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Abstract: Galectin-1 is a carbohydrate-binding protein expressed in many tissues. In recent years,
increasing evidence has emerged for the role of galectin-1 in obesity, insulin resistance and type 2 di-
abetes. Galectin-1 has been highly conserved through evolution and is involved in key cellular
functions such as tissue maturation and homeostasis. It has been shown that galectin-1 increases in
obesity, both in the circulation and in the adipose tissue of human and animal models. Several pro-
teomic studies have independently identified an increased galectin-1 expression in the adipose tissue
in obesity and in insulin resistance. Large population-based cohorts have demonstrated associations
for circulating galectin-1 and markers of insulin resistance and incident type 2 diabetes. Furthermore,
galectin-1 is associated with key metabolic pathways including glucose and lipid metabolism, as well
as insulin signalling and inflammation. Intervention studies in animal models alter animal weight
and metabolic profile. Several studies have also linked galectin-1 to the progression of complications
in diabetes, including kidney disease and retinopathy. Here, we review the current knowledge on the
clinical potential of galectin-1 in obesity and type 2 diabetes.
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1. Introduction

Galectin-1 is a protein with carbohydrate-binding capabilities, expressed in several cell
types in the body. Galectins are a family of proteins, numbered 1–15 in order of discovery,
that are highly conserved between mammals [1,2]. A common trait of the galectins is
the ability to bind galactose, but galectins also bind several other sugar molecules in the
body, enabling interaction with glycoproteins and glycolipids. One carbohydrate structure
known to interact with galectins is the disaccharide N-acetyl-lactosamine, found on many
different glycoproteins and glycolipids in the human body [1,3].

Galectin-1 is involved in key cellular functions related to tissue maturation, home-
ostasis and remodelling through regulation of cell migration, proliferation, angiogenesis,
apoptosis, inflammation, among others [1]. The interest in galectins in human disease
has increased over the recent years, and several comprehensive reviews have previously
provided overviews on the effects of galectins in various conditions [1,2,4–12]. Recently,
several galectins, including galectin-1, have also been identified as important for adipose
tissue homeostasis, both as regulators of adipose tissue function, and in metabolic dis-
ease [7,13–21]. Galectin-1 is expressed in several human tissues, with the highest expression
in subcutaneous adipose tissue, followed by blood vessels and female reproductive or-
gans [15]. Galectin-1 gene expression has been shown to be increased in adipocytes from
obese mice, and in isolated adipocytes from type 2 diabetes patients (T2D) [15,22]. In
addition, several independent research groups have reported a link between galectin-1
expression in the adipose tissue and metabolic outcomes in different animal models [23–25].

The adipose tissue is an important organ in normal physiology. Besides storing excess
energy in the form of triglycerides, adipose tissue also has other significant functions.
Metabolically, adipose tissue releases fatty acids to fuel other tissues through the process of
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lipolysis and secretes several proteins into the circulation [26]. These proteins, often referred
to as adipokines, can present both local and systemic effects. The study of adipokines is
central for providing new insights concerning the underlying pathophysiology of obesity
and related metabolic aberrations. High body mass index (BMI) is strongly correlated with
an increased burden of disease, and premature death [27]. Similarly, an increased adiposity
is associated with an increased risk of several adverse outcomes including cardiovascular
disease, T2D and cancer, among others [28–32]. Recently, obesity was also related to
complications after a primary infection with the COVID-19, with an increased risk of
morbidity and mortality [33]. It is well known that the number of individuals with obesity
is globally increasing, with an estimated 107.7 million children and 603.7 million adults
meeting the definition of obesity (BMI ≥ 30 kg/m2) [27]. Despite continuous advances in
science, obesity and its consequences are still a public health problem.

T2D increases globally, as a consequence of the obesity pandemic [34–36]. It is pre-
dicted that 642 million people will have diabetes in 2040, and 90% will be T2D cases [37].
A large proportion of individuals with T2D do not know that they have the disease [38].
Early detection, improved treatment, and an improved understanding of the disease is
important to minimize adverse events, reduce healthcare costs, and reduce the debilitating
effects. T2D doubles the risk of several cardiovascular diseases, including myocardial
infarction and cerebral stroke [39]. Recent years have seen a change in the clinical approach
to T2D, novel approaches to the delivery of drugs have appeared, and the use of GLP-1
analogues and SGLT2-inhibitors have demonstrated that new treatment alternatives can
still influence the overall care of patients with T2D and that the assessment of new treat-
ment targets is still important [40,41]. In line with this, animal studies have assessed the
feasibility of modulating galectin-1 as a treatment alternative in obesity and complications
in T2D [25,42,43]. T2D is also one of the biggest risk factors for chronic kidney disease, and
several vascular complications including retinopathy and lower leg amputation [44–46].
In recent years, several studies have examined the potential use of circulating galectin-1
as a potential biomarker in T2D and predictor of adverse events and explored its possible
role in modulating kidney disease [43,47,48]. While galectin-1 does not currently have a
place in clinical practice, it is being studied in these areas. Several pharmacological agents
targeting galectin-1 are currently in development, and galectin-3 inhibitors with similar
molecular structure are already in phase III clinical trials [4,6].

T2D is caused by a combination of genetic and environmental factors, where sedentary
lifestyle and a high intake of saturated fats and processed sugars are major contribu-
tors [49–51]. T2D is often preceded by obesity, in itself a major risk factor for T2D, and
these two conditions share the same risk factors [52–54]. It is hypothesized that a chronic
positive energy balance eventually will result not only in obesity, but also insulin resistance
and T2D, particularly in genetically predisposed individuals [55]. Mechanistically, a sus-
tained positive energy balance could explain the pathophysiological link between obesity
and T2D. Excess energy intake combined with a saturated capacity to store additional
energy in natural fat depots eventually results in ectopic fat deposition [56–58]. When
traditional adipose tissue depots are unable to respond to an increased need for triglyceride
storage, ectopic fat deposition results in increased triglyceride content in organs such as
the liver, pancreas, and muscle. These organs are all central in regulating energy balance
and maintaining a glucose-insulin homeostasis [59,60]. Alongside ectopic fat deposition,
an impaired response in the glucose lowering effect of insulin is often seen, referred to as
systemic insulin resistance. The progression from obesity to insulin resistance and even-
tually T2D is an established model of disease in the development of T2D and the adipose
tissue is believed to have a central role in this progression [61–63]. Studies in humans
have been demonstrating an association between galectin-1 and lifestyle, genetics as well
as insulin resistance in recent years, underlining a potential role of galectin-1 in these
processes [15,47,64,65]. Here, we review pre-clinical and clinical knowledge surrounding
galectin-1 in obesity, its relation to mechanisms in insulin resistance with emphasis on
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clinical studies in T2D and its complications. Original papers on galectin-1 and obesity,
insulin resistance or type 2 diabetes are summarized in Table 1.

