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Research has shown that several types of erythrocyte fatty acids (i.e., omega-3, omega-6, and trans) are associated with risk for
cardiovascular diseases. However, there are complex metabolic and dietary relations among fatty acids, which induce correlations
that are typically ignored when using them as risk predictors. A latent variable approach could summarize these complex relations
into a few latent variable scores for use in statistical models. Twenty-two red blood cell (RBC) fatty acids were measured in
Framingham (N = 3196). The correlation matrix of the fatty acids was modeled using structural equation modeling; the model
was tested for goodness-of-fit and gender invariance. Thirteen fatty acids were summarized by three latent variables, and gender
invariance was rejected so separate models were developed for men and women. A score was developed for the polyunsaturated
fatty acid (PUFA) latent variable, which explained about 30% of the variance in the data. The PUFA score included loadings in
opposing directions among three omega-3 and three omega-6 fatty acids, and incorporated the biosynthetic and dietary relations
among them. Whether the PUFA factor score can improve the performance of risk prediction in cardiovascular diseases remains
to be tested.

1. Introduction

Higher blood levels of the essential omega-3 polyunsaturated
fatty acids (PUFA) are associated with reduced risk for
sudden cardiac death [1, 2] and all-cause mortality [2, 3].
There is also evidence that the essential omega-6 PUFA
intakes and blood levels are inversely associated with risk for
coronary heart disease [4]. Other fatty acids, such as the trans
fatty acids found in partially hydrogenated vegetable oils, are
believed to increase risk for cardiovascular disease [5].Hence,
the study of these fatty acids is of vital importance.

PUFA are “essential” since they cannot be produced in
vivo andmust be consumed. Foods are composed of multiple

fatty acids, and dietary habits manifest themselves as corre-
lated fatty acid levels in the blood. Once consumed, simpler
PUFA species can be acted upon by enzymes that convert
them into more complex PUFA which have a wide variety
of metabolic functions. Desaturase enzymes insert double
bonds (points of “desaturation”) into fatty acid molecules,
and elongase enzymes are needed to increase the carbon
chain length [6]. Importantly, competition among PUFA
species exists for these enzymes such that different ratios
in the diet can affect overall PUFA patterns (Figure 1) [7].
While elongase enzymes are readily available, the desaturase
enzymes are rate limiting, and thus their levels may impact
the amount of the 20- and 22-carbon fatty acids present
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Figure 1: Polyunsaturated fatty acid biosynthesis [7]. Permission to reproduce this figurewas granted onDecember 26, 2013, from the journals’
copyright clearance center. Biosynthesis of long-chain n-3 and n-6 series polyunsaturated FAs from their 18-carbon precursors. The terminal
methyl group is carbon 1 and the n-3 and n-6 series of FAs are termed according to the position of the first double bond: after carbon 3 and
carbon 6, respectively. Biologically important FAs are highlightedwith a gray box. Newly added/removed carbons or double bonds introduced
at each step are colored red. Signaling molecules derived from AA, EPA, and DHA are noted in blue. LA, linoleic acid; LNA, linolenic acid;
AA, arachidonic acid; EPA, eicosapentanoic acid; DPA, docosapentanoic acid; DHA, docosahexaenoic acid; COX, cyclooxygenase; LOX,
lipoxygenase; PG, prostaglandin; and LT, leukotriene.

in the system [8]. Additionally, omega-3 fatty acids are the
preferential substrates over omega-6 for these desaturase
enzymes [6]. These biochemical and dietary relations induce
a correlation structure in the blood fatty acids.

Fatty acids have been reported as weight%, mol%, or
concentration (by volume or cell count). Since there are no
laboratory standards in the USA to uniformly report fatty
acid data, these multiple presentations exist.Themain debate
is relative versus absolute amounts, whose quantities become
more divergent as they increase [9]. Chow argues in favor

of absolute concentrations, citing the obvious drawback of
relative amounts being the imposed linear constraint (i.e,
summation to 100%) [10]. However, Crowe prefers relative
amounts since absolute concentrations rise and fall with total
cholesterol, which is made up of lipoproteins composed of
fatty acids [11]. Fatty acid nomenclature is as follows: C#:#n#=
the number of carbon (C) atoms in the molecule, the number
of double bonds, and the omega family (n), whether 3, 6, 7,
or 9. The latter indicates on which carbon the final double
bond resides. In Bradbury et al. concentrations andmol% are
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compared for C14:0 and C18:2n6 in plasma cholesterol ester
and phospholipids [12]. The study results show that C18:2n6
is significantly directly correlated with total cholesterol when
represented as a concentration (𝜇mol/L) but significantly
inversely related as mol%. The paper lists several references
that support the cholesterol lowering effect of C18:2n6 and
concludes that the metabolic pathways are influenced by the
percentage of total fatty acids and not by concentration. The
other advantage of weight% representation is that RBC fatty
acids have a strong correlation with myocardium tissue fatty
acids (𝑟 = 0.82) [13] and dietary intake [14]. This preferred
technique of using relative weight% of total fatty acids also
induces a correlation structure in the data.

Structural equation modeling (SEM) is well suited to
incorporate the metabolic, dietary, and measurement corre-
lations observed in fatty acid data. Only in the last decade
has SEM been applied to fatty acids [15–18]. SEM allows
complex high-dimensional relations to be simplified into a
few latent variable scores, which can be evaluated as novel
risk markers. Sex-specific risk prediction models have been
implemented for coronary heart disease [19] to account for
gender differences in the amount of risk attributable to
cholesterol and blood pressure levels. Similarly the observed
fatty acids may relate to the underlying latent constructs
differentially for men and women, and this potential gender
invariance needs to be evaluated. A recent taxonomyhas been
developed to specifically test measurement invariance over
multiple groups in SEM by comparing models with different
constraints applied to the correlation structure [20, 21].

The objective of the present study was to reduce the
dimensionality of the complex fatty acid correlation structure
by incorporating dietary intake patterns and biosynthesis
processes as constraints in a structural equation model. This
technique was applied to the Framingham Offspring/Omni
RBC samples, and differences in fatty acid means, loadings,
residuals, and latent variable covariance structures between
men and women were tested.

