, Benjamin Glicksberg, Khader Shameer, Yuliya
Vengrenyuk, Jagat Narula, Joel Dudley, and AnnapoornaKini. All authors
contributed to subsequent revisions and drafts of the paper.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.05.007.
References

[1] Narula J, Nakano M, Virmani R, et al. Histopathologic characteristics of atheroscle-
rotic coronary disease and implications of the findings for the invasive and noninva-
sive detection of vulnerable plaques. J Am Coll Cardiol 2013;61(10):1041–51.

[2] Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors
and plaque morphology in men with coronary disease who died suddenly. N Engl
J Med 1997;336(18):1276–82.

[3] Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque mor-
phology in coronary disease. Nat Rev Cardiol 2014;11(7):379–89.

[4] Feldman MD, Milner TE. Improving plaque classification with optical coherence to-
mography. JACC Cardiovasc Imaging 2017;11(11):1677–8. https://doi.org/10.1016/
j.jcmg.2017.11.007.

[5] Kini AS, Vengrenyuk Y, Yoshimura T, et al. Fibrous cap thickness by optical coher-
ence tomography in vivo. J Am Coll Cardiol 2017;69(6):644–57.

[6] Kini AS, Vengrenyuk Y, Shameer K, et al. Intracoronary imaging, cholesterol efflux,
and transcriptomes after intensive statin treatment: the YELLOW II study. J Am
Coll Cardiol 2017;69(6):628–40.

[7] Yamagishi M, Terashima M, Awano K, et al. Morphology of vulnerable coronary
plaque: insights from follow-up of patients examined by intravascular ultrasound
before an acute coronary syndrome. J Am Coll Cardiol 2000;35(1):106–11.

[8] Jang IK, Bouma BE, Kang DH, et al. Visualization of coronary atherosclerotic plaques
in patients using optical coherence tomography: comparison with intravascular ul-
trasound. J Am Coll Cardiol 2002;39(4):604–9.

[9] Gardner CM, Tan H, Hull EL, et al. Detection of lipid core coronary plaques in autopsy
specimens with a novel catheter-based near-infrared spectroscopy system. JACC
Cardiovasc Imaging 2008;1(5):638–48.

[10] Kini AS, Baber U, Kovacic JC, et al. Changes in plaque lipid content after short-term
intensive versus standard statin therapy: the YELLOW trial (reduction in yellow
plaque by aggressive lipid-lowering therapy). J Am Coll Cardiol 2013;62(1):21–9.

[11] Sato A, Hoshi T, Kakefuda Y, et al. In vivo evaluation of fibrous cap thickness by op-
tical coherence tomography for positive remodeling and low-attenuation plaques
assessed by computed tomography angiography. Int J Cardiol 2015;182:419–25.

[12] Sun J, Zhao XQ, Balu N, et al. Carotid plaque lipid content and fibrous cap status pre-
dict systemic CV outcomes: the MRI substudy in AIM-HIGH. JACC Cardiovasc Imag-
ing 2017;10(3):241–9.

[13] Eken SM, Jin H, Chernogubova E, et al. MicroRNA-210 enhances fibrous cap stability
in advanced atherosclerotic lesions. Circ Res 2017;120(4):633–44.

[14] Wang Z, Cho YS, Soeda T, et al. Three-dimensional morphological response of lipid-
rich coronary plaques to statin therapy: a serial optical coherence tomography
study. Coron Artery Dis 2016;27(5):350–6.

[15] Park SJ, Kang SJ, Ahn JM, et al. Effect of statin treatment on modifying plaque com-
position: a double-blind, randomized study. J AmColl Cardiol 2016;67(15):1772–83.

[16] Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular sys-
tem. Circ Res 2017;120(1):229–43.

[17] Komukai K, Kubo T, Kitabata H, et al. Effect of atorvastatin therapy on fibrous cap
thickness in coronary atherosclerotic plaque as assessed by optical coherence to-
mography: the EASY-FIT study. J Am Coll Cardiol 2014;64(21):2207–17.

[18] Kataoka Y, St John J, Wolski K, et al. Atheroma progression in hyporesponders to
statin therapy. Arterioscler Thromb Vasc Biol 2015;35(4):990–5.

