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ABSTRACT 
 

Pathological manifestations in either heart or kidney impact the function of the other and form the basis for the 
development of cardiorenal syndrome. However, the mechanism or factors involved in such scenario are not 
completely elucidated. In our study, to find the correlation between late fetal gene expression in diabetic 
hearts and their influence on diabetic nephropathy, we created a rat model with cardiac specific 
overexpression of IGF-IIRα, which is an alternative splicing variant of IGFIIR, expressed in pathological hearts. In 
this study, transgenic rats over expressing cardiac specific IGF-IIRα and non-transgenic animal models  
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INTRODUCTION 
 

The global incidence and prevalence of diabetes 

mellitus (DM) is on increase for the last 20 years [1]. 

Cardiovascular complications like coronary artery, 

cerebrovascular and peripheral artery diseases increase 

the morbidity and mortality rates among diabetic 

patients. Diabetes causes deterioration in the function of 

heart and the kidney and may lead to cardiorenal 

syndrome (CRS) in which deleterious effect of either of 

the organ affects the function of the other and further 

amplifies the pathological effects [2]. However, the 

underlying mechanism for deterioration and the factors 

that initiate the trigger and maintain the interaction is 

not understood yet [2]. According to the previous 

studies, CRS may affect through two main known 

pathways. The first one is the pro-inflammatory reaction 

which positively links with the severity of the disease 

[3, 4] and the second one is the inappropriate 

upregulation of the Renin Angiotensin System, a 

notable event in both chronic kidney disease and 

chronic heart failure [3] And recent studies show that 

cardiovascular participation occurs in each stage of 

chronic kidney disease and further major cardiac actions 

represent almost 50% mortality in cardiac kidney 

disease patients [5]. Understanding the mechanism of 

CRS has remained difficult as it has many complex 

physiological, biochemical, and hormonal 

abnormalities. In this study, in order to further 

understand the role of pathological expression of late 

stage fetal gene in the heart on diabetes associated 

cardiorenal syndrome and in exacerbating diabetes 

associated renal damages have been studied.  

 

Hypertrophic remodeling is an evident process in the 

response to pathological manifestations such as diabetes. 

The response of heart to hemodynamic or metabolic stress 

often leads to the activation of fetal genes and reduction in 

the post-natal gene expression. Long term pathological 

hypertrophy of the heart is considered as the major 

clinical predictor of heart failure. Although the factors that 

drive hypertrophic effects contributes to effective 

adaptations to stress, unbalances in their expression 

affects cardiac contractility and myocardial energetics 

leading to functional deterioration. Activation of the “fetal 

gene program” is considered to be the interlayer between 

pathological cardiac remodeling and the pathogenesis of 

heart failure [8]. Remarkably, recovery from heart failure 

and improvement in ventricular function upon treatment 

with beta-blockers or with ventricular assist devices are 

often associated with downregulation in the expression of 

cardiac fetal genes [6–8]. 

 

Our previous researches demonstrate that signaling 

mechanism involving insulin-like growth factor II 

receptor (IGFIIR), a fetal gene, is key in the pathological 

progression of hypertrophy [9, 10]. Reactivation of 

IGFIIR signaling in the heart during stresses leads to 

cardiac hypertrophy and heart failure. IGFIIR is a type I 

transmembrane glycoprotein whose activation and its cell 

surface expression in cardiomyocytes leads to 

cardiomyocyte apoptosis. Our previous studies show that 

IGFIIR is expressed during late stage cardiac events and 

an alternative splicing variant of IGFIIR named IGF-IIRα 

has been identified in pathological heart [11, 12]. Elevated 

expression of IGF-IIRα during pathological conditions 

like diabetes and high salt worsens the cardiac 

performance and increases tissue damages [13–15]. A 

transgenic IGFIIRα overexpression rat model was created 

with cardiac specific Myh6 promoter. The IGF-IIRα 

transgenic mice have been associated with ventricular 

hypertrophy and cardiomyocyte damages [13–16]. IGFIIR 

has been suggested to enhance the activation of TGF-β 

levels in patients with chronic heart failure by cleaving 

latent TGF-β which could correlate with increasing risk 

for chronic kidney disease. However the renal effects of 

cardiac specific IGF-IIRα expression is not yet 

established. In this study we evaluated the effect of 

cardiac IGF-IIRα expression on diabetes associated renal 

inflammation and deterioration of tissue homeostasis. The 

results will help in understanding the cardiac markers for 

potential targets. 