2. Materials and Methods

2.1. Materials. The Framingham Heart Study (FHS) was
established in 1948 to research the factors that contribute
to cardiovascular disease. Its study design and methods are
described at http://www.nhlbi.nih.gov/about/framingham.
In 1971, the children (and their spouses) of the original FHS
were recruited; they constitute the Framingham Offspring
cohort [22]. In 1994, to better reflect the changing demo-
graphics of the area, recruitment began for Framingham
residents aged 40–74 who described themselves as members
of a minority group, that is, Omni cohort [23]. The Offspring
and Omni cohorts were scheduled together for comprehen-
sive examinations every 4–8 years. These included anthropo-
metric measurements, biochemical assessment for CVD risk
factors, medical history, and physical examination by a study
physician. RBC samples taken from Offspring Examination
8 and Omni Exam 3 (2005–2007) were collected and subse-
quently 22 fatty acids were analyzed using gas chromatog-
raphy (GC), and their content was expressed as a weight%

of total fatty acids [24]. These data are publicly available as
part of the National Heart Lung and Blood Institute (NHLBI)
SNP Health Association Resource (SHARe) project (release
date: March 26, 2013, dataset name: l rbcfa 2008 m 0420s,
dataset accession: pht002568).Written informed consent was
provided by all participants, and the Institutional Review
Board at the Boston University Medical Center approved the
study protocol.

The study participants had a mean age (SD) of 66
(9) years, 55% were female, and 91% were white (see
Table 1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2014/160520). The prevalence of
chronic disease was diabetes (14%), heart disease (10%), and
congestive heart failure (2%). The participants were taking
hypertension medications (49%), lipid pharmacotherapy
(43%), aspirin 3+ per week (43%), and fish oil supplements
(10%).

2.2. Methods

2.2.1. Model Notation. SEM is a two-part modeling process.
The first part defines a measurement model, which specifies
the relations between the fatty acids and the latent variables,
given by y

𝑖
=^+Λ𝜂

𝑖
+𝜀
𝑖
(𝑖 = 1, . . . , 𝑁) [25] where y

𝑖
is a 𝑝 × 1

vector of observed fatty acids measured on subject 𝑖, ^ is a
vector of fatty acid means, Λ is a matrix of unknown loading
parameters, 𝜂

𝑖
is a 𝑚 × 1 vector of latent variable scores

for subject 𝑖, and 𝜀
𝑖
is vector of normal random errors with

covariance matrix Θ that is independent of 𝜂
𝑖
. The second

part defines a path model for the latent variables 𝜂
𝑖
, which

allows regressing one latent variable 𝜂
1𝑖
on the set of other

latent variables 𝜂
2𝑖
, given by 𝜂

1𝑖
= 𝛼 + B𝜂

2𝑖
+ 𝜉
𝑖
, where 𝛼 is

a vector of latent variable means, B is a vector of unknown
regression parameters, and 𝜉

𝑖
is vector of normal random

errors with covariance matrixΨ.

2.2.2. Comparing SEM to Other Multivariate Techniques. The
proportion of variance explained in the 𝑗th fatty acid by
the latent variables is defined as the 𝑗th communality. The
variance in each fatty acid is equal to its communality plus
its unique variance; that is, 𝜎

𝑗𝑗
= 𝜆
2

𝑗1
+ 𝜆
2

𝑗2
+ ⋅ ⋅ ⋅ + 𝜆

2

𝑗𝑚
+ 𝜃
𝑗
.

Principal components analysis (PCA) ignores the specific
variance (measurement error) and uses the identity matrix
for 𝜃
𝑗
. This results in factoring the total variance instead of

the common variance; the latter is the proportion of variance
shared by the fatty acids. If communalities < 1 are used with
principal components method of decomposing the observed
correlation matrix using eigenvalues and eigenvectors, then
the method is principal factoring. This is akin to using the
reduced sample correlation matrix where the main diagonals
are less than one. Likewise, an exploratory factor analysis
imposes no structure and also assumes independence in
the residuals matrix, but the common variance is extracted
and the factors can be correlated through oblique rotations.
Moving to confirmatory factor analysis requires restrictions
on the model parameter, which allows testing the model
goodness-of-fit. However, only structural equation modeling
(SEM) allows regression paths among the observed and
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Table 1: Framingham subjects’ fatty acids; mean (SD).

Fatty acid Overall
𝑁 = 3196

Male
𝑁 = 1434

Female
𝑁 = 1762

𝑃 value∗

Myristic, C14:0 0.31 (0.08) 0.29 (0.07) 0.32 (0.09) <0.0001
Palmitic, C16:0 21.29 (1.24) 21.24 (1.21) 21.34 (1.26) 0.031
Stearic, C18:0 18.11 (0.95) 18.20 (0.89) 18.04 (1.00) <0.0001
Lignoceric, C24:0 0.43 (0.16) 0.44 (0.16) 0.42 (0.16) 0.012
Palmitoleic, C16:1 0.35 (0.19) 0.31 (0.18) 0.39 (0.19) <0.0001
Oleic, C18:1 13.88 (1.06) 13.90 (1.06) 13.85 (1.06) 0.23
Eicosenoic, C20:1 0.27 (0.11) 0.28 (0.12) 0.27 (0.10) <0.0001
Nervonic, C24:1 0.45 (0.15) 0.46 (0.15) 0.43 (0.15) <0.0001
trans Palmitoleic, C16:1 trans 0.17 (0.05) 0.16 (0.05) 0.17 (0.05) 0.0052
trans Oleic, C18:1 trans 1.62 (0.55) 1.62 (0.57) 1.61 (0.54) 0.56
trans Linoleic, C18:2 trans 0.25 (0.08) 0.24 (0.08) 0.25 (0.08) 0.0021
alpha-Linolenic, C18:3n3 0.19 (0.10)† 0.17 (0.09) 0.20 (0.11) <0.0001
Eicosapentaenoic (EPA), C20:5n3 0.74 (0.46)† 0.71 (0.42) 0.76 (0.49) 0.0011
Docosapentaenoic, C22:5n3 2.74 (0.46) 2.80 (0.46) 2.70 (0.45) <0.0001
Docosahexaenoic (DHA), C22:6n3 4.88 (1.38) 4.82 (1.39) 4.92 (1.37) 0.043
Linoleic, C18:2n6 11.19 (1.74) 11.03 (1.63) 11.33 (1.81) <0.0001
gamma-Linolenic, C18:3n6 0.08 (0.09) 0.08 (0.12) 0.09 (0.07) 0.089
Eicosadienoic, C20:2n6 0.28 (0.05) 0.28 (0.05) 0.28 (0.05) 0.23
Eicosatrienoic, C20:3n6 1.59 (0.36) 1.59 (0.36) 1.59 (0.35) 0.66
Arachidonic, C20:4n6 16.78 (1.62) 16.79 (1.57) 16.77 (1.66) 0.66
Docosatetraenoic, C22:4n6 3.76 (0.83) 3.92 (0.83) 3.63 (0.81) <0.0001
Docosapentaenoic, C22:5n6 0.66 (0.19) 0.67 (0.19) 0.64 (0.19) <0.0001
∗Two-sample 𝑡-test, the critical level alphawas set to 0.05/22 = 0.0023 for statistical significance using Bonferroni correction (shown in bold). †Use the following
mean (SD) of the log-transformed values when standardizing data as explained in the discussion section for C18:3n3 −6.38 (0.41) and C20:5n3 −5.04 (0.48).

