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Abstract

Purpose: Proton beam therapy (PBT) is associated with less toxicity relative to

conventional photon radiotherapy for head-and-neck cancer (HNC). Upfront delivery

costs are greater, but PBT can provide superior long-term value by minimizing treatment-

related complications. Cost-effectiveness models (CEMs) estimate the relative value of

novel technologies (such as PBT) as compared with the established standard of care.

However, the uncertainties of CEMs can limit interpretation and applicability. This review

serves to (1) assess the methodology and quality of pertinent CEMs in the existing

literature, (2) evaluate their suitability for guiding clinical and economic strategies, and

(3) discuss areas for improvement among future analyses.

Materials and Methods: PubMed was queried for CEMs specific to PBT for HNC.

General characteristics, modeling information, and methodological approaches were

extracted for each identified study. Reporting quality was assessed via the Consolidated

Health Economic Evaluation Reporting Standards 24-item checklist, whereas meth-

odologic quality was evaluated via the Philips checklist. The Cooper evidence hierarchy

scale was employed to analyze parameter inputs referenced within each model.

Results: At the time of study, only 4 formal CEMs specific to PBT for HNC had been

published (2005, 2013, 2018, 2020). The parameter inputs among these various Markov

cohort models generally referenced older literature, excluding many clinically relevant

complications and applying numerous hypothetical assumptions for toxicity states,

incorporating inputs from theoretical complication-probability models because of limited

availability of direct clinical evidence. Case numbers among study cohorts were low, and

the structural design of some models inadequately reflected the natural history of HNC.

Furthermore, cost inputs were incomplete and referenced historic figures.

Conclusion: Contemporary CEMs are needed to incorporate modern estimates for

toxicity risks and costs associated with PBT delivery, to provide a more accurate

estimate of value, and to improve their clinical applicability with respect to PBT for HNC.

Keywords: oropharyngeal cancer; comparative analysis; health economics; health care value;

proton beam therapy
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Introduction
Proton beam therapy (PBT) is increasingly used because of superior dosimetric characteristics relative to photon therapy [1–

8], such as intensity-modulated radiation therapy (IMRT), resulting in lower doses and decreased complications among

healthy tissues [9–13]. This unique advantage is particularly welcome for the treatment of head-and-neck cancers (HNCs),

anatomically complex tumors that closely approximate sensitive organs at risk. The prevalence of human papillomavirus

(HPV)-associated HNCs continues to rise [14, 15], particularly among young and otherwise healthy patients who live decades

after treatment and may, thus, benefit most from PBT. However, the advanced technology necessary for PBT delivery is

accompanied with greater cost relative to photons. However, although associated with upfront costs, PBT has the potential to

contribute value to cancer care if costs associated with toxicity management are lowered.

In this era of value-based health care, formal economic evaluations are warranted to address such questions, to inform

optimal management, and to guide technologic investments. Cost-effectiveness models (CEMs) portray the transition from

diagnosis through treatment and then toward various outcomes and/or toxicity states (eg, stable disease, local or distant

failure, death, and acute or late toxicities) [16]. The most-common CEM is the Markov decision-analytic model, starting with a

hypothetical population with prespecified disease, prognosis, and treatment parameters. After their assigned intervention (eg,

PBT versus IMRT), patients will probabilistically transition through various states during posttreatment follow-up.

Survival across their natural history is evaluated for quantity (duration) and quality: each health state is assigned a

quantitative utility value (a fraction of 1, which is associated with the ‘‘optimal’’ state: absence of death [‘‘0’’], disease, or

morbidity). These utilities are then multiplied by the duration lived within each respective state to calculate quality-adjusted life

years (QALYs)—for example, 1 year of dysphagia 3 0.7 (the utility value assigned to dysphagia)¼ 0.7 QALYs (or 0.3 QALYs

lost by experiencing that state). These QALYs are aggregated across each cohort arm at prespecified time points (eg, 1, 3, or

5 years) and are compared to determine the relative QALYs gained (or lost) by each intervention.

At the same time, medical costs associated with initial treatment, toxicity management, and subsequent therapy are

aggregated across each cohort arm (at the same prespecified time points) and are compared to determine the differential cost

associated with each intervention. Final comparison of their value requires calculation of the incremental cost-effectiveness

ratio (ICER), which represents the relative cost of each intervention compared with the relative QALYs gained. Note that

although an intervention may not appear cost-effective during the early phase (eg, because of equivalent acute toxicities), it

can demonstrate greater value over time via sustained benefits in disease-related or late-toxicity outcomes (if survival is

adequately maintained).

However, uncertainties in the assumptions underlying the CEMs can limit interpretation and real-world applicability. Given

their increasing literature presence and consideration among modern health care evaluations, the objectives of this review are

to (1) assess the reporting and methodological quality of existing cost-effectiveness studies on PBT for HNC, (2) critique the

parameter inputs referenced within those models, (3) evaluate the suitability of those models for guiding clinical and economic

strategies, and (4) summarize areas for improvement and future direction among successive CEMs.

Materials and Methods
PubMed (National Center for Biotechnology Information, Bethesda, Maryland) was queried for CEMs specific to PBT for HNC.