 

RESULTS 
 

Cardiac specific IGF–IIRα overexpression worsens 

DM associated kidney weight change 

 

As shown in Figure 1A, a single dose of STZ induced 

diabetes mellitus with significant (p<0.001) increase in 

established in SD rats were administered with single dose of streptozotocin (STZ, 55 mg/Kg) to induce Type I 
diabetes. The correlation between IGF-IIRα and kidney damages were further determined based on their 
intensity of damage in the kidneys. The results show that cardiac specific overexpression of IGF-IIRα elevates 
the diabetes associated inflammation and morphological changes in the kidneys. The diabetic transgenic rats 
showed advancement in the pathological features such a renal tubular damage, collagen accumulation and 
enhancement in STAT3 associated mechanism of renal fibrosis. The results therefore show that that IGF-IIRα 
expression in the heart during pathological condition may worsen symptoms of diabetic nephropathy in rats. 
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blood glucose level however, cardiac specific over 

expression of IGF–IIRα did not influence the 

hyperglycemic levels in the DM rats. Cardiac IGF–IIRα 

in DM rats causes hypertrophy of the heart that was also 

correlated with enlargement in kidney size (Figure 1B). 

Meanwhile, the rats induced with STZ showed notable 

reduction in the body weight however there was no effect 

of IGF–IIRα overexpression on the diabetes associated 

bodyweight change (Figure 1C). DM in IGF–IIRα 

overexpressing TG rats showed increase in the kidney size 

as reflected in the kidney weight/tibia length ratio (Figure 

1D). The results show that IGF–IIRα overexpression in 

heart does not affect the general effects of DM such as 

blood glucose and bodyweight change in the rats; 

however it inflicts a strong influence on kidney.  

 

Effects of cardiac specific IGF–IIRα overexpression 

on the serum biochemical markers 

 

The serum lipid profile showed high serum levels of 

kidney tissue markers such as BUN, CREA, and UA in 

DM TG and Non-TG rats. However, there was no 

change attributed to the IGF–IIRα overexpression. The 

results show that IGF–IIRα overexpression in hearts 

doesn’t show any effects on the biochemical markers in 

DM Non-TG rats and TG rats (Figure 2).  

 

Effects of cardiac specific IGF–IIRα overexpression 

on the histological analysis 

 

After STZ induction the kidney tissues were examined 

for the histological changes using H&E staining, PAS 

staining and Masson’s trichrome staining. The H&E 

staining showed changes in renal cellular architecture 

(Figure 3). TG rats showed renal tubular damages and 

STZ induced DM elevated the tubular damages (Figure 

3A). And also the glomeruli structure of TG rats 

showed a slight hypertrophy and mesangial expansion 

(Figure 3B). Meanwhile, STZ induced Non-TG groups 

showed contraction of glomeruli. TG rats showed 

higher degree of glomeruli infiltration and damages in 

addition TG DM rats showed hypertrophy and 

degeneration of renal tubules. PAS staining showed 

changes in the tubular structures (Figure 4). STZ

 

 
 

Figure 1. Effects of cardiac specific IGFIIRα overexpressing DM rats on kidney weight. (A) Fasting blood glucose levels in Non-

transgenic rats (n=6, NTG), transgenic (n=6, TG), NTG-streptozotocin induced diabetes model (n=6, NTGSTZ) and TG streptozotocin induced 
diabetes model (n=6, TGSTZ). (B) Cardiac specific IGF-IIRα overexpression causes hypertrophy of heart correlated with enlarged kidneys. (C) 
Changes in body weight and (D) Changes in kidney weight among NTG, TG, NTGSTZ, TGSTZ. *** p<0.001 indicates significance when 
compared to NTG group. 
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challenge triggers vacuolization and degeneration of 

renal tubular epithelium in Non–TG rats. But in the case 

of TG rats, that generally showed tubular dilation, and 

TG DM rats, higher levels of vacuolization and 

degeneration was observed. According to Masson’s 

trichrome staining to determine renal fibrosis (Figure 5), 

STZ induced DM rats showed collagen accumulation 

and TG DM rats showed elevated interstitial collagen

 