2. Galectin-1 in the Adipose Tissue and in Obesity

Over the past decades since the discovery of the hormone leptin, the adipose tis-
sue is considered to be an endocrine organ that can secrete and release hormones and
adipokines important for modulation of satiety, inflammation, immune cells and lipid
metabolism [66–68]. Recently, galectin-1 and its important role in adipose tissue homeosta-
sis as a proposed adipokine has been gaining support in the literature. Several studies have
identified that galectin-1 subcutaneous adipose tissue expression is altered during changes
in body weight. Galectin-1 gene expression decreased in obese participants during weight
loss by very low-calorie diet (VLCD). The same study also reported that LGALS1 increased
during weight gain through high calorie diet [15]. Similar results were also reported after a
dietary intervention, five weeks (500 kcal per day) or twelve weeks (1250 kcal per day), in
healthy and overweight/obese subjects where a clustering correlation analysis associated
high galectin-1 expression with an increased risk of weight regain [65].

Circulating galectin-1 was also associated with obesity in several studies in both
humans and in obese animal models [22,64,69] (Figure 1A). In a cross-sectional population-
based cohort study with 989 participants aged 50–65 years, galectin-1 increased in both
female and male subjects when participants were stratified using BMI into lean, overweight,
and obese. Galectin-1 also correlated with both BMI and plasma triglyceride concentration,
and inversely with plasma high-density lipoprotein cholesterol (HDL) [64]. Similarly,
serum galectin-1 levels were higher in obese children compared to lean children [69]. In
correlation analyses, galectin-1 appeared to be positively correlated with fat mass. The
authors concluded that galectin-1 levels were proportional to the fat mass in children with
obesity but not in the lean group [69]. A clinical study also identified that galectin-1 is
secreted to the extracellular space in human subcutaneous adipose tissue, noting that the
local interstitial galectin-1 concentrations may be 10–20 times higher than the circulating
level of galectin-1 [15].

In line with observations reported in clinical studies, several studies in animal models
have also identified increased expression of galectin-1 in obesogenic conditions. Studies
including high-fat diet (HFD) or ob/ob mice (leptin knockout mice, a classic model to
study obesity in animal models) have all presented increased galectin-1 in the adipose
tissue [22,70]. Furthermore, galectin-1 knockout as well as galectin-1 inhibition has been
demonstrated to prevent weight gain in animals fed with HFD [22–24,70]. Taken together,
these studies suggest that galectin-1 is not only associated with obesity, but also has a
functional role in adipose tissue physiology and regulation of fat mass homeostasis.
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Table 1. Original papers on galectin-1 in association with obesity, insulin resistance and type 2 diabetes identified through a structured search in PubMed in August
2022 using the following terms: galectin-1 and obesity, galectin-1 and insulin resistance, galectin-1 and type 2 diabetes, totalling 23 publications.

Ref. Studied Model Key Methods Key Results

Liu X et al. 2009 [71] 17 T2D patients and 15 lean controls.
In vitro analyses. (L6) cells. Proteomic analysis and ELISA in plasma.

Galectin-1 protein expression increased in samples from
T2D patients. L6 cells treated with glucose up-regulated

galectin-1 protein expression.

Ahmed M et al. 2010 [72] 10 moderately obese, but otherwise
healthy, subjects.

Treatment with rosiglitazone for 14 days; proteomic
analysis of changes in abdominal subcutaneous

adipose tissue.
Rosiglitazone increased galectin-1 protein expression.

Pini M et al. 2013 [73] Control and high-fat DIO mice and
IL-6−/− mice; LPS treatment.

LPS was administered i.p. Blood was obtained from
the retroorbital plexus in separate groups of mice.

Plasma galectin-1 was suppressed by LPS treatment and
obesity and IL-6−/− knockout modulated the response.

Mukherjee R et al. 2015 [70]

Mouse 3T3-L1 and HIB1B
preadipocytes; primary white

adipocytes isolation; TDG treatment;
gal-1 silencing (siRNA). Control

and HFD rats.

3T3-L1 and HIB1B preadipocytes were cultured and
differentiated; primary white adipocytes were

isolated from epididymal WAT depots of rats and
cultured; both immortalized and primary adipocytes
were treated with TDG; i.p. of TDG once per week for

5 weeks in rats.

Galectin-1 silencing attenuated adipogenesis and
lipogenesis in both 3T3-L1 and HIB1B adipocytes.

Treatment with TDG, to cultured adipocytes in vitro
reduced fat accumulation. IP injection of TDG resulted in
dramatic inhibition of HFD-induced body weight, reduced

adipogenesis and lipogenesis, increased expression of
proteins associated with thermogenesis and

energy expenditure.

Mukherjee R et al. 2015 [25] In vitro analyses; treatment with
LBA; NC and HFD rats.

3T3-L1 and HIB1B preadipocytes were cultured and
differentiated; Rats were divided into 4 groups: NC,
HFD, HFD-fed rats treated with LBA by LBA-OR,

and HFD-fed rats treated with LBA by LBA-IP.

LBA treatment reduced lipogenic capacity of both 3T3-L1
and HIB1B adipocytes through down-regulation of major
adipogenic transcription factors at both mRNA and protein

levels. LBA-OR and LBA-IP reduced body weight gain,
suppressed lipogenic transcription factors and attenuated

lipogenesis and fat accumulation.

Parray, HA; Yun, JW. 2015 [74]
Control and HFD Sprague Dawley

rats; inhibition of galectin-1 by
TDG treatment.

Treatment with 5 mg/kg of TDG for 5 weeks (once
per week). Proteomic analyses in the WAT.

CA3, VDAC1, PEBP1, ANXA2 and LDHA protein levels
between WAT from control and TDG-treated groups.

Increased expression of thermogenic proteins, reduced
expression of lipogenic proteins.
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Table 1. Cont.

Ref. Studied Model Key Methods Key Results

Mukherjee R et al. 2016 [24]

3T3-L1 and HIB1B cells; NC and
HFD Sprague Dawley rats.;
inhibition of galectin-1 by

lactulose treatment.

3T3-L1 cells and HIB1B preadipocytes, respectively
were cultured and differentiated in the presence of LT;

NC, HFD-fed HC, HFD-fed rats treated with LT by
oral administration (LT-OR), and HFD-fed rats

treated with LT by i.p injection (LT-IP).

LT treatment reduced adipogenesis and fat accumulation
in vitro by down-regulation of adipogenic transcription

factors such as C/EBPα and PPARγ. In vivo treatment of
LT blocked HFD-induced body weight gain and food

efficiency and improved metabolic variables in the plasma.
Reduced adipogenic (C/EBPα and PPARγ) and increased
energy expenditure and lipolysis marker proteins (ATP5B,

COXIV, HSL, and CPT1) in adipose tissue.