Search terms were restricted from 2000 through 2020 and included the following headings: head-and-neck, oropharynx,

thyroid, salivary, larynx, hypopharynx, oral cavity, nasal, orbit, nasopharynx, paranasal, protons, proton radiation, proton

beam, cost, cost-effectiveness, value, and economics. Four full CEMs specific to HNC were identified [17–20], which (1)

compared PBT to any comparators, and (2) expressed results in terms of cost per QALY gained. The bibliography of each

CEM was reviewed, and subsequent citations were tracked in Scopus (Elsevier, Amsterdam, the Netherlands) to identify any

newly published studies meeting inclusion criteria. General characteristics, modeling information, and methodological

approaches were extracted for each identified study [17–20].

Reporting Quality

The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist [21] was developed through a

modified-Delphi technique by the International Society for Pharmacoeconomics and Outcomes Research (Lawrenceville, New

Jersey) Health Economic Evaluation Publication Guidelines Good Reporting Practices Task Force. It has 24 items assessing

the consistency and transparency of reporting economic evaluations, aiming to achieve standardized reporting of economic

evaluation.
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Methodological Quality

The Philips checklist [22] was selected as the tool to measure methodological quality because it was specifically designed for

the assessment of modeling studies and is recommended by both the National Institute for Health and Care Excellence (NICE;

London, England) [23] and the Cochrane Collaboration (London, England) [24]. Note that this checklist was not intended to

comprehensively standardize the decision model–development process, functioning more as a series of consolidated good

practice statements to consider in appraising decision models.

Assessment of CEM Parameters

A hierarchy scale developed by Cooper et al [25] was used to assess the quality of parameter inputs from data sources

referenced in the CEM studies. The scale ranks the quality of evidence from 1 (best quality) to 6 (lowest quality) for studies of

clinical effect and safety, medical resource use, health care costs, and utility scores.

Results

Summary of CEM Studies (Tables 1–5)

Lundkvist et al [26]

The Swedish Markov cohort model simulated several histologies including 300 patients with HNC comparing PBT and

conventional radiotherapy (CBT) from a societal perspective. This simplified disease model had only 3 health states: healthy,

chronic adverse event conditions, and death. Acute mucositis and xerostomia, as well as chronic xerostomia, were considered

but only for their contribution to mortality risk. In conclusion, PBT was simulated to contribute an additional 1.02 QALYs at the

cost of E3 887 (US $3 693), which translated to E3 800 (US $3 693) per QALY in 2002. The authors concluded that PBT was

cost effective, assuming a willingness-to-pay level of E55 000 (US $52 250).

Ramaekers et al [27]

The Dutch Markov cohort model simulated 25 patients with stage III–IV HNCs (oral cavity, laryngeal, and pharyngeal

tumors) from the Dutch health care perspective, comparing intensity-modulated PBT (IMPT) with IMRT. This model better

reflected the natural history of cancer by including the following health states: disease free without toxicity, disease free with

toxicity, locoregional recurrence, distant progression, and death. However, toxicities focused solely on grade 2 or greater

dysphagia and xerostomia, with parameter inputs based on normal tissue complication probability (NTCP) models and

comparative plan studies, not empiric clinical data.

In addition to evaluating IMPT for the whole study population, a subset cohort (PBT ‘‘if efficient’’) was analyzed in which

patients were stratified to the most cost-effective modality under a willingness-to-pay threshold of E80 000 (US $106 400) in

2010. Employing this case-by-case strategy, the authors concluded that PBT could be cost effective but yielded a mere 0.043

QALYs gained at the additional cost of E2 612 (US $3 474) (translating to an ICER of E60 278 [US $80 170] per QALY).

However, on sensitivity analysis, which differentiated disease and survival outcomes among PBT versus IMRT, the latter

dominated with more QALYs at lower cost when considering all patients.

Sher et al [28]

The American Markov model compared PBT to IMRT for stage IVA oropharyngeal carcinoma, structuring the model on the

natural cancer history of a single HNC patient, upon which various sensitivity analyses were applied. Separate model inputs

were applied to simulate HPVþ versus HPV� subpopulations, with external calibration of disease-related outcomes against

independently published data. Toxicity endpoints (acute dysgeusia, late grade �2 xerostomia, percutaneous endoscopic

gastrostomy [PEG]-tube placement, and dental complications) once again incorporated hypothetical modeling inputs from

retrospective clinical studies. The estimated benefit with PBT assumed a symmetric triangular distribution for reduction for

each toxicity endpoint (ranging from 0% to 50%), with a ‘‘best-case scenario’’ defined as a maximal 50% improvement. With

significant limitations, the authors concluded that PBT, in general, was not cost effective from either the payer or societal

perspectives (at a threshold of US $100 000 in 2016) and would only be cost effective from the payer perspective under

favorable conditions for young HPVþ patients.
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Table 1. Summary of cost-effectiveness modeling studies (model structure).