unobserved variables, also a sparse correlation matrix for the
residuals can be specified. Therefore, SEM allows the most
model flexibility for implementing the dietary intake patterns
and metabolic processes among the fatty acids.

2.2.3. Data Preparation. SEM requires multivariate normal-
ity for maximum likelihood (ML) estimation. We started by
assessing univariate normality which is implied by multivari-
ate normality. To examine univariate normality, skewness and
kurtosis measures were calculated for each fatty acid. If a fatty
acid had an absolute kurtosis >10, considered problematic
[26], or skewness>3, then a natural logarithm transformation
was employed. Next, the null hypothesis of multivariate
normality was tested using the SAS macro %MULTNORM
which calculates the squared Mahalanobis distances (𝐷2);
for large samples, 𝐷2 is distributed as a 𝜒2

𝑝
[27]. When

multivariate normality is not tenable, robust ML estimation
should be implemented [28].

The scales of the RBC fatty acids differed by two orders
of magnitude, on average Palmitic acid (C16:0) accounted
for 20% of total fatty acid abundance, whereas alpha-
linolenic acid (C18:3n3) accounted for only 0.2%. How-
ever, there are meaningful fatty acids even at small relative
weight%. For example, the mean levels of C20:5n3 and
C16:1t are 0.7% and 0.2%, but these are widely studied

biomarkers of fish and dairy intake, respectively. There-
fore, all fatty acids were standardized in order to have
similar effect sizes, which prevented the large abundance
fatty acids from dominating the variance extraction. The
measure of sampling adequacy developed by Kaiser [29]
MSA = Σ(simple correlations)2/[Σ(simple correlations)2 +
Σ(partial correlations)2] was used to identify fatty acids that
were not sufficiently related to the core latent structure.
Individual fatty acids with a MSA < 0.60 were considered
“unacceptable” [30] and dropped from analysis.

2.2.4. Gender Invariance Testing. The primary motivation of
the study was to reduce the dimensions of the fatty acid
correlation matrix and to develop latent variable scores for
each subject using the regression scoring method [31]. An
assumption when using latent variable scores is that the
indicators (i.e, fatty acids) have the same relations with the
underlying latent variables between groups of interest, in
this case gender. To this end, the correlation matrix was
partitioned as Σ = ΛΨΛT + Θ, and it along with the
mean profile ^ of the observed fatty acids was tested for
gender invariance using the likelihood ratio test (LRT) by
comparingmodels with different imposed constraints. When
using robustmaximum likelihood the LRThas beenmodified
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by the deviance scaling [32]. The specific hypotheses are as
follows.

(1) The fatty acid means are equal between genders,
H
1
: ^male=^female.

(2) The loadings matrix is equal between genders,
H
2
: Λmale=Λfemale.

(3) The fatty acid variances are equal between genders,
H
3
: Θmale=Θfemale.

(4) The latent variable covariances are equal between
genders, H

4
: Ψmale=Ψfemale.

(5) The fatty acid covariances are equal between genders,
H
5
: Σmale=Σfemale.

The number of underlying dimensions was examined
using exploratory factory analysis where eigenvalues >1 were
retained. Then a SEM was built using the same number of
latent variables, and it was used to test if the fatty acid means
^ were equal between men and women (H

1
). This was done

by testing the model 𝑋2 between a model with intercepts,
loadings, and unique variances freely estimated for men and
women (model M0) versus one with a single set of intercepts
imposed for both genders (model M1). To test for equality
in the loading matrix Λ between genders (H

2
), a model with

equal loading constraints, but freely estimated intercepts and
unique variances for each gender (model M2), was compared
tomodelM0.HypothesisH

3
was tested for gender differences

in fatty acid residual variancesΘ by comparing a model with
freely estimated intercepts and loadings for each gender, but
with constrained variances (Model M3) versus model M0.
To test the latent variable covariance structure Ψ, model
M2 was used for comparison with additional constraints
placed on the six latent covariances to be equal between
genders (Model M4). Lastly the fatty acid covariance matrix
was tested by constraining loadings, latent covariances, and
unique variances to be equal for men and women (Model
M5). Each model used the direct Quartimin oblique rotation
(available in Mplus and SAS).

2.2.5. Comparing Model Fits. To evaluate the fit of the SEM
there are several indices, and the following is the minimal
set established by current practice: (1) model chi-square,
(2) Steiger-Lind root mean square error of approximation
(RMSEA), (3) Bentler comparative fix index (CFI), and (4)
standardized root mean square residual (SRMSR) [26]. The
RMSEA indicates the discrepancy in model fit per degree of
freedom as defined by 𝜀 = sqrt[(𝜒2 − df)/(df × (N − 1))]
[33].TheRMSEA follows a noncentral𝑋2 distribution, which
allows reversing the role of the null hypothesis to testing
a poorly fitting model and then a larger sample provides
evidence of good fit. RMSEA is not used to test for perfect
fit 𝜀 = 0 but to test the alternative hypothesis of “close fit”
𝐻
𝑎
: 𝜀 ≤ 0.05 or “reasonable fit” 𝐻

𝑎
: 𝜀 ≤ 0.08 [26].

Bentler’s CFI and the Tucker-Lewis Index (TLI) are relative
fit indexes; these measures should be >0.90 [34], and CFI
differences of 0.01 between models are considered relevant
[35]. The absolute model fit was assessed by calculating
the SRMSR between the fatty acids’ observed correlations

and the correlations predicted by the latent variables; these
residuals should be less than 0.10 for a good fitting model
[26]. The Schwarz Bayesian Criterion [36], which includes a
larger penalty for lack of parsimony than Akaike Information
Criteria [37], was also reported. Analyses were performed
using SAS software (version 9.2; SAS Institute Inc., Cary, NC)
and Mplus (version 6.12; Muthen & Muthen, Los Angeles,
CA).