Fryk E et al. 2016 [15] 7 lean/overweight T2D patients and
8 lean controls.

Proteomics on the interstitial fluid of SAT
microdialysis. Adipose tissue and isolated adipocytes

from SAT biopsies.

Galectin-1 protein in subcutaneous dialysates and mRNA
levels in adipocytes were elevated in T2D patients

compared with healthy controls.

Parray, HA; Yun, JW. 2017 [75]

HFD CON male Sprague Dawley
rats; 3T3-L1 and HIB1B cells;

inhibition of galectin-1 by TDG
inhibitor treatment.

HFD rats were divided into 2 groups: 5 mg/kg of
TDG once per week for 5 weeks i.p. or controls;

3T3-L1 cells and HIB1B preadipocytes, respectively
were cultured and differentiated.

TDG treatment reduced weight gain and fat mass,
activated thermogenic markers in WAT and BAT, reduced
protein levels of LC3-II and increased protein levels of P62.

Combined inhibition of galectin-1 and ATG5 by TDG
treatment protected against both HFD-induced

adipogenesis and lipogenesis and blocked C/EBPα,
PPARγ and FASN.

Roumans NJT et al. 2017 [65] 61 overweight and obese subjects
underwent a DI.

Participants were randomly assigned to a VLCD
(rapid weight loss) or an LCD (slow weight loss)

group. SAT biopsy, transcriptomics and proteomics.

The galectin-1 gene (LGALS1) expression in SAT during DI
correlated with risk of weight regain.

Acar S et al. 2017 [69] 45 obese and 35 lean children. Obese children (mean age: 12.1 ± 3.1 years) and
normal-weight children (mean age: 11.8 ± 2.2 years).

Serum galectin-1 levels were higher in obese children
(12.4 ± 2.3 ng/mL) than those in normal-weight children

(10.1 ± 1.6 ng/mL, mean ± SD). Galectin-1 correlated
negatively with fasting glucose and positively with fat

mass and waist circumference.

Williams, SP et al. 2017 [76] In vitro analyses of human dermal
microvascular neonatal LECs.

Migration of LECs. Genome-wide siRNA
screen analyses.

LGALS1 promoted lymphatic vascular growth in vitro and
in vivo contributing to maintenance of the lymphatic

endothelial phenotype. Signalling network for
lymphangiogenesis and lymphatic remodelling presented.
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Table 1. Cont.

Ref. Studied Model Key Methods Key Results

Al-Obaidi N et al. 2018 [77]

MCT cells and HEK293 cells;
galectin-1 inhibitor (OTX-008);
Wild-type, Akita, db/db mice,

galectin-1−/− mice.

Cells were treated with increasing concentrations of
glucose (HG) or high insulin (HI) for 72 h. Cells were

pre-treated with OTX-008 or Akt inhibitor before
exposure to HG or HG + HI. Mice were divided into 3

groups of 4 mice/group.

Tubular renal cells exposed to HG increased
phosphorylation of Akt and galectin-1. OTX-008 decreased
p-Akt/AP4 and protein-promoter activity of galectin-1 and
fibronectin. Kidney of gal-1−/− mice expressed very low

levels of fibronectin protein. Galectin-1 may be a
fibrosis protein.

Waltl I et al. 2018 [78] 17 with T2D and DME and
19 controls.

T2D and DME subjects were each treated with a
single intravitreal injection of aflibercept monthly for

3 consecutive months.

Plasma galectin-1 levels increased to 27.0, 24.0 and
36.0 ng/mL at 7 days, 4 weeks and 8 weeks, respectively.

Galectin-1 blocking antibodies may be useful in
antiangiogenic therapy.

Fryk E et al. 2019 [64] 989 subjects aged 50–64 years; cross
sectional study.

Analysis of serum levels of galectin-1 and
circulating biomarkers.

Galectin-1 was independently and inversely associated
with type 2 diabetes and glucose and positively associated

with age, BMI, metabolic and inflammatory markers.

Tsai YT et al. 2019 [79] In vitro analyses in cancer cells and
in vivo analysis in mice models.

Human lung cancer cell line CL1-5 and tumour
inoculation in mice. Galectin-1-targeting DNA

aptamer (AP-74 M-545).

Immunohistochemistry revealed increased CD4+ and CD8+

T cells in AP-74 M-545-treated tumour tissues. AP-74
M-545 suppresses T cell apoptosis by blocking the binding

of Galectin-1 to CD45, the main receptor and apoptosis
mediator of galectin-1 on T cells.

Sundblad V et al. 2021 [80]
C57BL/6 Lgals1−/− mice;

hand-picked islets from 5- to
6-month-old mice.

Male and female Lgals1−/− mice; metabolic
phenotyping including food intake and

glucose-stimulated insulin secretion (GSIS) in
islets in vitro.

Lgals1−/− female mice exhibited higher body weight,
increased food intake, altered glucose tolerance and higher

basal glucose levels. Further, GSIS was impaired while
pancreatic insulin content was enhanced. Recombinant

galectin-1 enhanced GSIS in Lgals1−/− islets.

Jovanovic MM et al. 2021 [81]
72 patients with metabolic syndrome

and UC; observational
cross-sectional study.

Concentrations of pro- and anti-inflammatory
cytokines in serum and faeces samples

were measured.

The enhanced inflammation in UC-patients in the terminal
phase of the metabolic syndrome may be due to a

decreased immunomodulatory influence of galectin-1.

Wu Z et al. 2021 [82] C57BL/6 mice, adipose specific
CD146 KO.

CD146 ablation in preadipocytes and mature
adipocytes; BAT cells; human adipose tissue samples.

Adipose CD146 KO inhibits HFD-induced obesity.
Galectin-1 inhibits UCP1 expression in BAT via CD146 by

enhancing AKT and FoxO1 phosphorylation.
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Table 1. Cont.

Ref. Studied Model Key Methods Key Results

Baek et al. 2021 [23]
3T3-L1 and HEK293 cells; ND and

HFD obese Lgals1−/−

C57BL/6 mice.

3T3-L1 cells were maintained and differentiated; ND
and HFD Lgals1−/− C57BL/6 mice were fed

for 10-weeks.

Galectin-1 mRNA increased in muscle and adipose tissues
of HFD mice. Galectin-1 increased during adipocyte

differentiation and galectin-1 silencing inhibited PPARγ,
C/EBPα, FABP4, and FASN. Lgals1−/− mice fed HFD

reduced body weight gain.

Drake I et al. 2022 [47] Population-based cohorts;
longitudinal studies.