[19] Wei KK, Zhang LR. Interactions between CYP3A5*3 and POR*28 polymorphisms and
lipid lowering response with atorvastatin. Clin Drug Investig 2015;35(9):583–91.

[20] Kataoka Y, Hammadah M, Puri R, et al. Plaque microstructures in patients with cor-
onary artery disease who achieved very low low-density lipoprotein cholesterol
levels. Atherosclerosis 2015;242(2):490–5.

[21] Trompet S, Postmus I, Slagboom PE, et al. Non-response to (statin) therapy: the im-
portance of distinguishing non-responders from non-adherers in pharmacogenetic
studies. Eur J Clin Pharmacol 2016;72(4):431–7.

[22] Dudley JT, Tibshirani R, Deshpande T, Butte AJ. Disease signatures are robust across
tissues and experiments. Mol Syst Biol 2009;5:307.

[23] R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. Vienna, Austria: R Foundation for Statistical Computing; 2017.

[24] Du P, Kibbe WA, Lin SM. nuID: a universal naming scheme of oligonucleotides for
illumina, affymetrix, and other microarrays. Biol Direct 2007;2:16.

[25] Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. Bioin-
formatics 2008;24(13):1547–8.

[26] Lin SM, Du P, Huber W, Kibbe WA. Model-based variance-stabilizing transformation
for Illumina microarray data. Nucleic Acids Res 2008;36(2):e11.

[27] Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing
batch effects and other unwanted variation in high-throughput experiments. Bioin-
formatics 2012;28(6):882–3.

[28] Kim K, Bolotin E, Theusch E, Huang H, Medina MW, Krauss RM. Prediction of LDL
cholesterol response to statin using transcriptomic and genetic variation. Genome
Biol 2014;15(9):460.

[29] Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models
via coordinate descent. J Stat Softw 2010;33(1):1–22.

[30] Afsari B, Fertig EJ, Geman D,Marchionni L. switchBox: an R package for k-top scoring
pairs classifier development. Bioinformatics 2015;31(2):273–4.

https://doi.org/10.1016/j.ebiom.2019.05.007
https://doi.org/10.1016/j.ebiom.2019.05.007
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0005
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0005
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0005
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0010
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0010
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0010
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0015
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0015
https://doi.org/10.1016/j.jcmg.2017.11.007
https://doi.org/10.1016/j.jcmg.2017.11.007
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0025
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0025
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0030
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0030
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0030
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0035
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0035
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0035
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0040
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0040
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0040
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0045
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0045
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0045
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0050
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0050
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0050
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0055
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0055
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0055
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0060
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0060
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0060
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0065
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0065
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0070
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0070
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0070
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0075
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0075
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0080
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0080
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0085
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0085
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0085
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0090
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0090
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0095
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0095
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0100
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0100
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0100
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0105
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0105
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0105
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0110
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0110
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0115
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0115
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0120
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0120
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0125
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0125
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0130
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0130
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0135
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0135
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0135
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0140
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0140
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0140
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0145
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0145
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0150
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0150


49K.W. Johnson et al. / EBioMedicine 44 (2019) 41–49
[31] GemanD, d'Avignon C, Naiman DQ,Winslow RL. Classifying gene expression profiles
from pairwise mRNA comparisons. Stat Appl Genet Mol Biol 2004;3:19.

[32] Afsari B, Braga-Neto UM, Geman D. Rank discriminants for predicting phenotypes
from Rna expression. Ann Appl Stat 2014;8(3):1469–91.

[33] Mendelson MM, Marioni RE, Joehanes R, et al. Association of body mass index with
DNA methylation and gene expression in blood cells and relations to cardiometa-
bolic disease: a Mendelian randomization approach. PLoS Med 2017;14(1):
e1002215.

[34] Miao L, Yin RX, Pan SL, Yang S, Yang DZ, Lin WX. Weighted gene co-expression net-
work analysis identifies specific modules and hub genes related to hyperlipidemia.
Cell Physiol Biochem 2018;48(3):1151–63.

[35] Chen J, Yu L, Zhang S, Chen X. Network analysis-based approach for exploring the
potential diagnostic biomarkers of acute myocardial infarction. Front Physiol 2016;
7:615.