Source, y Country Cancer type

Model structure

Comparators Perspective Health states

Side

effects

Sensitivity

analysis

Handle

heterogeneity Assumptions

Lundkvist et al,

2005 [26]

Sweden HNCs such as

cancer in the

hypopharynx

1. PBT Societal 1. Healthy 1. Acute

mucositis

Scenario analyses

(One-way

sensitivity

analyses)

None 1. Patients assumed

mortality of normal

population if they

survived .9 y

2. CRT 2. Chronic adverse

event conditions

2. Acute

xerostomia

2. No gains in quality

of life for PBT

3. Death 3. Chronic

xerostomia

Ramaekers et

al, 2013 [27]

Netherlands Locally advanced

(stage III-IV)

HNC with

grade ,2

dysphagia and

xerostomia

1. IMPT for all

patient

Dutch health care 1. Disease free with

no toxicity

1. Xerostomia 1. Scenario analysis:

relax the

assumption of

equal disease

progression for

IMPT and IMRT

For IMPT, if efficient

strategy, individual

cost effectiveness

was first calculated

to determine IMPT/

IMRT

1. Disease progression

and survival were

assumed equal for

IMPT and IMRT

based on clinical

evidence

2. IMRT for all

patients

2. Disease free with

grade �2 toxicity

(1 health state for

each side effect,

3 in total)

2. Dysphagia 2. Probabilistic

sensitivity

analyses

2. Acute toxicity is

reversible during the

first 6 mo after

radiation therapy;

chronic toxicity is

irreversible

3. IMPT if

efficient

3. Locoregional

recurrence

3. Dysphagia

and

xerostomia

3. EVPI analysis 3. There was no

transition from

locoregional

recurrence to death

via distant

metastasis because

the mortality rate of

locoregional

recurrence already

accounted for ,1 y

survival with distant

metastasis

4. Distant metastasis

Sher et al,

2018 [28]

United States Oropharyngeal

SCC

1. PBT Payer (Medicare)

and societal

1. No evidence of

disease with PEG

1. Xerostomia 1. One-way

sensitivity

analysis

Populations by HPV

status

1. The oncologic

outcomes were

assumed to be

identical between

IMRT and PBT

2. IMRT 2. No evidence of

disease without

PEG

2. Dysphagia 2. Probabilistic

sensitivity

analysis

2. Similar late

recurrence or toxicity

risk, except for

potential

improvements in

xerostomia,

dysphagia, and

dentition, as

detailed, were

assumed between

IMRT and PBT

3. Locoregional

recurrence with

salvage

3. Dentition 3. EVPI analysis

4. Locoregional

recurrence

without salvage

4. PEG

5. Distant metastasis

6. Dead (other)

7. Dead (OPC)
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Li et al [20]

The Chinese Markov cohort model compared IMPT versus IMRT for treating paranasal sinus and nasal cavity cancers from

a Chinese health care perspective. The model adopted a simple structure of only 3 health states: no cancer, alive with cancer

(including recurrent, metastatic, or residual disease), and death. Interestingly, no acute or long-term side effects were included

because the authors assumed similar toxicity outcomes among IMPT and IMRT; however, the modalities were assumed to

yield different disease control outcomes (in favor of IMPT). Evaluation started with the base-case assessment of a 47-year-old

patient, along with stratified analyses for different age subgroups, altogether indicating cost effectiveness for patients 56 years

or younger (including the base case), at a threshold of $30 828 specific to China.

Reporting Quality (Supplemental Material Table S1)

The 4 CEMs generally adhered to the CHEERS checklist criteria [21], although each lacked certain components. For example,

only the Sher et al [28] study indicated both (1) study comparators, and (2) evaluation type within their title. The CHEERS

checklist also requires inclusion of objectives, perspective, setting, methods, results, and conclusions in the abstract—with at

least one component overlooked by each study. Overall, methodology reporting would have been stronger if references were

provided justifying the rationale for model design, as well as input selection (such as base case population, time horizon, and

discount rate). Specifically, the Lundkvist et al [26] study provided no support for use of the Markov cohort methods, and the

Ramaekers et al [27] study failed to represent uncertainties among model distributions. The Sher et al [28] study lacked both

criteria and failed to explore the actual generalizability of their findings (or lack thereof). The Li et al [20] study did not report

mean estimated outcomes or costs for each radiation therapy and lacked recognition of and discussion of previous studies [26,

27]

Methodological Quality (Supplemental Material Table S2)

In terms of structural design, each CEM simplified their models with numerous assumptions to the extent of inadequately

reflecting the comprehensive natural history of HNC. Across all 4 CEMs, the duration of treatment effect was left ambiguous—

a major limitation given the significant effect on calculated QALYs, ICERs, and conclusions—with varying cycle times applied

to each model, for which only the Ramaekers et al [27] study provided justification (and extrapolated the short-term effect as an

alternative assumption tested on sensitivity analysis). The Sher et al [28] constructed their model based off the history of a 65-

Table 1. Continued.

Source, y Country Cancer type

Model structure

Comparators Perspective Health states

Side

effects

Sensitivity

analysis

Handle

heterogeneity Assumptions

Li et al, 2020

[20]

China Paranasal sinus

and nasal

cavity cancers

1. IMPT Chinese health

care

1. No cancer None 1. One-way

sensitivity

analysis

Stratified analysis by

age

Other than efficacy in

eradicating cancer,

clinical outcomes

including irradiation-

induced acute and

late toxicities, were

assumed the same

between IMPT and

IMRT

2. IMRT 2. Alive with cancer

(include

recurrence,

metastasis, or

residue)

2. Probabilistic

sensitivity

analysis

2. Transition probability

from ‘‘no cancer’’ to

‘‘alive with cancer’’

was assume to vary

over time

3. Death 3. Stratified analyses

4. Tested

willingness-to-pay

at $30 828,

$50 000, and

$100 000

Abbreviations: HNC, head and neck cancer; PBT, proton beam therapy; CRT, conventional radiotherapy; IMPT, intensity-modulated proton therapy; IMRT, intensity-modulated

radiation therapy; EVPI, expected value of perfect information; SCC, squamous cell carcinoma; PEG, percutaneous endoscopic gastrostomy; HPV, human papillomavirus; OPC,

oligodendrocyte progenitor cell.
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Table 2. Summary of cost-effectiveness modeling studies (costs).