4022 participants in the Malmö Diet and Cancer
Study–Cardiovascular Cohort (MDCS-CC) enrolled

between 1991–1994; All New Diabetics in Scania
(ANDIS) enrolled 2007–2016 (n = 9367).

Serum galectin-1 at baseline predicts incident T2D at
follow-up 18 years later. Galectin-1 is strongly associated
with lower eGFR. MR analyses showed no causal effect of
galectin-1 on CKD or T2D, but T2D patients from ANDIS
belonging to SIRD subgroup showed genetically elevated

galectin-1 in association with higher eGFR.

Luftmann BB et al. 2022 [83] 31 patients with COPD. Presence of Tregs in BALF and peripheral blood;
clinical phenotyping.

Serum galectin-1/TP was positively associated with % of
Tregs in BALF.

Lluch A et al. 2022 [84] Control and DIO mice.
Control and DIO mice were treated by oral gavage
with LY2584702 tosylate (LY), S6K1 inhibitor, for

3 months.

LY reduced gene expression of LGALS1 in the liver and in
subcutaneous adipose tissue in obese mice. Modulation of

S6K1 may be a target for treatment of obesity,
dyslipidaemia and liver steatosis in humans.

ANXA2, annexin A2; BALF, broncho alveolar lavage fluid; BAT, brown adiopose tissue; CA3, Carbonic anhydrase 3; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary
disease; DI, diet intervention; DIO, diet induced obesity; DME, diabetic macular edema HEK293, human embryonic kidney 293; HFD, high-fat diet; i.p., intraperitoneally; KO, knock out;
LBA, lactobionic acid; LBA-IP, lactobionic acid – intraperitoneal injection; LBA-OR, lactobionic acid – oral administration; LCD, low calorie diet; LDHA, lactate dehydrogenase A chain;
LECs, lymphatic endothelial cells; LT, lactulose; MCT, murine proximal tubular; NC, Control; PEBP1, phosphatidylethanolamine-binding protein 1; SAT, subcutaneous adipose tissue;
T2D, type 2 diabetes; TDG, thiodigalactoside; Tregs, regulatory T cells; UC, ulcerative colitis; VDAC1, Voltage-dependent anion channel 1; VLCD, very low calorie diet; WAT, white
adipose tissue; L6, skeletal muscle cells; S6K1, ribosomal protein S6 kinase 1.
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Elevated free fatty acid (FFA) levels can cause hyperinsulinemia and insulin resistance
in the adipose tissue, increase gluconeogenesis in the liver and suppress glucose utilization
in skeletal muscle, accentuating risk of metabolic syndrome [85–88]. In obese rats fed
with HFD, oral treatment with the galectin-1 inhibitor thiodigalactoside (TDG) prevented
body weight gain, decreased body fat, glucose, and triglyceride levels. At the protein
level, TDG treatment reduced lipogenic and adipogenic markers in white adipose tissue
(WAT) and liver when compared to the lean rats and the obese controls groups. Conversely,
TDG treatment increased thermogenesis in brown adipose tissue (BAT) activating Ucp-1
and Pgc1-α, both classic markers of thermogenesis [70]. Baek et al. reported that a full
knockout of galectin-1 in WAT, BAT and liver tissues of obese mice increased mRNA
levels of Pgc1-α, Prdm16 and Cidea, in both WAT and BAT [23]. Galectin-1 has also been
proposed to regulate adipogenesis and adipose inflammation by binding to CD146 [82].
Thus, it seems that galectin-1 may modulate energy homeostasis in different types of cells.
The same study proposed a possible mechanism that galectin-1 modulates the metabolic
profile in obese mice. Galectin-1 has affinity to Pparg, a regulatory marker for glucose
and lipid homeostasis, as well as metabolic inflammation. The authors showed that
silencing of galectin-1 reduced Pparg whereas overexpression of galectin-1 increased Pparg
protein expression levels suggesting that galectin-1 promotes fat deposition by activation
of Pparg [23]. In contrast, treatment in obese mice with rosiglitazone, a Pparg agonist,
reduced the circulating levels of galectin-1 but had no effect on mRNA levels of galectin-1
in the subcutaneous and visceral adipose tissue. However, a two-week treatment with
rosiglitazone in obese healthy participants was enough to up-regulate galectin-1 protein
levels [72]. Thus, data on the interaction between galectin-1 and Pparg in mice and humans
are inconsistent. Together, these observations open the possibility to consider galectin-1 in
a clinical perspective since Pparg is a key target to improve insulin sensitivity [89]. It will
be interesting to explore the effects on galectin-1 levels of other pharmacological agents
with known positive metabolic effects in adipose tissue, e.g., metformin.

Studies have indicated an association between galectin-1 and leptin [22]. Leptin is
produced and released from adipose tissue and acts on neurons in the hypothalamus to
regulate satiety. Deficiency of leptin in human and animal models has been shown to cause
hyperphagia [68,90–92]. Like galectin-1, leptin is closely associated with obesity and these
proteins are also associated with each other. Furthermore, several reports suggest that
this association may actually indicate a functional relationship between the two proteins.
Galectin-1 knockout in lean and obese mice results in lower serum levels of leptin but no
change in body weight [22], and inhibition of galectin-1 by oral treatment with TDG, an
inhibitor for several proteins in the galectin family, also reduced plasma levels of leptin [70].
Further, a full knockout of galectin-1 in WAT, BAT and liver tissue of obese mice had strong
metabolic effects with reduction in body weight, but similar effects were not observed in
lean mice where no change in food intake occurred [23]. These observations could indicate
that galectin-1 interacts with leptin signalling, for instance, in the central nervous system,
to modulate food intake and satiety. However, studies have yet to report any effects of
galectin-1 on leptin signalling in the specific pathways. Further studies are necessary to
clarify a relationship between galectin-1 and leptin.