[36] Lo A, Chernoff H, Zheng T, Lo SH. Why significant variables aren't automatically good
predictors. Proc Natl Acad Sci U S A 2015;112(45):13892–7.

[37] Ridker PM, Narula J. Will reducing inflammation reduce vascular event rates? JACC
Cardiovasc Imaging 2018;11(2 Pt 2):317–9.

[38] Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in
men and women with elevated C-reactive protein. N Engl J Med 2008;359(21):
2195–207.

[39] Chamaria S, Johnson KW, Vengrenyuk Y, et al. Intracoronary imaging, cholesterol ef-
flux, and transcriptomics after intensive statin treatment in diabetes. Sci Rep 2017;7
(1):7001.

[40] Tang D, Yang C, Huang S, et al. Cap inflammation leads to higher plaque cap strain
and lower cap stress: an MRI-PET/CT-based FSI modeling approach. J Biomech
2017;50:121–9.

[41] Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapywith canakinumab
for atherosclerotic disease. N Engl J Med 2017;377(12):1119–31.

[42] Tall AR, Westerterp M. Inflammasomes, neutrophil extracellular traps, and choles-
terol. J Lipid Res 2019;60(4):721–7. https://doi.org/10.1194/jlr.S091280.

[43] Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets
in chronic inflammation. Nat Rev Immunol 2017;17(4):248–61.

[44] Doring Y, Soehnlein O,Weber C. Neutrophil extracellular traps in atherosclerosis and
atherothrombosis. Circ Res 2017;120(4):736–43.

[45] Geng S, Zhang Y, Lee C, Li L. Novel reprogramming of neutrophils modulates inflam-
mation resolution during atherosclerosis. Sci Adv 2019;5(2):eaav2309.

[46] Gomez D, Baylis RA, Durgin BG, et al. Interleukin-1beta has atheroprotective effects
in advanced atherosclerotic lesions of mice. Nat Med 2018;24(9):1418–29.

[47] Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treat-
ment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a
report of the American College of Cardiology/American Heart Association Task
Force on Practice Guidelines. J Am Coll Cardiol 2014;63(25 Pt B):2889–934.

[48] Nasu K, TerashimaM, Habara M, et al. Impact of cholesterol metabolism on coronary
plaque vulnerability of target vessels: a combined analysis of virtual histology intra-
vascular ultrasound and optical coherence tomography. JACC Cardiovasc Interv
2013;6(7):746–55.

[49] Ozaki Y, Tanaka A, Komukai K, et al. High-density lipoprotein cholesterol level is as-
sociated with fibrous cap thickness in acute coronary syndrome. Circ J 2013;77(12):
2982–9.
[50] Chhatriwalla AK, Rader DJ. Intracoronary imaging, reverse cholesterol transport, and
transcriptomics: precision medicine in CAD? J Am Coll Cardiol 2017;69(6):641–3.

[51] Zhang Z, Tang Z, Ma X, et al. TAOK1 negatively regulates IL-17-mediated signaling
and inflammation. Cell Mol Immunol 2018;15(8):794–802.

[52] Chen FC, Brozovich FV. Gene expression profiles of vascular smooth muscle show
differential expression of mitogen-activated protein kinase pathways during capto-
pril therapy of heart failure. J Vasc Res 2008;45(5):445–54.

[53] Li X, Xue Y, Liu X, et al. ZRANB2/SNHG20/FOXK1 axis regulates vasculogenic mim-
icry formation in glioma. J Exp Clin Cancer Res 2019;38(1):68.

[54] Wang X, Du X, Li H, Zhang S. Identification of the zinc finger protein ZRANB2 as a
novel maternal lipopolysaccharide-binding protein that protects embryos of
Zebrafish against gram-negative bacterial infections. J Biol Chem 2016;291(8):
4019–34.

[55] Prakash SK, LeMaire SA, Guo DC, et al. Rare copy number variants disrupt genes reg-
ulating vascular smooth muscle cell adhesion and contractility in sporadic thoracic
aortic aneurysms and dissections. Am J Hum Genet 2010;87(6):743–56.