Source, y Country

Model inputs

Currency, y Cost values Cost type Notes Cost sources

Lundkvist et

al, 2005

[26]

Sweden Euro, 2002 1. Total radiation cost:

PBT E13 049

($12 396.55

converted)

CRT E5 477

($5 203.15

converted)

1. Investment cost for a

proton facility

Annuitized one-time investment

to a yearly cost assuming

lifetime of 30 y and interest

rate at 5%

Literature

2. Operation cost For PBT and CRT Literature

3. Transportation and hotel

accommodation

Assumed for 35% of PBT

patients

2. Dental cost: first y,

E1 608.7 ($1

528.625 converted);

then, E271.7/y

($258.115

converted)

4. Cost saving from reduced

dental visits

Assumption and literature-based

Ramaekers

et al, 2013

[27]

Netherlands Euro, 2010 1. Treatment costs for IMPT Multiplied IMRT treatment costs

with a cost ratio of 2.1

Published cost

analyses

2. Toxicity independent/

dependent resource use

and unit cost

Activity-based costing Guidelines, list of

tariffs, expert opinion

Sher et al,

2018 [28]

United States USD, 2016 1. Treatment costs For both, payer perspective

only; activity-based costing:

CPT codes

Medicare, physician

fee, schedule and

outpatient

prospective payment

system

2. Cost of building and

financing proton facility

For societal perspective only Administrative claims

data analysis

3. Monthly costs after

recurrence

Li et al, 2020

[20]

China USD, 2020 $50 000 1. Treatment cost for IMPT Estimated based on 32

fractions to a total dose of 70

Gy.

Estimate provided by a

proton center

$12 000 2. Treatment cost for IMRT Estimate provided by a

cancer center

$5 000 3. Treatment cost for

concurrent chemotherapy

Estimated based on 3 cycles of

80–100 mg/m2 cisplatin bolus

injection delivered on d 1, 21,

and 42 of the radiotherapy

Estimate provided by a

cancer center

$1 000 4. Follow-up cost/y Included hematologic and

biochemistry profiles,

nasopharyngeal fiberoptic

endoscope examination, MRI

of head and neck, chest

radiography, and abdominal

ultrasonography

Estimate provided by a

cancer center

$5 000 5. Cost for palliative therapy/

y

Estimated based on 8 cycles of

oral palliative chemotherapy

with 5-fluorouracil

Estimate provided by a

cancer center

Abbreviations: PBT, proton beam therapy; CRT, conventional radiotherapy; CPT, current procedural terminology; USD, United States dollar; IMPT, intensity-modulated proton

therapy; IMRT, intensity-modulated radiation therapy; MRI, magnetic resonance imagining.
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year-old patient with HNC, on top of which various sensitivity models were applied. Three CEMs, except for Lundkvist et al [26]

provided justification for model structure, although the Ramaekers et al [27] model provided no reference, and the Li et al [20]

model was based only on an older published study. All 4 CEMs directed appropriate attention toward significant parameters;

however, exact methods of data identification, selection, and quality assessment were unreported. In the setting of multiple

data sources, no systematic approaches were applied toward evidence synthesis, and all CEMs appeared to lack internal

consistency checks.

With respect to cost inputs, the Lundkvist et al [26] and Sher et al [28] studies presented evaluations from the societal

perspective, but focused mainly on the cost of building and/or financing a proton facility and omitting other essential elements

for comprehensive analysis. Per the Second Panel on Cost-Effectiveness in Health and Medicine [29], the societal perspective

should (1) cover all parties affected, and (2) include all significant costs incurred (direct and indirect). Direct cost estimates

among these studies failed to consider out-of-pocket patient expenses, for example, and only the Lundkvist et al [26] study

considered direct nonmedical costs (eg, transportation, accommodations, among others) associated with acquisition of

provider services. The most important nonmedical cost—lost productivity—was poorly captured by existing CEMs as well.

Finally, none of the CEMs clearly specified the primary decision maker for analysis.

CEM Parameter Assessment (Supplemental Material Table S3)

Dating back to 2005, the Lundkvist et al [26] study generated the simplest model with the literature sources available at the

time. Survival rates were estimated from the Swedish cancer registry, with the relative mortality risk of PBT based purely off

assumptions. The Li et al [20] study, from 2020, assumed differential probabilities eradicating disease in the setting of

paranasal sinus and nasal cavity cancers [30]. In contrast, both the Ramaekers et al [27] and Sher et al [28] studies (in 2013

and 2018, respectively) generally considered PBT and IMRT to be analogous with respect to disease and/or survival outcomes

(although the Ramaekers et al [27] study also explored the alternative scenario in the sensitivity analysis). In Ramaekers et al

[27], disease progression probabilities were based on a meta-analysis of randomized controlled trials examining arms

comprising radiation with concomitant chemotherapy. Cancer-related mortalities from locoregional recurrence and distant

metastases were from a single randomized controlled trial (Radiation Therapy Oncology Group [RTOG], Philadelphia,

Pennsylvania; RTOG 9610) and a prospective study, respectively. The Sher et al [28] study used more-recent data of RTOG

0129 and RTOG 0522 for disease progression and mortality rates, whereas the Li et al [20] study incorporated probabilities

and rates from systematic review and meta-analysis data [30].