In agreement with the results above, a recent study showed that galectin-1 mRNA
levels were abundant in metabolic tissues such as muscle, BAT and WAT [23]. Obese mice
had high protein expression levels of galectin-1 in these organs when compared to lean mice.
Furthermore, galectin-1 expression increased during differentiation of 3T3L1 adipocytes
(a cell line from mouse embryos), while galectin-1 knockout using small interfering RNA
(siRNA) in the cells stopped the differentiation to mature adipocytes [23]. Mukherjee and
colleagues noted that knockout of galectin-1 in a 3T3-L1 cell line was enough to suppress
mRNA levels of lipogenic and adipogenic markers Pparg, Cebpα, Fasn and Acc following
reduction in the triglyceride content. Similar effects on mRNA levels were found when
TDG treatment was administered in mature 3T3L1 adipocytes [70]. The adipocytes are also
adaptable and change structure during weight gain when more triglycerides are stored.
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Several studies have shown that galectin-1 is highly expressed in adipocytes from both
humans and animals [15,22–25,69,70,93]. A study in mice that assessed the regulatory
function of galectins noted an increase of galectin-1 mRNA and protein levels specifically
in subcutaneous adipocytes but not in visceral adipocytes in obese mice compared to lean
control mice [22]. Furthermore, no difference in galectin-1 level was found in the stroma
vascular fraction between the groups [22].
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Figure 1. Galectin-1 in obesity and insulin resistance. (A) Circulating galectin-1 levels are elevated in
human obesity (~25% higher in obese vs. lean [64]) and in HFD-fed mice (~50% higher in HFD vs.
chow [22]). (B) Circulating galectin-1 is positively associated with serum insulin levels in humans
and modulated insulin secretion in mice [64,80]. Further, galectin-1 inversely associates with plasma
glucose [64], but galectin-1 reduced glucose uptake in human adipose cells in vitro [15]. Insulin
and glucose confer direct stimulatory effects on galectin-1 secretion to cell media from several cell
types [71,77,80,94–96]. Galectin-1 is positively associated with circulating levels of IL-6, TNF-α and
CRP [47,64]. Likewise, triggers of inflammatory pathways up-regulate galectin-1 in several immune
cells [97].

3. Galectin-1 in Insulin Resistance and Type 2 Diabetes

The scientific evidence for a possible role of galectin-1 as a mediator of pathophysio-
logical mechanisms behind insulin resistance has also increased in recent years, as several
clinical studies have presented similar results in this area. One of the first to indicate
a role for galectin-1 in insulin resistance was a study of 10 obese but otherwise healthy
insulin-resistant men treated with the insulin sensitizing PPAR-γ agonist rosiglitazone
(4 mg bid) for 14 days [72]. In an unconditional proteomics analysis of the subcutaneous
adipose tissue, galectin-1 levels were doubled during treatment. It was speculated that the
insulin sensitizing effect of rosiglitazone could be mediated through a remodulation of the
adipose tissue, with a concurrent increased lipid storage, and that galectin-1 is part of this
process [72]. To further corroborate this observation, galectin-1 has been associated with
serum insulin levels independently of BMI in two large cohort studies [47,64]. Galectin-
1 has anti-inflammatory properties [79,83,98] and has also been associated with several
inflammatory markers increased in human insulin resistance, including IL-6, TNF-α and
CRP [47,64].

Several animal models also demonstrate a role of galectin-1 in insulin resistance. Stud-
ies intervening with galectin-1 consistently affect weight loss, with improved metabolic
control in obese animals as a consequence. These studies have mainly emphasized the
adipose tissue and its role in the effects of galectin-1 on metabolic outcome. Little is there-
fore known about the potential influence of galectin-1 on metabolic regulation in other
metabolically active organs including muscle, liver, kidney, brain and gut. Galectin-1 inhi-
bition through lactulose treatment in Sprague Dawley rats on a HFD improved metabolic
control by reducing FFA and triglyceride levels alongside a reduced body weight [24].
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Oral administration of lactulose also suppressed fasting insulin levels while increasing the
adipose tissue protein expression of the beta-oxidation related protein carnitin-palmitoyl-
transferas-1A (CPT1), and the lipolysis regulator hormone sensitive lipase (HSL). These
observations indicate a direct metabolic role of adipose tissue galectin-1 in relation to
insulin resistance [24]. Adding to these experiments, in Sprague Dawley male rats fed a
HFD diet, treatment with another oral galectin-1 inhibitor, lactobionic acid, normalized
glucose levels during an intraperitoneal glucose tolerance test, while lowering fasting leptin
and triglyceride levels and increasing the fasting glycerol levels, indicating an increase in
basal lipolysis [25].

Blocking galectin-1 with TDG also produced similar results. These animals presented
with lower blood glucose levels as well as suppressed plasma triglycerides and insulin [70].
These reports indicate several different mechanisms through which galectin-1 could be
involved in processes underlying an insulin resistant state. Studies on galectin-1 knockout
mice (Lgals1−/−) indicate interactions between galectin-1 and metabolic inflammation, as
well as pancreas function. Lgals1−/− HFD-fed male mice presented significantly lower
levels of fasting glucose, as well as WAT gene expression of pro-inflammatory cytokines
including TNF-α and the macrophage marker F4/80, compared to wild type mice [23].
Further, LPS treatment reduced galectin-1 plasma levels in another mouse model [73].
Thus, more studies are required to fully understand the modulatory role of galectin-1
on inflammation and the effect of inflammatory activation on galectin-1. Sundblad et al.
studied female Lgals1−/− mice and could show higher fasting glucose, increased pancreas
mass and higher pancreatic insulin content, but reduced serum insulin levels in mice at
2 months of age. However, at this age there was no alteration in glucose or insulin tolerance.
Finally, insulin secretion from pancreatic islets in Lgals1−/− mice increased synergistically
compared to wild-type mice after stimulation with recombinant galectin-1 and glucose [80].

While the largest body of evidence for a role of galectin-1 in insulin resistance is
currently focused on the adipose tissue, galectin-1 is altered in many different cells in
the insulin resistant state. Several studies demonstrate a significant role of galectin-1 in
adipocyte metabolism, but there are also studies in muscle, kidney, and inflammatory
cells [71,77,95,96,99]. Glucose has been demonstrated to stimulate galectin-1 secretion in
several cell types. Rat L6 (skeletal muscle cells) galectin-1 expression is altered depending
on media glucose concentrations [71], human podocytes (kidney cells) cultured in the
presence of high glucose also increase galectin-1 expression on both gene and protein
level [96]. Furthermore, galectin-1 increases in murine proximal tubular cells (MPT, another
kidney cell type) after treatment with insulin or when cultured in high glucose concentra-
tions [77], and intracellular galectin-1 increases in renal epithelial cells cultured in high
glucose conditions [95].