3. Results

3.1. Exploratory Factor Analysis. Table 1 indicates gender
differences in mean levels, in 12 out of 22 RBC fatty acids.
The greatest relative differences were higher levels of C16:1
and C18:3n3 in females. The largest absolute differences were
that females had about 0.3 percentage point higher and
lower levels of C18:2n6 and C22:4n6 than males, respectively.
Skewness and kurtosis were calculated for the individual fatty
acids, and the following had distributions with an absolute
kurtosis index >10 and/or a skew index >3, that is, C20:1,
C18:3n3, C20:5n3, and C18:3n6, which became approximately
Gaussian using a natural logarithm transformation.However,
about 60% of C18:3n6 measurements were <0.1%, which is
considered as the reliable detection limit for the GC method,
and it appears that the log transformation simply produced
normally distributed noise. Therefore, C18:3n6 was excluded
from latent variable analysis. Even though univariate normal-
ity was reasonable for the individual fatty acids, multivariate
normality was rejected (𝑃 < 0.0001) so robust ML method
was implemented in Mplus [28].

Fatty acid concentrations were standardized to produce
a correlation matrix (Supplemental Table 2), and the MSA
was calculated for each fatty acid and overall (the latter was
initially 0.20). The fatty acid with the lowest MSA value
was dropped from analysis until all fatty acid MSA values
were >0.60. This resulted in the following fatty acids being
sequentially excluded from the latent variable analysis: C18:1,
C20:1, C18:2n6, C20:2n6, C20:3n6, C24:0, and C24:1. After
excluding these fatty acids the overallMSA for the correlation
matrix increased to 0.75. Additionally, C22:5n3 needed to
be removed from the correlation matrix because it was
causing the explained variability inC20:5n3 to be greater than
100%, that is, Heywood condition [38]; hence, 13 fatty acids
remained. Afterwards three dimensions were identified for
men and women with eigenvalues greater than one.

3.2. Confirmatory Factor Analysis. Model M0 allowed inter-
cepts, loadings, and unique variances to be freely estimated
for men and women.The absolute fit was good with a SRMSR
of 0.035, and the fit was much better than a model with
zero correlations since CFI = 0.888 (Table 2). However, the
fit measures which adjust for parsimony, that is, RMSEA
and TLI, were not near acceptable ranges. In model M1
when the 13 fatty acid means were held constant between
gender H

1
: ^male=^female, the SBC increased by over 400 and

the hypothesis was rejected using the chi-squared difference
testing between nested models 𝑋2

13
= 520, 𝑃 < 0.0001. As

pointed out earlier since robust ML method was used due to
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Table 2: Goodness-of-fit for testing gender invariance (among 13 fatty acids).

Model constraint
(𝑁 = 3196)

Absolute fit Relative fit

𝜒
2/DF† 𝜒

2

Scaling SRMSR SBC
RMSEA
upper

90% limit
CFI TLI

M0: unrestricted by
gender 1900/84 1.079 0.035 100055 0.121 0.888 0.791

M1: equal fatty acid
means, ^ 2409/97 1.071 0.056 100480 0.126 0.857 0.770

M2: equal loadings, Λ 1965/114 1.097 0.040 99919 0.105 0.885 0.843
M3: equal unique
Variances, Θ 1673/97 1.255 0.036 99999 0.105 0.902 0.843

M4: equal loadings and
latent covariances, Λ,Ψ 1986/120 1.105 0.048 99909 0.102 0.884 0.850

M5: equal fatty acid
covariance matrix, Σ 1793/133 1.251 0.050 99853 0.092 0.897 0.879

M6: SEMmodel 968.8/107 1.217 0.046 98999 0.075 0.947 0.922
M7: reduced SEMM6 967.5/111 1.225 0.046 98972 0.074 0.947 0.925
†The total degrees of freedom (DF) = 2 ∗ (91 fatty acid variances/covariances + 13 fatty acid means) = 208 parameters in all models; hence, the number of
estimated parameters equals 208 − 𝑋2 DF; SRMSR = standardized root mean square residual; SBC = Schwarz Bayesian criteria; RMSEA = root mean square
error of approximation; CFI = Bentler Comparative Fit Index; TLI = Tucker-Lewis Index.

lack of multivariate normality, the chi-squared test statistic
was modified [32]. Specifically, to compare model M1 nested
in M0, the scaling correction factor was computed as 𝑐

𝑑
=

(DFM1 ∗ ScalingM1 − DFM0 ∗ ScalingM0)/(DFM1 − DFM0) =
(97 ∗ 1.071 − 84 ∗ 1.079)/13 = 1.0. Then 𝑋2

13
= (𝑋

2

M1 ∗

ScalingM1 − 𝑋
2

M0 ∗ ScalingM0)/𝑐𝑑 = (2409 ∗1.071 − 1900 ∗
1.079)/1.019 = 520 (Table 2). All other model fit measures
deteriorated as well. These results importantly show that the
multivariate fatty acidmean profile was not the same between
genders for these fatty acids.

Next the fatty acid correlation structure was tested for
gender invariance in multiple steps. When comparing model
M2 to M0, H

2
: Λmale=Λfemale we concluded that the factor

loadings were different between men and women 𝑋2
30

= 92,
𝑃 < 0.0001 (Table 2). To test for gender differences in
the fatty acids’ variances, H

3
: Θmale = Θfemale models M3

and M0 were compared. The fatty acids’ variances were not
different between genders, 𝑋2

13
= 20.7, respectively, 𝑃 =

0.079. Next the latent variable covariance structure was
tested H

4
: Ψmale = Ψfemale, by comparing model M2 with

M4 and found to be different between men and women
(𝑃 < 0.0001). Likewise the overall covariance structure
H
5
: Σmale=Σfemale was different (𝑃 < 0.0001).