With respect to complications, the Lundkvist et al [26] study completely excluded toxicity considerations for HNC. Similarly,

the Li et al [20] study assumed no differential outcomes in irradiation-induced acute and late toxicities between IMPT and IMRT

for paranasal sinus and nasal cavity cancers. Both the Ramaekers et al [27] and Sher et al [28] studies attempted to apply

clinically relevant data from NTCP modeling studies, but again, these theoretical models estimate adverse-event probabilities

based on dosimetric plan comparisons and are beset by their own uncertainties in the absence of clinical validation. The Sher

Table 3. Summary of cost-effectiveness modeling studies (utilities).

Source, y Country

Model Inputs

Utility values Utility category Utility sources

Lundkvist et al, 2005 [26] Sweden 0.75 Utility score of patients with HNC

2–3 y after diagnosis

Literature

Ramaekers et al, 2013 [27] Netherlands EQ-5D in Dutch patients with

HNC

Cross-sectional survey

Sher et al, 2018 [28] United States 1. Utilities for health states Cross-sectional study on healthy subjects

using the standard gamble method

2. Disutilities for toxicities Cross-sectional study on in patients with

HNC using EQ-5D

Li et al, 2020 [20] China 0.94 1. Utility score without cancer Cross-sectional survey on patients with

SCC of the upper aerodigestive tract in

remission using Time Trade-Off method

0.47 2. Utility score with cancer

Abbreviations: HNC, head and neck cancer; EQ-5D, EuroQol 5-Dimension; SCC, squamous cell carcinoma.
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et al [28] study did also incorporate a couple of small retrospective series available at the time, but still entailed significant,

unsupported assumptions for relative toxicity risks.

Further issues include the poor quality of utility or disutility values across each of these studies. Although the utility value in

the Lundkvist et al [26] study was referenced to several studies, the actual value associated with them was not readily

traceable. The Ramaekers et al [27] study incorporated a very indirect measure of utilities from EuroQol 5-Dimension (EQ-5D;

EuroQol Research Foundation, Rotterdam, the Netherlands) data among HNC patients, whereas the Sher et al [28] study

provided direct measurements derived from healthy subjects via the standard gamble method. Utility values in Li et al [20]

stemmed from cross-sectional data.

Finally, regarding costs, medical resource use across models was mainly based on expert opinion or quantities reported

among procedural guidelines, in lieu of direct observation, whereas preexisting literature sources were cited for radiotherapy

treatment and cancer-related costs. Two studies employed activity-based costing (Ramaekers et al [27] and Sher et al [28]),

citing government-issued fee schedules as data sources for unit costs. Both Lundkvist et al [26] and Sher et al [28] also

evaluated the societal perspective, estimating the investment cost for a proton therapy center: calculations in the former were

based off very outdated literature [26], whereas the latter [28] failed to specify relevant sources (raising questions of validity).

Table 4. Summary of cost-effectiveness modeling studies (probabilities).

Source, y Country

Model inputs

Probability category Probability notes Probability sources

Lundkvist et al,

2005 [26]

Sweden 1. Overall mortality Literature

2. RR mortality: 0.76 Assumed based on studies of

hyperfractionation

Literature

Ramaekers et al,

2013 [27]

Netherlands 1. Toxicity probability of

xerostomia or dysphagia

The required dose parameters

used to calculate probabilities

of toxicity were identified from

a planning study of 25 patients.

Averaged probabilities were

applied to each strategy

Probabilities of toxicity

estimated based on 2

published NTCP models

2. Disease progression Meta-analysis

3. Mortality from locoregional

recurrence

RTOG 9610

4. Mortality from distant

metastases

Prospective study

Sher et al, 2018

[28]

United States 1. RR of dysgeusia: 0.75 PBT vs. IMRT in y 1 Assumption

2. RR of PEG dependence: 0.75 PBT vs. IMRT in y 1

3. RR of xerostomia: 0.75 PBT vs. IMRT after y 1

4. Additional risk of dental

complications

IMRT vs. PBT at 1 y Literature-based assumption

5. Progression 1. NED to LRR by HPV status RTOG 0129 trial

2. NED to DM RTOG 0129 trial

6. Mortality rates LRR, DM Retrospective analysis of

RTOG 0129 and RTOG 0522

Li et al, 2020 [20] China 1. Probabilities eradicating

cancer

Different for IMPT and IMRT Systematic literature reviews

2. Disease progression ‘‘No cancer’’ to ‘‘alive with

cancer’’

3. Cancer mortality ‘‘Alive with cancer’’ to ‘‘death’’

4. Noncancer mortality 2016 Life Tables of United

States

Abbreviations: RR, relative risk; NTCP, normal tissue complication probability; RTOG, Radiation Therapy Oncology Group; PBT, proton beam therapy; IMRT, intensity-modulated

radiation therapy; PEG, percutaneous endoscopic gastrostomy; NED, no evidence of disease; LRR, locoregional recurrence; HPV, human papillomavirus; DM, distant metastasis;

IMPT, intensity-modulated proton therapy.
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Table 5. Summary of cost-effectiveness modeling studies (results).