 
 

Figure 2. Effects of cardiac specific IGFIIRα overexpressing DM rats on Blood serum. Blood serum analysis (n=6) shows difference 
in blood urea nitrogen (BUN), creatinine (CREA) and uric acid (UA)levels between Non-transgenic rats (NTG), transgenic (TG), NTG-
streptozotocin induced diabetes model (NTGSTZ), TG streptozotocin induced diabetes model (TGSTZ). 

 

 
 

Figure 3. Effects of cardiac specific IGFIIRα overexpressing DM rats in renal cellular architecture. (A) H and E staining shows 

changes in renal cellular architecture in Non-transgenic rats (NTG), transgenic (TG), NTG-streptozotocin induced diabetes model (NTGSTZ), TG 
streptozotocin induced diabetes model (TGSTZ). TG rats show renal tubular damages (arrows) and STZ induced DM in TGSTZ elevates the 
damages. (B) Glomeruli of TG rats showed a slight hypertrophy and mesangial expansion (Arrow). NTGSTZ groups showed contraction of 
glomeruli. TGSTZ rats show higher degree of glomeruli infiltration (*) and damages in addition TGSTZ rats show atrophy and degeneration of 
renal tubules (arrow head). Scale bar represent 100 μm at 40 x magnification. 
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accumulation when compared to control and Non-TG 

DM rats. 

 

Effects of cardiac specific IGF –IIRα overexpression 

in heart modulates fibrosis associated inflammation 

markers in kidney 

 

The western blotting assay was used to assess the effect 

of IGF –IIRα overexpression in heart modulates 

inflammation markers in kidney tissues. The 

inflammation associated proteins showed increase in the 

levels of p-Stat3 in the STZ groups that seems to be 

associated with fibrosis in kidney (Figure 6). Pro-

fibrotic marker TGFβ1 that activates epithelial–to 

mesenchymal transition has been associated with 

chronic kidney diseases by activating pro fibrotic gene 

expression. STZ induced DM in Non-TG rats 

upregulated the levels of TGFβ1 and significantly 

(p<0.01) increased its downstream transcription 

activator p-stat3; in the TG rats the DM caused an 

exaggerated upregulation of TGFβ1 and p-Stat3 

(p<0.01) (Figure 6). Similarly, CTGF associated with 

fibroblast activation and TIMP, an inhibitor of 

fibrinolytic enzymes was increased significantly 

(p<0.001) in the TG DM rats. The results therefore 

show that DM associated stress is intensified upon 

cardio specific overexpression of the late stage 

embryonic protein IGF –IIRα.  

 

Effects of cardiac specific cardiac IGF–IIRα 

overexpression in heart modulates survival and 

apoptosis markers in kidney tissues 

 

TUNEL assay to find the number of apoptotic nuclei 

also show that TG DM rats undergo significantly 

(p<0.001) higher apoptosis levels (Figure 7). The results

 

 
 

Figure 4. PAS staining to show changes in the tubular structures. PAS staining show differences between Non-transgenic rats (NTG), 
transgenic (TG), NTG-streptozotocin induced diabetes model (NTGSTZ), TG streptozotocin induced diabetes model (TGSTZ). STZ challenge 
triggered vacuolization (arrow) and degeneration of renal tubular epithelium NTGSTZ. TG rats that generally showed tubular dilation (arrow 
head) also showed higher levels of STZ induced vacuolization and degeneration. Scale bar represent 100 μm at 40 x magnification. 
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therefore reveal that expression of the late stage 

embryonic gene IGF–IIRα in the heart may cause 

kidney cell to further succumb to the pathogenicity. 