3.3. Structural Equation Modeling Constraints. The above
results suggested differential fatty acid functioning for men
and women, so separate models were developed by gender
that allows the standardized latent variables scores to be
compared between men and women. Model M3 had a good
fit compared to M0 shown by chi-squared difference testing,
SRMSR, and CFI; however, the parsimony measures suggest
there were still too many parameters. Model M3 is shown for
men andwomen in Supplemental Tables 3 and 4, respectively;

the latent variables were named for the fatty acids with
the strongest correlations as PUFA, SATURATED, and
TRANS FACTORS. When examining the loading estimates
between men and women they were quite similar; there
were only 3 parameters that differ by >0.10 which included
the saturated fatty acids C14:0 and C18:0. These two fatty
acids have slightly stronger correlations with the underlying
latent variables in women than men. To further reduce the
model complexity, constraints were placed on the loading
matrix. A threshold of 0.15 was chosen, and parameters were
constrained to zero if they had loadings below this threshold.

Correlations among dietary intakes of fatty acids were
determined for the subset of 2332 participants with valid
food frequency questionnaires [39] (Supplemental Table 5).
Dietary intake (g/d) was available for 11 out of 13 RBC fatty
acids included in the latent variable model, and C22:4n6 and
C22:5n6 were not calculated from the diet. Since RBC fatty
acids were correlated with corresponding dietary intakes of
fatty acids, covariances were added to the fatty acids residual
matrix, Θ, to account for foods being composed of many
different fatty acids. Being able to specify which residual
covariances to include is a feature unique to structural equa-
tion modeling and cannot be accomplished in the context
of confirmatory factor analysis. There were 14 strong dietary
correlations (𝑟 > 0.80) that were added to the model. The
correlation between C18:1t and C18:2t was extremely high
(𝑟 = 0.98) and caused model convergence issues; therefore,
it was subsequently removed.

The biosynthesis process is well known for omega-3
and omega-6 fatty acids [7]. Delta-6 and delta-5 desaturase
activity is needed to convert C18:3n3 into C20:5n3 (Figure 1).
Then delta-6 desaturase (D6D) is required again to further
convert C20:5n3 into C22:6n3. The amount of D6D available
for the second conversion to synthesize C22:6n3 may be
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Table 3: Structural equation model M7 factor loadings (Λ) and standardized fatty acid means (^).

Fatty acids Men Women
PUFA∗ SAT TRANS Mean PUFA∗ SAT TRANS Mean

Ln(C18:3n3) 0.257 0.138 0.070 −0.186 0.370 0.149 0.114 0.149
Ln(C20:5n3) 0.847 0 0 −0.043 0.844 0 0 0.036
C22:6n3 0.815 −0.373 0 0 0.801 −0.335 0 0
C20:4n6 −0.634 −0.289 −0.215 0 −0.667 −0.285 −0.204 0
C22:4n6 −0.837 0 0 0.168 −0.814 0 0 −0.138
C22:5n6 −0.806 0 0 0.083 −0.788 0 0 −0.069
C14:0 0 0.633 0.056 −0.221 0 0.781 0.105 0.178
C16:0 0 0.754 −0.227 0 0 0.808 −0.290 0
C18:0 0 −0.524 0 0.072 0 −0.681 0.084 −0.054
C16:1 0 0.723 0 −0.209 0 0.812 0 0.169
C16:1t 0 0 0.499 −0.070 0 0 0.540 0.057
C18:1t 0 −0.114 0.888 0 0 −0.168 0.843 0
C18:2t 0 0.248 0.728 −0.065 0 0.239 0.738 0.053

Factor correlations (Ψ)
Factor

PUFA 1 0.190 −0.323 1 0.249 −0.385
SAT 0.190 1 −0.160 0.249 1 0.003
TRANS −0.323 −0.160 1 −0.385 0.003 1

∗Direction of signs is arbitrary; the signs for the PUFA loadings and factor correlations have been reversed in this table to make more n3 fatty acid positively
associated with the PUFA FACTOR.

limited by a function of what is initially consumed to support
converting C18:3n3 [40].Therefore, the amount and variabil-
ity of both C20:5n3 and C22:6n3 depend (to some extent) on
the intake of the parent n3 fatty acid C18:3n3. In the omega-
6 fatty acid family, D6D is needed for C22:4n6 to synthesize
into C22:5n6. These biochemical steps introduce structural
elements into the SEMmodel, so these three covariances were
added to fatty acid residualsmatrixΘ. However, omega-3 and
omega-6 fatty acids also compete for the desaturase enzymes,
and the omega-3 fatty acids are the preferential substrates [6].
So with higher levels of C20:5n3 (whether by biosynthesis
or fish oil consumption), D5D activity is inhibited (feedback
inhibition, whereby the enzyme senses when enough product
has beenmade and then shuts down).This slows the synthesis
of C20:4n6 from C20:3n6. Likewise C22:6n3 and C22:5n6
compete for D6D.These two additional fatty acid covariances
were added to the SEM residual matrix as well.

3.4. Final Structural Equation Model. After the above con-
straints were placed on the model, the resulting SEM (Model
M6) had a significantly better fit than the unrestricted model
by gender (M0),𝑋2

23
= 506 (𝑃 < 0.0001). Additionally model

M6was the onlymodel to have a “reasonable” fit with RMSEA
<0.08. Also it was the only model to have CFI and TLI > 0.90.
Model M6 had a total of 208 − 107 = 101 estimated parame-
ters, including the following gender specific 2 ∗ (23 loadings,
9 means, and 3 latent variable covariances) = 70 and gender
invariant (13 residual variances and 13 dietary-related and 5
desaturase-related residual covariances) = 31. The loadings
and latent variable correlations (Supplemental Table 6) and
fatty acid residual matrix (Supplemental Table 7) are shown

for model M6. One loading and three residual covariances
were <0.05; these were set to zero for a more parsimonious
model (M7). The nested fit between the reduced SEM model
M7 was similar to model M6, 𝑋2

4
= 4.3 (𝑃 = 0.37) and all

the parsimony fit measures (i.e, SBC, RMSEA, and TLI) were
improved.

There were four fatty acids with gender mean differences
which were not significantly different than zero (i.e, C22:6n3,
C20:4n6, C16:0, and C18:1t). The greatest mean differences
(all 0.30 to 0.40 SD) between genders were found in two
PUFA [ln(C18:3n3) and C22:4n6], one saturated fatty acid
[C14:0] and one monounsaturated fatty acid [C16:1]. The
loadings, latent variable covariance structure, mean profile,
and fatty acid residual matrix for model M7 are shown in
Tables 3 and 4. The Mplus code for model M7 is given in
Algorithm 1.