Other mechanisms linking galectin-1 and adipocytes are seen in 3T3-L1 cultured
mice preadipocytes. Here, intracellular galectin-1 levels are increased after treatment with
a differentiation cocktail of rosiglitazone, insulin and 3-isobutyl-1-methylxanthine [100].
Treatment with the lipolysis stimulator guggulsterone also increased galectin-1 on protein
and gene level in 3T3-L1 cells [100]. Taken together, these studies indicate that galectin-1
expression increases after different treatments in preadipocytes. However, which cells make
the largest contribution to the circulating levels of galectin-1 is currently unknown as these
observations are from cellular experiments and not directly comparable. Consideration
should also be given to a paradoxical discrepancy between an apparent stimulating effect
of glucose on galectin-1 production in several cell lines, and a negative association between
circulating galectin-1 and fasting glucose in several studies [64,69]. The strong association
between galectin-1 and body mass could indicate that elevated levels of galectin-1 reported
in obesity are largely explained by cells in the adipose tissue (Figure 1A). However, it
is also possible that other tissues or cell types make a significant contribution to the
circulating effects, especially in lean individuals with less adipose tissue, or with high levels
of stimulating factors such as ongoing inflammation or hyperglycaemia (Figure 1B).
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On the protein level, galectin-1 has been demonstrated to interact with key metabolic
signalling pathways in several different tissues and through several different proteins
downstream of the insulin receptor. Differences in study design may explain the large
variety in different signalling pathways proposed for galectin-1 in insulin resistance and
highlight the need for additional mechanistic studies elucidating which of these interactions
are of highest clinical relevance. Isolated human adipocytes preincubated with recombinant
galectin-1 in vitro presented a reduced glucose uptake, independent of insulin dose, but
altered GLUT4 expression [15]. Inhibition of galectin-1 with 30 µM of the inhibitor OTX-
008 in MPT cells decreased insulin-induced Akt-phosphorylation [77], and galectin-1 also
activates p38 and extracellular signal-regulated kinase (ERK) in human renal epithelial
cells [95]. In experiments on embryonic stem cells in mice, galectin-1 stimulated GLUT1-
mediated glucose uptake in a dose-dependent manner. The galectin-1 effect on glucose
uptake was dependent on PI3K, AKT, mTOR and ERK1/2 [94]. Galectin-1 expression has
also been linked to the ribosomal protein S6 kinase 1, downstream mTORC1 in liver and in
adipose tissue in mice [84].

Several experimental studies emerging in recent years relate galectin-1 to the patho-
physiology behind T2D (Figure 2). The first study identifying altered levels of galectin-1 in
T2D used proteomics, revealing elevated circulating galectin-1 levels in T2D. Liu et al. set
out to characterize the proteome in plasma from 17 individuals with T2D and compared it
to 15 individuals without T2D. Circulating galectin-1 was 4.8-fold higher in participants
from the T2D group. Galectin-1 expression experiments in cell lines found that glucose
stimulated galectin-1 in L6 skeletal muscle cells in vitro [71]. Based on these observations
the authors proposed that galectin-1 is an important regulator of the pathophysiology of
T2D and a novel plasma marker of the disease.

In another unconditional proteomics study, galectin-1 was identified as a protein
elevated in the subcutaneous interstitial fluid of individuals with T2D. In an effort to
characterize the proteome in human subcutaneous interstitial fluid in T2D, Fryk et al.
applied monitoring by microdialysis in situ followed by tandem mass spectrometry. The
study recruited seven recently diagnosed male T2D patients with heredity for T2D and
eight healthy control subjects without diabetes heredity. In silico pathway analysis of
the differently expressed proteins in the secretome indicated a possible function in T2D
patients related to carbohydrate metabolism, molecular transport, lipid metabolism, and
small molecule biochemistry; galectin-1 was one of 30 up-regulated proteins in participants
with T2D. The higher galectin-1 levels in subcutaneous dialysates from participants with
T2D were confirmed, and LGALS1 expression was also higher in isolated subcutaneous
adipocytes. Furthermore, a strong correlation between dialysate galectin-1 and adipocyte
LGALS1 expression of galectin-1 was observed. This study did not observe any difference
in circulating levels of galectin-1 between the groups but did report positive correlations
between serum galectin-1 and the insulin resistance related variables fat cell size and
waist-hip ratio [15]. The authors concluded that galectin-1 secreted from the subcutaneous
adipose tissue may be involved in the development of T2D.

The association between galectin-1 and T2D has also been examined in two population-
based studies. The first study measured circulating galectin-1 in 989 individuals in Gothen-
burg, Sweden at the age of 40–65 years and investigated the association between serum
galectin-1 and T2D independently of BMI, excluding individuals with a medical history of
cancer or autoimmune diabetes. Using linear regression models, the authors found that
serum galectin-1 was inversely associated with T2D in a model adjusted for age, sex, and
BMI [64]. The cross-sectional design prevents any conclusions on the causal relationship
between galectin-1 and T2D, and it is not known if a lower galectin-1 found in T2D was a
contributing cause, or a consequence, of T2D. It would therefore be of interest to measure
galectin-1 in prospective cohort studies to monitor the galectin-1 trajectory from normal to
prediabetes and newly diagnosed T2D. Simple correlations between serum galectin-1 and
HbA1c were again statistically significant, but in BMI-adjusted linear regression models
serum galectin-1 was inversely associated with fasting glucose. These observations could



Metabolites 2022, 12, 930 12 of 21

indicate a confounding effect of BMI in the relation between galectin-1 and variables of
glucose homeostasis [64]. The second study examined the predictive value of galectin-1
on incident T2D using a middle-aged population-based cohort in southern Sweden. Four
thousand twenty-two individuals (58.6% women, mean age 57.6 years) were followed
over an average of 18.4 years and T2D status was ascertained through registries. Cox
regression was used adjusting for established risk factors and galectin-1 was associated
with an increased risk of T2D (per SD increase, HR 1.12, 95% CI 1.02–1.24). Interestingly,
participants in the lowest quartile of galectin-1 levels at baseline more often reported a
heredity for T2D than participants with higher galectin-1. A genome-wide association
study (GWAS) on galectin-1 was also performed to identify single nucleotide polymor-
phisms (SNPs) predicting circulating galectin-1 levels. The SNPs were used in a two-sample
Mendelian randomization (MR) analysis to explore a direct causal association between
galectin-1 and T2D. One genome-wide significant locus in the galectin-1 gene region was
identified (sentinel SNP rs7285699, p = 2.4 × 10−11). However, the two-sample MR analysis
did not ascertain any causal effect of galectin-1 on T2D (p = 0.19).
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Figure 2. Galectin-1 effects in different organs (arrow up or down) reported in pre-clinical studies
(animal models and human cells), which should be confirmed in human tissues and clinical studies.
Galectin-1 has been shown to improve tissue recovery after a cerebral stroke [101,102]. Galectin-1 also
increases neovascularization and unwanted vascular proliferation in diabetic retinopathy [42,103,104].
In the pancreas, galectin-1 has been shown to stimulate insulin secretion in female mice, and circulat-
ing galectin-1 is also positively associated with serum insulin in studies in humans [47,64,80]. Studies
have linked galectin-1 to adipogenesis, and it has been proposed that galectin-1 could directly affect
pparg expression [23,72]. Galectin-1 has also been shown to reduce thermogenesis in mice [23,82]. In
the liver, inhibition of galectin-1 results in increased fibrosis and increased severity of hepatitis [105],
and galectin-1 reduces inflammation in the heart after ischaemia [106,107]. Galectin-1 also appears to
facilitate skeletal muscle regeneration in muscle degenerative conditions, as well as in muscle dam-
age [108]. In the kidney, results have been conflicting, as a Mendelian randomization study in humans
and an intervention study in mice have demonstrated kidney protective effects of galectin-1 [43,47].
Conversely, circulating galectin-1 has been associated with a lower kidney function in cross-sectional
and longitudinal studies [47,48], and in vitro studies have demonstrated contradicting associations
with different fibrotic markers [95,96,109].
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Galectin-1 has also been associated with gestational diabetes, and a proteomic study
identified higher levels of galectin-1 protein content in the placental tissue of women
with gestational diabetes (GD) [110]. In a separate study on women with GD, the authors
demonstrate that circulating galectin-1 increases during normal pregnancy, but that this
increase is not seen in women who develop GD [111]. Furthermore, galectin-1 secretion
from blood cord cells was increased in the presence of glucose [111]. Taken together, reports
of high circulating galectin-1 as a predictor of incident T2D, and lower levels of galectin-1
in manifest T2D could indicate that galectin-1 levels fall during disease development. This
has also been seen in a study of patients with ulcerative colitis and the metabolic syndrome.
The study found that participants with the most severe degree of metabolic syndrome
had the lowest circulating galectin-1 levels, which was also associated with a more severe
inflammatory condition [81].