[56] Singhal P, Luk A, Rao V, Butany J. Molecular basis of cardiac myxomas. Int J Mol Sci
2014;15(1):1315–37.

[57] Chen JH, Kuo HC, Lee KF, Tsai TH. Global proteomic analysis of brain tissues in tran-
sient ischemia brain damage in rats. Int J Mol Sci 2015;16(6):11873–91.

[58] XuW, Zhu Q, Liu S, et al. Calretinin participates in regulating steroidogenesis by PLC-
Ca(2+)-PKC pathway in Leydig cells. Sci Rep 2018;8(1):7403.

[59] Calderon-Dominguez M, Gil G, Medina MA, Pandak WM, Rodriguez-Agudo D. The
StarD4 subfamily of steroidogenic acute regulatory-related lipid transfer (START)
domain proteins: new players in cholesterol metabolism. Int J Biochem Cell Biol
2014;49:64–8.

[60] Riegelhaupt JJ, Waase MP, Garbarino J, Cruz DE, Breslow JL. Targeted disruption of
steroidogenic acute regulatory protein D4 leads to modest weight reduction and
minor alterations in lipid metabolism. J Lipid Res 2010;51(5):1134–43.

[61] Borthwick F, Allen AM, Taylor JM, Graham A. Overexpression of STARD3 in human
monocyte/macrophages induces an anti-atherogenic lipid phenotype. Clin Sci
(Lond) 2010;119(7):265–72.

[62] Rodriguez-Agudo D, Calderon-Dominguez M, Ren S, et al. Subcellular localization
and regulation of StarD4 protein in macrophages and fibroblasts. Biochim Biophys
Acta 2011;1811(10):597–606.

[63] Upadhyay RK. Emerging risk biomarkers in cardiovascular diseases and disorders. J
Lipids 2015;2015(97):1453.

[64] Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating
RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev
Genet 2016;17(5):257–71.

[65] Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J
Am Coll Cardiol 2018;71(23):2668–79.

[66] Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in
cardiovascular medicine: are we there yet? Heart 2018;104(14):1156–64.

[67] Johnson KW, Shameer K, Glicksberg BS, et al. Enabling precision cardiology through
multiscale biology and systems medicine. JACC Basic Transl Sci 2017;2(3):311–27.

http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0155
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0155
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0160
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0160
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0165
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0165
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0165
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0165
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0170
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0170
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0170
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0175
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0175
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0175
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0180
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0180
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0185
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0185
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0190
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0190
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0190
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0195
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0195
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0195
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0200
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0200
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0200
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0205
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0205
https://doi.org/10.1194/jlr.S091280
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0215
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0215
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0220
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0220
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0225
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0225
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0230
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0230
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0235
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0235
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0235
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0235
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0240
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0240
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0240
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0240
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0245
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0245
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0245
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0250
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0250
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0255
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0255
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0260
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0260
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0260
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0265
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0265
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0270
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0270
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0270
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0270
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0275
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0275
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0275
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0280
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0280
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0285
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0285
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0290
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0290
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0295
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0295
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0295
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0295
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0300
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0300
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0300
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0305
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0305
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0305
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0310
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0310
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0310
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0315
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0315
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0320
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0320
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0320
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0325
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0325
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0330
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0330
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0335
http://refhub.elsevier.com/S2352-3964(19)30308-1/rf0335

	A transcriptomic model to predict increase in fibrous cap thickness in response to high-�dose statin treatment: Validation ...
	1. Introduction
	2. Materials and methods
	2.1. Ethics statement
	2.2. Study design and procedure
	2.3. Microarray preparation and gene expression data
	2.4. FCT imaging by OCT

	Evidence before this study
	Added value of this study
	Implications of all the available evidence
	2.5. Responder identification
	2.6. Statistical analysis
	2.7. Incorporation of clinical variables into predictive models
	2.8. Gene function analysis

	3. Results
	3.1. FCT responder prediction
	3.2. Sensitivity testing
	3.3. Incorporation of clinical variables into predictive models
	3.4. Gene ontology term enrichment

	4. Discussion
	4.1. Study limitations

	5. Conclusions
	Funding sources
	Declaration of interests
	Author contributions
	Appendix A. Supplementary data
	References