4. Discussion

Although 22 individual fatty acids were measured during
the GC process, 9 were removed from the latent variable
analysis because they were not related to the core structure
as explained above. However, the individual fatty acids that
were removed may still have clinical utility as individual
predictor variables. For example, C18:2n6 (Linoleic acid)
was fairly independent of the PUFA, SATURATED, and
TRANS latent variable scores, and all correlations were
around 0.10 (Supplemental Table 8). Since C18:2n6 has
been reported inversely related with heart disease [4], it
could still have clinical utility as in independent predictor
variable in combination with these newly defined latent
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TITLE:

Structural Equation Model M7;

DATA:

FILE IS infile;

VARIABLE:

NAMES ARE C140 C160 C180 C161 C161t C181t C182t C204n6 C224n6 C225n6

LnC183n3 LnC205n3 C226n3 ID Female;

USEVARIABLES C140 C160 C180 C161 C161t C181t C182t C204n6 C224n6 C225n6

LnC183n3 LnC205n3 C226n3;

GROUPING is Female (1=Female 0=Male);

AUXILIARY=ID;

ANALYSIS:

TYPE=GENERAL;

ESTIMATOR=MLR;

MODEL:

!MODEL Female;

!Latent variable loadings;

fFISH BY LnC183n3∗ LnC205n3 C226n3 C204n6 C224n6 C225n6;

fSAT BY C226n3∗ C204n6 C140 C160 C180 C161 LnC183n3 C181t C182t;

fTRANS BY C204n6∗ C160 C180 C161t C181t C182t LnC183n3 C140;

!Latent variable means are fixed at 0;

[fFISH@0 fSAT@0 fTRANS@0];

!Fatty acid means are free, or constrained to zero where indicated;

[LnC183n3 LnC205n3 C226n3@0 C224n6 C225n6 C204n6@0 C140 C180 C160@0 C161 C161t C181t@0 C182t];

!Latent variables covariance matrix;

fFISH@1; fSAT@1; fTRANS@1;

fFISH WITH fSAT;

fFISH WITH fTRANS;

fSAT WITH fTRANS;

!Fatty acid residual variances are equal between gender;

C140(1); C160(2); C180(3); C161(4); C161t(5); C181t(6); C182t(7);

C204n6(8); C224n6(9); C225n6(10); LnC205n3(11); C226n3(12); LnC183n3(13);

!Dietary intake covariances are equal between gender;

C140 WITH C160(14); C140 WITH C180(15); C140 WITH C161t(16);

C160 WITH C161(17); C160 WITH C161t(18);

C180 WITH C161(19); C180 WITH C161t(20); C180 WITH C181t(21); C180 WITH C182t(22);

C161 WITH C161t(23);

LnC205n3 WITH C226n3(24);

!Desaturase enzymes covariances are equal between genders;

LnC183n3 WITH LnC205n3(25);

C204n6 WITH LnC205n3(26);

C226n3 WITH C225n6(27);

C226n3 WITH LnC183n3(28);

MODEL male:

!Latent variable loadings;

fFISH BY LnC183n3∗ LnC205n3 C226n3 C204n6 C224n6 C225n6;

fSAT BY C226n3∗ C204n6 C140 C160 C180 C161 LnC183n3 C181t C182t;

fTRANS BY C204n6∗ C160 C180@0 C161t C181t C182t LnC183n3 C140;

!Fatty acid means are free, or constrained to zero where indicated;

[LnC183n3 LnC205n3 C226n3@0 C224n6 C225n6 C204n6@0 C140 C180 C160@0 C161 C161t C181t@0 C182t];

!Fatty acid residual variances are equal between gender;

C140(1); C160(2); C180(3); C161(4); C161t(5); C181t(6); C182t(7);

C204n6(8); C224n6(9); C225n6(10); LnC205n3(11); C226n3(12); LnC183n3(13);

Algorithm 1: Continued.
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!Dietary intake covariances are equal between gender;

C140 WITH C160(14); C140 WITH C180(15); C140 WITH C161t(16);

C160 WITH C161(17); C160 WITH C161t(18);

C180 WITH C161(19); C180 WITH C161t(20); C180 WITH C181t(21); C180 WITH C182t(22);

C161 WITH C161t(23);

LnC205n3 WITH C226n3(24);

!Desaturase enzymes covariances are equal between genders;

LnC183n3 WITH LnC205n3(25);

C204n6 WITH LnC205n3(26);

C226n3 WITH C225n6(27);

C226n3 WITH LnC183n3(28);

OUTPUT:

SAVEDATA:

FORMAT IS F20.14;

FILE IS outfile;

RESULTS ARE parametersfile;

SAVE=FSCORES;

Algorithm 1: Mplus code for structural equation model M7.

variables. C22:5n3 (DPA) is intermediate of C20:5n3 (EPA)
and C22:6n3 (DHA) in the biosynthesis process (Figure 1)
and was the only excluded fatty acid that had a correlation
>0.10 with the PUFA FACTOR (𝑟 = 0.39). However, DPA
has less biological activity than the other marine fish oils
[41], so it is not anticipated that DPA would be useful
as an individual predictor variable of clinical outcomes.
Afterwards, the remaining 13 fatty acids were found to be
represented by three dimensions, which constituted nearly
70% of the total fatty acid abundance. In the SEM model,
the residual variances were equal between genders. Likewise
the structural dietary correlations and biosynthesis processes,
which were accounted for with residual correlations, did not
vary between men and women. The final SEM model fit the
data well by all measures.

The PUFA FACTOR includes the following fatty acids:
ln(C18:3n3), ln(C20:5n3), C22:6n3, C20:4n6, C22:4n6, and
C22:5n6 (Figure 2); all of which are found in the PUFA
biosynthesis processes shown in Figure 1. The loading direc-
tions of the fatty acids included in the PUFA FACTOR are
also supported by many of the competing metrics being used
in fatty acid research. The omega-3 index is implemented in
clinical laboratory testing and is defined as RBC C20:5n3 +
C22:6n3 [42]. The omega-3 index was an independent risk
factor for all-cause mortality in a study of stable coronary
heart disease patients, with higher levels indicating reduced
risk [3]. Lower amounts of the omega-3 indexwere associated
with depression in a case-control study of adolescents [43]. In
the PUFAFACTOR, for bothmen andwomen, these two fatty
acids operate in the same direction with similar magnitudes,
which supports their summation as a biomarker (although
C20:5n3 has been log transformed in the PUFA FACTOR).