 

DISCUSSION 
 

Significant inventions from our laboratory show that 

IGF-IIRα signaling controls cardiac hypertrophy that 

leads to heart failure [13–17] here we describe on the 

association of novel IGF-IIRα shows a key controlling 

role in cardiac structure in over expressed TG rats that 

affects. In this study, we demonstrated IGF-IIRα 

overexpression in heart intensifies renal damage in end 

stage kidney failure condition. It is known that, chronic 

heart failure develops from an insufficiency in cardiac 

output which in turn interrupts renal perfusion and may 

lead to vasomotor nephropathy. Our data from the 

morphological findings states that, cardiac IGF-IIRα 

overexpression is tangled in renal remodeling and renal 

function decline. Cardiac-IGF-IIRα overexpressed rats 

revealed visible changes in kidney weight, kidney 

weight –body weight ratio. Based on the well-

established staining methods to show any abnormal 

renal cellular architecture, we found a slight 

hypertrophy and mesangial expansion. H and E staining 

showed the difference in the glomerular abnormalities 

between DM TG and Non-TG rats, glomeruli showed a 

higher degree of infiltration in the DM TG rats and in

 

 
 

Figure 5. Effects of cardiac specific IGFIIRα overexpressing DM rats on interstitial collagen. Masson’s trichrome staining (n=3) 
show difference in collagen accumulation in Non-transgenic rats (NTG), transgenic (TG), NTG-streptozotocin induced diabetes model 
(NTGSTZ), TG streptozotocin induced diabetes model (TGSTZ). NTGSTZ induced DM rats show collagen accumulation (blue stain). TG rats 
show elevated interstitial collagen accumulation compared to NTG and NTGSTZ rats. Scale bar represent 100 μm at 40 x magnification. 
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addition hypertrophy and degeneration in renal tubules 

was visible. According to PAS staining TG rats showed 

tubular dilation that was aggravated in DM rats with 

notable vacuolization and degeneration in DM TG rats. 

And also the Masson’s trichrome staining showed 

elevated interstitial collagen accumulation in DM TG 

rats when compared with control and Non TG DM rats. 

The above mentioned differences in cellular architecture 

reveal that cardiac specific overexpression of IGF-IIRα 

has notable effects in Kidney. In addition to the cellular 

architecture studies, Western blotting assay show the 

elevated tissue expression of TGFβ1 in DM TG rats as 

compared to Non-TG DM rats.  

 

Diabetic nephropathy (DN) is one among the serious 

chronic complications of type 1 diabetes. Patients with 

type 1 diabetes develop tissue abnormalities and break 

down in homeostasis in blood flow and glomeruli 

vascular permeability that are indicated by abnormal 

levels of albumin in the urine, a condition referred as 

microalbuminuria [18]. The production of nitric oxide 

decreases in the renal capillaries eventually causing 

increasing sensitivity to angiotensin II [19]. The 

Glomerular filtration rate (GFR) decreases over a period 

of 10-20 years that highly varies among individuals and 

in Patients with microalbuminuria leading to 

development of hypertension along the way which leads 

to end-Stage renal disease [20]. 

 

Recent findings show that signal transducer and 

activator of transcription 3 (STAT3) is one of the vital 

signaling pathways in the development of diabetic

 

 
 

Figure 6. Changes in diabetic nephropathy associated Inflammation mediators. Western blotting analysis (n=3) on DM associated 
inflammatory cytokines showed differences in the levels of TGFβ1, p-stat3, CTGF and TIMP that are associated with fibrosis in kidney, among 
Non-transgenic rats (NTG), transgenic (TG), NTG-streptozotocin induced diabetes model (NTGSTZ), TG streptozotocin induced diabetes model 
(TGSTZ). **<p0.01 and *** p<0.001 indicate significance when compared to NTG group. ##<p0.01 and ### p<0.001 indicate significance when 
compared to NTGSTZ group and δδ<p0.01 and δδδ p<0.001 indicate significance when compared to TG group. 
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nephropathy [21, 22]. JAK/STAT is a crucial signaling 

cascade in the pathogenesis of diabetic nephropathy [23]. 