Source, y Country

Model results

D Cost D QALYs ICER Notes Sensitivity analysis

Lundkvist et al,

2005 [26]

Sweden E3 887

($3 692.65

converted)

1.02 E3 800 ($3 610

converted)

Results are sensitive to less

favorable hazard rate, exclusion of

dentistry cost savings, and shorter

proton facility lifetime

Ramaekers et

al, 2013 [27]

Netherlands 1. E2 612

($3 473.96

converted);

IMPT if

efficient versus

IMRT

0.043; IMPT if

efficient versus

IMRT

E60 278

($80 169.74

converted)

1. In alternative scenario, IMRT for all

patients yielded more QALYs and

was less expensive and thus was

the dominant strategy

2. E7 339

($9 760.87

converted);

IMPT for all

versus IMPT if

efficient

0.057 IMPT for all

versus IMPT if

efficient

E127 946

($170 168.2

converted)

2. The value of further research

emphasizes utility scores after

xerostomia, NTCP models for

dysphagia and for xerostomia

Sher et al, 2018

[28]

United States 1. $20 164 0.07 $288 000/QALY Payer

perspective,

HPVþ patients

1. In the HPVþ population, the ICER

fell below $100 000/QALY if proton

therapy reduced risk of xerostomia

by 84%;

proton therapy was not cost

effective for patients ,55 y, except

both xerostomia- and PEG-

dependence risks were halved

2. $27 311 $390 000/QALY Societal

perspective,

HPV� patients

2. In the HPV� population, the ICER

was always above $100 000/

QALY, even in unrealistic

conditions that strongly favored

proton therapy

1. $20 640 0.04 $516 000 Payer

perspective,

HPVþ patients

3. Resolving the specific parameters

of proton versus photon radiation

therapy will add no additional

value to the comparison, which

favors IMRT at baseline at a

societal WTP of $100 000/QALY

2. $27 787 $695 000/QALY societal

perspective,

HPV-negative

patients

Li et al, 2020

[20]

China $38 928.7 1.65 $23 611.2/QALY 1. One-way sensitivity analysis

showed top 3 influential

parameters that may change the

cost effectiveness of IMPT: the

probability of IMPT eradicating

cancer, the probability of IMRT

eradicating cancer, and the cost of

IMPT

2. IMPT was cost effective in patients

56 y and younger at the base

case WTP of China

Abbreviations: QALY, quality-adjusted life years; ICER, incremental cost-effectiveness ratio; IMPT, intensity-modulated proton therapy; IMRT, intensity-modulated radiation

therapy; NTCP, normal tissue complication probability; HPV, human papillomavirus; PEG, percutaneous endoscopic gastrostomy; WTP, willingness-to-pay.

Huang et al (2021), Int J Particle Ther 347

Cost-effectiveness models of PBT for HNC



Of all the studies, only Lundkvist et al [26] included patient-level transportation and hotel accommodation costs (although even

those figures were based on assumptions). Cost estimates from a proton center and cancer center in China were used in Li et

al [20].

Discussion
In this modern era of value-based health care, formal economic evaluations can be useful tools to compare novel interventions

and to provide preliminary rationale for management decisions [16]. However, as demonstrated in this review, CEMs are not

without their limitations. These hypothetical simulations are largely bound by the quality of available evidence for reference as

inputs. Although quantitative in nature, subjective choices in design, methodology, and parameters can drastically affect the

quality and applicability of findings.

These comments aside, the referenced authors are to be applauded for their innovative efforts during the early era of PBT,

when few, if any, high-quality studies existed in the literature. In general, CEMs are notoriously difficult to conduct because of

their comprehensive nature and difficulties with simultaneously accounting for each outcome and variable of significance. The

purpose of this review is to evaluate the methodology of existing models and to identify future directions for improvement. In its

simplest form, the health care value equation is defined as quality (or outcomes) over cost, and our suggestions involve both

components.

CEM Development: General Best Practices (Table 6)

Future CEMs should follow the recommendations of the Second Panel on Cost-Effectiveness in Health and Medicine [29],

which suggests inclusion of both a health care sector and a societal perspective. For either perspective, all economic and

clinical effects of interventions in the impact inventory should be taken into consideration to ensure comprehensive coverage

of all consequences for each party. To ensure transparency, all model parameters, assumptions, analyses, and structural

decisions should be clearly outlined and supported with appropriate rationale. For critical model inputs that will significantly

influence results or model validity, parameter selection should be informed via formal evidence synthesis. Finally, the panel

recommends that identical discount rates for both costs and health consequences be explored within sensitivity analyses, in

contrast to the heterogeneous rates applied by Ramaekers et al [27].