The n6/n3 ratio [44], n6 HUFA/total HUFA ratio [45],
and C20:4n6/C20:5n3 ratio [46] are all metrics that seek to
combine individual fatty acids into more powerful predictors

of risk. Although the goal is reasonable, these approaches
are criticized as being imprecise and impractical [46]. All
of these ratios may be flawed in that the same ratio can be
obtained by increasing the numerator or decreasing the
denominator, when these fatty acids do not have the same
physiological properties. An improvement to these ratios
may be the PUFA FACTOR. It is a more nuanced metric
since it does not simply add up the masses of different PUFA
families and create a ratio; it takes into account the relative
strengths of relationship among these linearly “opposing”
and interrelated fatty acids and reduces this nexus into
a single number. The algorithm for scoring these latent
variables from raw fatty acid data is given in the following.

Algorithm (algorithm for scoring latent variables)

Step 1.Measure fatty acids as a % of total fatty acids.

Step 2. For C18:3n3 and C20:5n3 transform the values using
natural logarithm.

Step 3. Standardize all fatty acids using corresponding overall
means and standard deviations fromTable 1 into a row vector
Z
𝑖
(as shown below, the headings indicate the required order).

Step 4.Calculate the latent variable scores𝜂
𝑖
for subject 𝑖using

the appropriate male or female matrices as

𝜂
𝑖
= (Z
𝑖
− ^𝑇) [ΨΛ𝑇(ΛΨΛ𝑇 +Θ)

−1

]

𝑇

, (1)

where ^ is the standardized fatty acid mean column vector
given by gender in Table 3.Ψ is the latent variable covariance
matrix given by gender in Table 3. Λ is the loading matrix
given by gender in Table 3. Θ is the fatty acid residual
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PUFA factor
men

C20:4n6 C22:5n6Ln(C18:3n3)

0.83

Ln(C20:5n3) C22:6n3 C22:4n6

0.28 0.37 0.47 0.29 0.36

0.14

0.08

0.08

0.26 0.85 0.82

−0.12

−0.21

−0.63 −0.84 −0.81

e1 e2 e3 e4 e5 e6

(a)

PUFA factor
women

C20:4n6 C22:5n6Ln(C18:3n3)

0.83

Ln(C20:5n3) C22:6n3 C22:4n6

0.28 0.37 0.47 0.29 0.36

0.14

0.08

0.08

0.37 0.84 0.80

−0.12

−0.21

−0.67 −0.81 −0.79

e1 e2 e3 e4 e5 e6

(b)

Figure 2: Structural equation model M7 for men (a) and women (b). Solid lines from PUFA FACTOR to fatty acids are gender specific
loadings, solid lines from circles to fatty acids are residual variances, dotted line indicates structural dietary intake correlation, and dashed
lines indicate structural desaturase enzymes required for biosynthesis.

covariance matrix given in Table 4. 𝑇means to transpose the
matrix. −1 means to take the inverse of the matrix.

Example. Measure RBC fatty acid percent weight composi-
tion using gas chromatography as detailed in Harris et al. [41]

or similar, then log transformC18:3n3 and C20:5n3, and then
standardize all raw data by (value − mean)/SD from Table 1
to produce a row vector:

Ln Ln
C18:3n3 C20:5n3 C22:6n3 C20:4n6 C22:4n6 C22:5n6 C14:0 C16:0 C18:0 C16:1 C16:1t C18:1t C18:2t

Z
𝑖
= |0.557 1.776 2.532 −2.086 −2.495 −1.969 0.417 2.248 −2.526 0.388 −0.213 −1.267 0.398|.

(2)
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Lastly the latent variable scores are derived by using 𝜂
𝑖
=

(Z
𝑖
− ^𝑇)[ΨΛ𝑇(ΛΨΛ𝑇 +Θ)

−1

]
𝑇

, with the appropriate vector
and matrices used for men or women given in Tables 3 and 4.
If the blood sample was from aman or woman, the respective
latent variables scores would be

PUFA SAT TRANS
FACTOR FACTOR FACTOR

𝜂
𝑖
= |2.77 1.76 −1.56| .

or
PUFA SAT TRANS

FACTOR FACTOR FACTOR
𝜂
𝑖
= |2.56 1.38 −1.52| .

(3)

Another approach has been to construct “desaturase
ratios” which are based on the known biosynthetic relation-
ships among PUFA [7]. Since it is far too invasive (requiring
liver biopsy) tomeasure the activity of these enzymes directly,
they have been estimated empirically by dividing RBC levels
of product fatty acids by levels of precursor fatty acids. Thus
the delta-6 desaturase (D6D) activity can be estimated by
the ratio of 20:3n6/C18:2n6 and the delta-5 desaturase (D5D)
activity by the ratio of C20:4n6/C20:3n6 (Figure 1). Interest-
ingly, both of these desaturase ratios have been associated
with risk for the development of Type 2 diabetes mellitus
in a recent metareview [47]. The ultimate clinical utility of
the PUFA FACTOR (versus desaturase or other fatty acid
ratios) will be determined in future studies by comparing
these metrics as predictors of disease outcomes for mortality,
CHDevents, development of type 2 diabetes or dementia, and
so forth.

5. Conclusion

ThePUFA FACTOR has much supporting evidence based on
fatty acid metabolism and dietary patterns. It was also the
first dimension extracted from the data, due to explaining
the most variability (about 30% of total in men and women)
for these 13 fatty acids. In a previous study these same
Framingham subjects were included in a heritability analysis,
and it was found that about 25% and 40% of the variance in
two of the fatty acids included in the PUFA factor (i.e, EPA
and DHA) was due to genetic and environment, respectively
[41]. The PUFA factor can also be seen as a unifying theme
among the various n3 and n6 metrics typically used in fatty
acid research. Since n3 and n6 fatty acids have been impli-
cated in cardiovascular diseases [4, 47], cognitive function
[48], brain magnetic resonance imaging [49, 50], depression
[43], mortality [1–3], and cellular aging [51] it is reasonable
to expect the PUFA FACTOR to have clinical utility for
predicting these outcomes. In contrast, the SATURATEDand
TRANS FACTORS had several cross loadings between them
and even include some PUFA.Thus, their interpretations are
unclear, which will likely limit their usefulness.