It is significant in the regulation of fundamental cellular 

processes such as growth, differentiation, immunity and 

survival. Its eccentric activity is also linked to 

carcinogenesis and tumor progression and has been of 

great interest as a therapeutic target. Evidence specifies 

that activation of the JAK/STAT pathway in renal 

glomerular mesangial cells activates excessive cell 

proliferation as well as unlimited production of TGF-β1, 

collagen IV, and fibronectin, contributing to the 

glomerulosclerosis in diabetic nephropathy [24–27]. In 

addition, activated STAT3 in tubular cells has been stated 

to be important in chronic kidney disease. Experimental 

evidence found from a murine kidney injury model using 

unilateral ureteral obstruction links STAT3 with amplified 

deposition of extracellular matrix proteins, thereby driving 

the development of renal fibrosis [21, 28]. Our present 

results show that the proteins involved in the STAT3 

mediated renal fibrosis mechanism are highly elevated in 

the DM TG rats with cardiac specific IGF-IIRα 

overexpression. This suggests that cardiac damages and 

associated late stage embryonic gene expression could 

inflict changes in the cardio-renal axis and causes 

increased stress in the kidney cells that ultimately leads to 

cellular damages and renal fibrosis.  

 

Coronary artery disease is seen commonly among 

patients with chronic kidney disease and a large number 

of non-hemodynamic factors have been attributed to the 

development of cardiomyopathy in chronic kidney 

disease patients [29]. Hyperphosphatemia associated 

with kidney disorders is linked to increased blood 

pressure [30] and is also known to induce cardiac 

hypertrophy and further affect the viability of cardiac 

cells due to excessive autophagy [31, 32]. Chronic 

kidney disease is also associated with excess 

angiotensin II accumulation in the heart that eventually 

promotes cardiac hypertrophy and fibrosis resulting in 

dysfunction and arrhythmias [33]. The activation of the 

renin-angiotensin system may lead to increase in serum 

aldosterone and the levels of TGF β- a causative factor 

for cardiac fibrosis [34–36].  

 

However, in the recent years more focus has been made 

on the cardiac factors that are involved in the chronic

 

 
 

Figure 7. Effects of cardiac specific IGFIIRα overexpressing DM rats on apoptosis. STZ induced DM rats show TUNEL positive nuclei 

(green). IGF2R overexpression in hearts increases the apoptosis rate in kidney (n=3). Scale bar represent 100 μm at 40 x magnification. *** 
p<0.001 indicates significance when compared to NTG group. ### p<0.001 indicates significance when compared to NTGSTZ group and δδδ 
p<0.001 indicates significance when compared to TG group. 
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kidney disease. Exosomes and non-coding RNAs 

released by heart cells have been reported to be the 

mediators of cardiac hypertrophy in in vitro models 

[37]. These cardiac secretory factors may also 

potentially affect other distal tissues like the kidney. 

 

In conclusion our results suggest that renal damages in 

diabetic condition are due to multifaceted pathological 

events which include direct effects of hyperglycemia on 

kidney and also due to pathological manifestation in the 

heart. Therefore, treatment approaches for diabetic 

nephropathy should consider strategies to target cardiac 

late stage proteins in addition to the conventional 

methods. 

 

MATERIALS AND METHODS 
 

Animal models 

 

Five weeks old male SPRAGUE-DAWLEY (SD) 

were purchased from BioLASCO (Taipei Taiwan) and 

the TG rats were purchased from National animal 

laboratory Animal center, Taiwan [14]. The rats were 

maintained at 24 ± 2° C temperature and humidity 

was maintained around 55 ± 10% with light and dark 

cycle every 12h. A standard laboratory diet (Lab Diet 

5001; PMI Nutrition International Inc., Brentwood, 

MO, USA) and drinking water ad libitum. Rats were 

divided into four groups after one week of adaptation. 