PBT Outcomes: Focus on Toxicity Parameters

Disease-specific outcomes, such as distant metastases and progression-free survival, are presumably similar for PBT and

IMRT across multiple disease sites and histologies; thus, no significant concerns were observed for such outcomes. However,

the referenced models inadequately represented the most important difference (and major benefit) of PBT over IMRT:

decreased toxicities. Lundkvist et al [26] failed to incorporate any toxicity data for HNC because of the paucity of clinical

literature at the time, whereas Li et al [20] assumed similar complication rates for paranasal sinus and nasal cavity cancers

(despite data indicating decreased toxicities with PBT over IMRT [31, 32]). The other two Markov models were flawed in their

choice of toxicity states (with the exclusion of several clinically relevant complications) and suboptimal quality of input values

for their included endpoints.

The Ramaekers et al [27] study, similarly because of the lack of data, based parameter inputs off comparative planning

studies and NTCP models, which attempt to predict the incidence of treatment-related complications [33]. Admittedly, this was

an innovative approach to compare outcomes in the absence of patient-level data [34]; however, those extrapolations of

radiobiologic theory are beset by numerous assumptions, which culminate in significant uncertainties and concerns of external

Table 6. Recommended best practices.

Characteristics Recommended Best Practices

General Outline and justify model parameters, assumptions, analyses, and structural decisions

Model structure Include both health care and societal perspectives

Model inputs Consider all economic and clinical effects of interventions from the impact inventory

Use formal evidence synthesis to inform critical model inputs

Use identical discount rates for both costs and outcomes
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validity. Furthermore, only dysphagia and xerostomia were included as toxicity states, with the notable omission of PEG-tube

placement (a common and clinically significant treatment-related complication). The NTCP models also underestimated the

benefit of PBT versus IMRT with respect to dysphagia (as 18% versus 23%), in contrast to published clinical studies. Follow-up

was also quite limited at 1 year, underestimating the long-term value of PBT.

Sher et al [28] improved upon prior models by incorporating additional toxicity endpoints (late xerostomia, acute dysgeusia,

PEG-tube placement, and dental complications) and extending the follow-up period for calculation. However, their parameter

inputs were again informed by modeling studies and the limited number of small, retrospective series available at the time of

study. The benefit of PBT in PEG-tube placement was underestimated as a mere 25% reduction versus IMRT (odds ratio,

0.75), in contrast to published clinical data on patients with oropharyngeal and nasopharyngeal cancer [10,11] (although,

admittedly, this endpoint is dependent upon clinician preference and the relative volume of oropharyngeal mucosa in the field).

Furthermore, both the Sher et al [28] and the Dutch model [27] focused on grade 2 or greater toxicities, implying moderate

symptoms that only modestly interfere with function and may not require intervention. In contrast, grade 3 or greater toxicities

(severe symptoms that interfere with daily activity and merit intervention) would arguably be a superior endpoint given their

larger impact on both quality and cost. Although some late grade-2 toxicities are clinically significant, appropriate follow-up

periods are necessary after treatment to adequately capture them.

At no fault of the authors, pertinent clinical data were quite limited during their period of publication (2005–18), but since

then, several robust studies have been published with patient-level data that must be incorporated in future CEMs. For

example, a prospective, comparative analysis of IMPT versus IMRT for oropharyngeal cancer demonstrated several benefits

of PBT in acute toxicities and patient-reported outcomes (PROs) [10]: notably, significant reductions in PEG-tube use (20%

versus 46%), posttreatment hospitalizations (9% versus 31%), and narcotic requirements. Decreased cough, dysgeusia, and

dysphagia were also documented on PROs, whereas providers observed less pain and mucositis with IMPT. On an even

larger scale, a retrospective comparative effectiveness study of 1483 patients (29% HNCs) [13] linked PBT with a two-thirds

reduction in grade 3 or greater adverse events associated with hospital admission (11.5% versus 28%; relative risk [RR], 0.31;

95% confidence interval [CI], 0.15–0.66) and found less detriment to performance status as compared with IMRT (RR, 0.51;

95% CI, 0.37–0.71). To the earlier point emphasizing Common Terminology Criteria for Adverse Events severity, a lower (yet

still significant) benefit was observed with grade 2 or greater toxicities (RR, 0.78; 95% CI, 0.65–0.93) as well.

As a final note on outcome parameters, both newer studies already demonstrate the oversight of prior CEMs for several

clinically significant and costly endpoints, such as unplanned hospital admissions, pain and corresponding narcotic use,

cough, and performance status decline. Other considerations include fatigue, osteoradionecrosis, endocrine complications,

fibrosis, esophagitis, and oral mucositis. Furthermore, none of the aforementioned CEMs incorporated PRO data, which can

supplement Common Terminology Criteria for Adverse Events assessments to more granularly capture quality-of-life

differences [10, 12]. Future CEMs should strive to identify and include such endpoints among their model parameters to

provide a more comprehensive demonstration of the true benefit of PBT.

PBT Costs: Toxicity Management, Treatment Expenses, and Indirect Benefits

Health care costs in the United States are difficult to measure because of varying stakeholder perspectives: that of patients,

payers, providers, and society—each of which merits evaluation via distinct scenario analyses. Given their often-conflicting

interests, those stakeholders place widely varying emphases on different cost contributors toward decision-making. For

example, although fixed costs for research and technology development should always be considered [29], the actual cost of

building and financing a proton facility may be more relevant to some groups than others (ie, providers and society, but not

patients or payers), given that payers do not directly factor those investment costs into their reimbursement policies.