4. Galectin-1 and Diabetic Complications

Galectin-1 has also been related to organs affected by T2D. Studies link galectin-1 to
the pathophysiological processes in liver fibrosis, hepatocellular cancer, cardiovascular
disease and cerebral stroke [101,105,106,112] (Figure 2). However, the most significant role
of galectin-1 appears to be related to microvascular complications in the kidneys and eyes.
Several studies have demonstrated a role of galectin-1 in the development of kidney disease,
specifically linked to diabetes [47,95,96], but also in other contexts [43,48]. While the body
of evidence aggregates around a specific role in the pathophysiology of the condition, it is
still unclear whether galectin-1 contributes to the progression of the disease or if it presents
kidney protective effects.

High plasma galectin-1 level has been reported to be a significant predictor of renal
function decline, independently of diabetes and other risk factors, in a longitudinal study of
798 individuals who underwent elective coronary angiography or percutaneous coronary
intervention. Participants were stratified by galectin-1 levels, and the authors found that
high galectin-1 levels predicted the longitudinal decline in kidney function [48].

A smaller study including eight individuals with diabetic nephropathy and three
healthy controls suggested increased levels of galectin-1 in the renal tissue of individuals
with diabetic nephropathy [96]. In a proteomics study, galectin-1 was also higher in the
kidneys of mice with surgically induced chronic kidney disease [113], and a study on
kidney fibrosis in mice reports that galectin-1 levels are significantly higher in the kidneys
of animals with both type 1 and T2D. Together, these studies demonstrate increased levels
of galectin-1 during the progression of kidney disease, but do not provide insight as to
the specific role of galectin-1 in this process. In a study on mice, recombinant galectin-1
administered prior to renal ischaemia-reperfusion injury demonstrated kidney protective
effects, possibly through anti-inflammatory mechanisms [43].

In a large cohort-study from southern Sweden, a remarkably strong inverse association
was shown between galectin-1 and eGFR, pointing towards an important function for
galectin-1 in kidney physiology. However, galectin-1 was not associated with incident
CKD in fully adjusted regression models, possibly suggesting that other known risk factors
could have a confounding influence on the statistical outcome. Furthermore, a two-sample
MR analyses did not ascertain any causal effect of galectin-1 on CKD [47]. However,
in a separate MR analysis on 9367 T2D patients from the All New Diabetics In Scania
(ANDIS) cohort, analyses were stratified according to four recently proposed subtypes
of diabetes [114]. Here, genetically elevated galectin-1 was associated with higher eGFR
(p = 5.7 × 10−3) specifically in individuals with severely insulin-resistant T2D, a group
previously known to have an elevated risk of diabetic nephropathy [47]. The authors
conclude that galectin-1 is linked to lower kidney function in cross-sectional analyses but
that MR analyses suggest a protective effect on kidney function in subjects at high risk of
diabetic nephropathy [47].

Several cellular mechanisms have been proposed to explain the potential kidney
related effects of galectin-1. In human podocytes, galectin-1 levels increased when cul-
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tured under high glucose conditions, while the cellular integrity marker podocin declined.
Suppression of galectin-1 levels using siRNA normalized podocin levels in the cells, sug-
gesting a harmful role of galectin-1 for human podocytes in hyperglycaemic conditions.
Furthermore, the expression of the fibrosis marker fibronectin increased in murine proxi-
mal tubular cells cultured in high glucose conditions but was ameliorated when treated
with the galectin-1 inhibitor OTX008, indicating a role of galectin-1 in diabetes induced
fibrosis [77]. Galectin-1 expression is also increased in renal epithelial cells cultured during
high glucose conditions and further increased by the coincubation with TGF-β1, a fibrotic
marker. Conversely, the overexpression of galectin-1 reduced type I collagen expression
induced by TGF-β1 stimulation in both normoglycaemic and hyperglycaemic conditions,
suggesting a protective effect of galectin-1 against renal fibrosis [95]. Additionally, transient
receptor potential vanilloid type 5 (TRPV5) is responsible for Ca2+ reabsorption in the distal
tubuli, but expression declines during diabetic kidney disease. This may be explained by
an increased endocytosis of the protein. Recently, Lee et al. showed that galectin-1 could
stabilize TRPV5 on the cell membrane and inhibit harmful endocytosis, thus proposing
another kidney protective mechanism in diabetic kidney disease [109]. Taken together, it
is becoming clear that high galectin-1 levels observed in the kidney and reflected in the
circulation may influence the change in kidney function over time. However, the clinical
relevance of the proposed mechanisms is not yet fully understood, and may differ between
individuals, even within the large population of individuals with T2D.

There have been several reports on direct and indirect interactions of galectin-1 in
VEGF-signalling which make galectin-1 an interesting protein to study in the pathophysi-
ology behind diabetic retinopathy [115–118]. Galectin-1 levels have also been reported to
increase in the vitreous fluid, alongside the progression of diabetic retinopathy in humans.
While increased levels are found in diabetic macular oedema, they are not seen in non-
diabetic retinopathies such as branch vein retinal occlusion, or central vein retinal occlusion.
Through careful in vitro experiments, Kanda et al. propose that galectin-1 is regulated
through cellular crosstalk between Müller cells and macrophages through elevated levels
of advanced glycation end products (AGEs) and IL-1β [104]. These results have also been
corroborated in another study of 20 proliferative diabetic retinopathy (PDR) cases, where
plasma galectin-1 was increased, and correlated positively with circulating levels of AGEs,
and IL-1β levels [119]. Another study on 13 individuals with PDR confirms elevated levels
of galectin-1 in the vitreous fluid. In line with others, the authors examine the role of Müller
cells, a glial cell type of the retina, in the elevated levels and propose hypoxia and oxidative
stress as promoting factors of this increase [103].