The groups are Control group (n=6), TG group (n=6), 

STZ induced control group (STZ, n=6) and the 4 th 

group was TG group with STZ induced (n=6). The 

control and TG rats were given PBS and the STZ 

induced group rats received STZ (55mg /kg body 

weight) when the rats are around eight weeks. This 

study followed the principles specified by laboratory 

animal care (NIH publication) and was approved by 

the Institutional Animal Care and Use Committee of 

China Medical University, Taiwan. 

 

Blood biochemical analysis 

 

In this study, all blood biochemical tests were gathered 

and measured by China Medical University Hospital, 

what's more, the accompanying parameters were broke 

down to investigate the capacity of Kidney: BUN 

(Blood Urea Nitrogen), CREA (Creatinine), UA (Uric 

Acid), study showed the protein profile in serum.  

 

Protein extraction and western blotting 

 

Cortex region from kidney was homogenized in a 

lysis buffer (0.05M of pH 7.4 Tris-HCl, 1 mM EDTA, 

0.15 M NaCl, 1% NP-40, and 0.25% deoxycholic 

acid) at a ratio of 100mg tissue 1mL buffer. The 

homogenates were stored overnight in -80° C and 

centrifuged at 13,000 rpm for 40 min protein in the 

supernatants were collected and again stored at -80° C 

for further analysis. Lowry protein assay were used to 

determine the protein concentration of kidney tissue 

extracts. The protein samples were separated using 

western blot techniques using 8-12 % SDS 

polyacrylamide gel electrophoresis under 60V for 

150min. The separated proteins were later transferred 

to PVDF membranes (GE healthcare limited, 

Buckinghamshire, UK) under 60V for 90 mins. The 

transferred proteins in PVDF membrane were blocked 

using % bovine serum albumin (BSA) for 1 hour and 

later intermixed with primary antibodies using tris-

buffered saline. Finally the blots were intermixed with 

horseradish peroxidase-labeled secondary antibodies 

and using LAS-3000 (GE healthcare UK limited, 

Buckinghamshire, UK) pictures were taken. 

 

Hematoxylin and eosin staining 

 

The attached rat kidney sections were cut into 0.2 µm 

thick slices and deparaffinized using xylene by 

immersing the slides. And rehydrated using (100%-

60%) alcohol. And stained with hematoxylin and eosin 

(H&E) and photomicrographs were taken using Zeiss 

Axiophot microscopes. 

 

PAS staining 

 

The attached rat kidney tissues were cut into 0.2 µm 

thick slices and fixed with 10% formaldehyde for 

approximately 24 h followed by dehydration and made 

transparent, and fixed in paraffin. After dewaxing, the 

embedded tissue sections were stained with 1% periodic 

acid solution, and Schiff’s solution was added to the 

incubator at 37° C. After treatment, the sections were 

sealed with glue and photographed under a fluorescence 

inverted microscope. 

 

Masson’s trichrome staining 

 

The rat kidney tissues were cut into 0.2 µm thick slices 

and fixed with 10% formalin and treated with chains of 

alcohol gradient like 75% 85%, 90%, and 100% liquor, 

5 min each) and fixed in paraffin wax. The kidney 

tissues were deparaffinized using xylene by immersing 

the slides. Then immersed in preheated Bouin’s fluid 

for specified duration and later rinsed with tap water. 

Later the sections were stained with the following 

solutions like Weigert’s iron hematoxylin solution, 

Biebrich scarlet-acid fuchsin, phosphotungstic-

phosphomolybdic acid solution, aniline blue solution, 

and 1% acetic acid solution with alternating washing 
procedure. The slides were dehydrated in 95% ethanol 

and lastly washed with ethanol and xylene and fixed in 

synthetic resin. 
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Immunohistochemistry 

 

The attached rat kidney tissue section were cut into (5 

µm) thick slices and incubated with anti- TGF β1 

(1:200) primary antibody. Immunohistochemistry 

analysis was performed according to a proven protocol. 

 

Statistics 

 

Results are conveyed as means ± SE (Standard Error) of 

three independent results. Evaluations between each 

groups were made with (ANOVA) one-way analysis of 

variance followed by Tukey test using GraphPad Prism 

version 5 (GraphPad Software Inc., La Jolla, California, 

USA). 
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