The strengths of this study include a well-characterized
structural equation model applied to RBC fatty acid data
which incorporates elements of both fatty acid metabolism
and dietary intake patterns in defining the model. Addition-
ally the correlation structure of the SEM was decomposed,

and the separate components were tested for gender invari-
ance. Another benefit was the use of a large, extensively stud-
ied cohort with enrichment for minorities (Framingham).
Limitations include that the RBC measurements were from
a particular GC method, and since national standards have
not been established for measuring fatty acids the sensitivity
of these results to other GC methods is unknown. This study
measured erythrocytes; other blood fractions or sample types
(e.g., whole blood, plasma, and plasma phospholipids) have
different rank orders of fatty acid abundances and these may
require unique structural equation models. The fit of this
SEM needs be tested in independent samples to determine
its generalizability beyond the Framingham Study.
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[21] H. W. Marsh, O. Lüdtke, B. Muthén et al., “A new look at the
big five factor structure through exploratory structural equation

modeling,” Psychological Assessment, vol. 22, no. 3, pp. 471–491,
2010.

[22] W. B. Kannel, M. Feinleib, and P. M. McNamara, “An investi-
gation of coronary heart disease in families. The Framingham
offspring study,” American Journal of Epidemiology, vol. 110, no.
3, pp. 281–290, 1979.

[23] S. F. Quan, B. V. Howard, C. Iber et al., “The Sleep Heart Health
Study: design, rationale, and methods,” Sleep, vol. 20, no. 12, pp.
1077–1085, 1997.

[24] W. S. Harris, J. V. Pottala, R. S. Vasan et al., “Changes in
erythrocyte membrane trans and marine fatty acids between
1999 and 2006 in older Americans,” Journal of Nutrition, vol.
142, no. 7, pp. 1297–1303, 2012.

[25] A. Skrondal and S. Rabe-Hesketh, Generalized Latent Variable
Modeling: Multilevel, Longitudinal, and Structural Equation
Modeling, Chapman & Hall, Boca Raton, Fla, USA, 2004.

[26] R. B. Kline, Principles and Practice of Structural Equation
Modeling, The Guilford Press, New York, NY, USA, 2nd edition,
2005.

[27] K. V. Mardia, “Applications of some measures of multivariate
skewness and kurtosis in testing normality and robustness
studies,” Sankhya: The Indian Journal of Statistics B, vol. 36, pp.
115–128, 1974.

[28] L. K. Muthen and B. O. Muthen,Mplus User’s Guide, Muthen &
Muthen, Los Angeles, Calif, USA, 6th edition, 2010.

[29] H. F. Kaiser, “An index of factorial simplicity,” Psychometrika,
vol. 39, no. 1, pp. 31–36, 1974.

[30] M.A. Pett, N. R. Lackey, and J. J. Sullivan,Making Sense of Factor
Analysis: The Use of Factor Analysis for Instrument Development
in Health Care Research, Sage Publications, Thousand Oaks,
Calif, USA, 2003.

[31] R. Johnson and D. Wichern, Applied Multivariate Statistical
Analysis, Pearson Education, Upper Saddle River, NJ, USA, 6th
edition, 2007.

[32] A. Satorra and P.M. Bentler, “A scaled difference chi-square test
statistic for moment structure analysis,” Psychometrika, vol. 66,
no. 4, pp. 507–514, 2001.

[33] J. H. Steiger and J. M. Lind, “Statistically based tests for the
number of common factors,” in Proceedings of the Annual
Meeting Psychometric Society, Iowa City, IA, Iowa, USA, 1980.

[34] P. M. Bentler, “Comparative fit indexes in structural models,”
Psychological Bulletin, vol. 107, no. 2, pp. 238–246, 1990.

[35] G. W. Cheung and R. B. Rensvold, “The effects of model
parsimony and sampling error on the fit of structural equation
models,”Organizational ResearchMethods, vol. 4, no. 3, pp. 236–
264, 2001.

[36] G. Schwarz, “Estimating the dimension of a model,” Annals of
Statistics, vol. 6, pp. 461–464, 1978.

[37] H. Akaike, “Information theory and an extension of maximum
likelihood principal,” in Proceedings of the 2nd International
Symposium of Information Theory and Control, Akademia
Kiado, Budapest, Hungary, 1973.

[38] F. Chen, K. A. Bollen, P. Paxton, P. J. Curran, and J. B. Kirby,
“Improper solutions in structural equationmodels: causes, con-
sequences, and strategies,” Sociological Methods and Research,
vol. 29, no. 4, pp. 468–508, 2001.

[39] M. E. Rumawas, J. T. Dwyer, N. M. Mckeown, J. B. Meigs,
G. Rogers, and P. F. Jacques, “The development of the
mediterranean-style dietary pattern score and its application to
the american diet in the framingham offspring cohort,” Journal
of Nutrition, vol. 139, no. 6, pp. 1150–1156, 2009.



14 Computational and Mathematical Methods in Medicine

[40] R. Portolesi, B. C. Powell, and R. A. Gibson, “Competition
between 24:5n-3 and ALA for Δ6 desaturase may limit the
accumulation of DHA in HepG2 cell membranes,” Journal of
Lipid Research, vol. 48, no. 7, pp. 1592–1598, 2007.

[41] W. S. Harris, J. V. Pottala, S. M. Lacey et al., “Clinical cor-
relates and heritability of erythrocyte eicosapentaenoic and
docosahexaenoic acid content in the FraminghamHeart Study,”
Atherosclerosis, vol. 225, no. 2, pp. 425–431, 2012.

[42] W. S. Harris and C. Von Schacky, “The Omega-3 Index: a new
risk factor for death from coronary heart disease?” Preventive
Medicine, vol. 39, no. 1, pp. 212–220, 2004.

[43] J. V. Pottala, J. A. Talley, S. W. Churchill, D. A. Lynch, C. von
Schacky, and W. S. Harris, “Red blood cell fatty acids are asso-
ciated with depression in a case-control study of adolescents,”
Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 86,
no. 4-5, pp. 161–165, 2012.

[44] A. P. Simopoulos, “The importance of the omega-6/omega-
3 fatty acid ratio in cardiovascular disease and other chronic
diseases,” Experimental Biology andMedicine, vol. 233, no. 6, pp.
674–688, 2008.

[45] W. E.M. Lands, “Diets could preventmany diseases,” Lipids, vol.
38, no. 4, pp. 317–321, 2003.

[46] W. S. Harris, “The omega-6/omega-3 ratio and cardiovascular
disease risk: uses and abuses,” Current Atherosclerosis Reports,
vol. 8, no. 6, pp. 453–459, 2006.
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