In a study of oxygen-induced retinopathy of mice, galectin-1 levels were increased,
and immunostaining indicated increased galectin-1 expression close to retinal neovessels.
Furthermore, intravitreal injection of the galectin-1 inhibitor OTX008 significantly reduced
the number of preretinal neovascular cells and the retinal neovascularization area, which
were otherwise increased in the oxygen-induced retinopathy model [120]. Another study
of oxygen-induced retinopathy in mice examined the effect of galectin-1 silencing through
intravitreal adenoviral interference injection and discovered that while retinal neovascu-
larization was reduced, there was no negative effect on normal vessel growth or vessel
perfusion [42]. Another study on mice observed that elevated levels of galectin-1 persisted
after the resolution of vascular alterations. The authors therefore suggest that galectin-1
may also be involved in processes other than neovascularization itself [118]. In line with
this report, diabetes-induced retinal expression of galectin-1 can also be suppressed via
treatment with anti-inflammatory glucocorticoids in mice, through the modulation of AKT,
ERK 1/2 and AP-1 phosphorylation [99].

A study on patients with diabetic retinopathy tested the interaction between galectin-1
and the anti-VEGF treatment Aflibercept. Monthly intravitreal injections with the fusion
protein Aflibercept, a protein with similar binding affinities for VEGF receptors 1 and 2,
increased the circulating galectin-1 levels over time. The study also demonstrates a direct
binding interaction between galectin-1 and Aflibercept, providing insight into a molecular
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signalling pathway for galectin-1 in diabetic retinopathy [78]. Another study examined the
effect of Bevacizumab injection, a monoclonal VEGF-A antibody, on galectin-1 in patients
with PDR. The authors reported increased levels of galectin-1 in PDR compared to controls
without diabetes but did not find any changes from the Bevacizumab injection. However,
the study also reported that the galectin-1 induced VEGFR2 phosphorylation was supressed
by co-incubation with Aflibercept in cultured human retinal microvascular endothelial
cells. These observations indicate that while galectin-1 can interact with VEGF receptor
signalling, the direct interaction with VEGF-A may be limited [117]. Taken together, there
are substantial data pointing to a role of galectin-1 in diabetic retinopathy, with promising
experimental studies indicating a possible therapeutic potential beside currently available
treatment alternatives.

5. Summary and Future Prospects

Taken together, studies on human and animal models demonstrate the close asso-
ciation between galectin-1 and pathophysiological processes related to obesity, insulin
resistance, and T2D. While observational studies in humans largely align with interven-
tional studies in animal models, it is now important to further validate the potential of
intervening with galectin-1 activity as a therapeutic strategy in obesity and T2D in humans.
Safety and efficacy studies of galectin-1 blockers to promote weight loss in obese individu-
als as indicated by several pre-clinical studies could be feasible in the foreseeable future.
Of note, there is a discrepancy between different organs regarding how this modulation of
galectin-1 should be performed, as it appears that lower levels may be beneficial in weight
loss and the treatment of retinopathy, while higher galectin-1 levels may be beneficial
for the kidneys and for stimulation of insulin secretion. Thus, it may be necessary to
suppress galectin-1 when targeting certain cell types and conditions, while stimulation of
the galectin-1 signal may be relevant in other states and cell types. Furthermore, while
several studies show an up-regulation of galectin-1 with dietary intake, little is known
regarding the impact of physical activity on galectin-1 levels. Other metabolically active
peptides, such as irisin, adropin and preptin, have previously been shown to be important
peripherally secreted regulators of energy homeostasis, with potential implications for obe-
sity and T2D [121,122]. Mechanistically, several studies associate galectin-1 with important
adipokines and transcription factors, including leptin and PPAR-γ [22–24,72]. It is thus
warranted to continue to evaluate how galectin-1 is connected to secreted proteins and
peptides in energy metabolism, and how it translates to metabolic effects in vivo. Adipose
tissue crosstalk with the brain is important for weight stability, and studies on galectin-1 in
the CNS are therefore of interest.

As a role for galectin-1 in insulin resistance becomes more apparent, the distinct role
of galectin-1 in the pathophysiological mechanisms in this state appear complex. Disen-
tangling the specific galectin-1 signalling pathways is challenged by the large number of
ligands and receptors proposed for galectin-1 [123]. Experimental studies have demon-
strated mechanisms in several distinctly different pathways but the translation to clinical
samples and validation largely remains. Interesting observations in markers downstream of
the insulin- and VEGF-receptors were made [94,116], but how galectin-1 conveys its cellular
effects in different organs in vivo remains largely unknown and needs to be studied further.
High expression of galectin-1 in adipose tissue is well described, but it is also reported that
galectin-1 levels are increased in the eye and kidney in T2D [96,104]. The relative contri-
bution of locally produced galectin-1 in various tissues on the circulating levels should
thus be characterized in vivo. Furthermore, the apparent associations with glucose- and
insulin regulation as well as inflammatory markers reported in population-based studies
on individuals using BMI-adjusted regression models, as well as in in vitro experiments,
highlight a need of additional mechanistic studies to further disentangle these conditions.
The metabolic role of galectin-1 in tissues other than the adipose tissue could also provide
novel insights into the role of galectin-1 in the development of T2D, as well as in the context
of the development of diabetes-related complications (Figure 2). Longitudinal studies on
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individuals converting from prediabetes to T2D should include repeated measurements of
serum galectin-1. Of note, there is a higher prevalence of heredity for type 2 diabetes in
individuals with low galectin-1 levels [47].

Galectin-1 has an important role in tissue remodelling and regeneration [1]. The altered
regulation of galectin-1 in obesity and metabolic disease could therefore also have an impact
on several complications related to T2D. While we have already discussed the potential
influence of galectin-1 in diabetic kidney disease and retinopathy, galectin-1 has also
been linked to lymphatic remodelling [76], although not in the context of T2D. Studies of
galectin-1 have previously indicated altered regulation in both cerebral stroke, myocardial
infarction, and congestive heart failure [102,106,107,124]. Galectin-1 also has a role in the
regeneration of peripheral nerves [125] and wound healing [126], which could be relevant
in diabetic peripheral neuropathy and diabetic foot ulcers. Going forward, advancing the
knowledge around galectin-1 in obesity and metabolic disease could further shed light on
the pathophysiology of T2D and its complications and help to find out whether galectin-1
has potential as a biomarker in prediabetes and T2D. Knowledge of several established
and proposed ligands of galectin-1 enables the future identification of pathway-specific
promotors of beneficial galectin-1-regulated effects, while pharmacological inhibitors of
galectins are already in early clinical trials [4,6].
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