However, for investment and operational expense of RT delivery, technologic advancements have actually led to dramatic

reductions in PBT equipment cost over time [35, 36]. Within the past few years, the massive industrial-sized facilities of the

past have transitioned toward smaller, compact units that are readily incorporable within existing medical campuses and are

associated with significantly decreased capital investment: from $100-$250 million historically, to now, as low as $25-$30

million per center [35, 37, 38]. Accompanied by optimized delivery efficiency [39], these innovations have simultaneously

lowered the threshold for operational sustainability [35, 37, 38], resulting in broader provider adoption and patient access.

These same technologic adaptations have also been accompanied by improvements in plan robustness [40], with continued

benefits to patient outcomes (and treatment quality). Future CEMs should incorporate contemporary cost figures reflecting

such changes, which will certainly enhance the value of PBT relative to historic models.
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Comprehensive cost estimates also need to consider direct, as well as indirect, contributors: direct costs are associated

with the actual medical services delivered to patients by providers, whereas indirect costs result from disability and productivity

loss from disease-related (or treatment-related) morbidity. Optimizing toxicity endpoints, as previously mentioned, would

enhance direct estimates by more accurately measuring the cost of treatment-related complications. Indirect costs, on the

other hand, are poorly reflected by traditional economic evaluations because of difficulties associated with their measurement.

However, the expenses incurred from treatment-related disability and productivity loss are significant contributors to financial

toxicity [41], with broad societal implications. These measures are also particularly relevant to PBT because lower treatment-

related toxicities could help maintain performance status and work productivity among patients with HNC [13] (many of whom

are young working-aged adults). Thus, although challenging, future studies should attempt to incorporate such endpoints,

starting, perhaps, with basic work-productivity assessments.

On a final note, CEMs should transition from hypothetical cost estimates toward incorporating real-world figures for cost

inputs, just as recommended for clinical outcome and toxicity parameters. From the payer perspective, actual reimbursement

records present validated cost data that can differ dramatically from model estimates [42, 43]. For example, our proton therapy

center collaborated with stakeholders on an insurance-coverage pilot for PBT, attempting to address patient-access barriers

associated with insurance prior authorization [42, 44, 45]. That entailed a comprehensive cost-of-care analysis evaluating total

medical charges among case-matched PBT versus IMRT patients, demonstrating no significant differences in average

medical costs [42]—a surprising result (among a prospective clinical cohort), which diverged significantly from anticipated cost

estimates. Similarly, from the provider perspective, time-driven, activity-based methodologies can measure the actual cost of

treatment delivery by methodically quantifying resource use associated with a full care cycle; and from the patient perspective,

prospective surveys are useful instruments to assess financial toxicity [41]. Incorporating any of these real-world data sources

would bolster the external validity of future CEMs.

Conclusions
In summary, we identified limitations of the existing CEMs and outlined several areas for improvement among future models.

Given their increasing relevance in the modern health care era, economic evaluations should strive to incorporate the highest-

quality evidence for parameter inputs (particularly with phase II/III randomized trial data highly anticipated [9, 46]). Collectively,

these suggestions will help minimize the uncertainties associated with CEMs, thus providing a more valid and applicable

picture of the true value of PBT.

ADDITIONAL INFORMATION AND DECLARATIONS

Conflicts of Interest: Steven J. Frank, MD, is an Associate Editor of the International Journal of Particle Therapy. Outside of

the submitted work, Dr Frank reports receiving personal fees as a consultant and advisory board member of Varian Medical

Systems, Inc; grants and personal fees as director and founder of C4 Imaging, LLC; grants and honoraria as an advisor for

Hitachi; honoraria from Boston Scientific; grants from Eli Lilly; grants from Elekta; honoraria from Augmenix; personal fees as a

member of the board of directors of the National Comprehensive Cancer Center (NCCN); and other support as a scientific

advisory board member for Breakthrough Chronic Care. Ashish A. Deshmukh PhD, MPH, reports receiving consulting fees

from Merck on unrelated projects outside the submitted work. The authors have no additional conflicts of interest to disclose.

Funding: Support was provided in part by Hitachi (S.J.F.) and by an NCI/NIH Cancer Center support grant (CA16672).

Ethical Approval: This review did not involve human subjects or participants and was exempt from institutional review board

approval.

References
1. Stross WC, Malouff TD, Waddle MR, Miller RC, Peterson J, Trifiletti DM. Proton beam therapy utilization in adults with

primary brain tumors in the United States. J Clin Neurosci. 2020;75:112–6.

2. Ryckman JM, Ganesan V, Kusi Appiah A, Zhang C, Verma V. National practice patterns of proton versus photon therapy in

the treatment of adult patients with primary brain tumors in the United States. Acta Oncol. 2019;58:66–73.

3. Kopecky AS, Khan AJ, Pan W, Drachtman R, Parikh RR. Outcomes and patterns of care in a nationwide cohort of pediatric

medulloblastoma: factors affecting proton therapy utilization. Adv Radiat Oncol. 2017;2:588–96.

Huang et al (2021), Int J Particle Ther 350

Cost-effectiveness models of PBT for HNC



4. Waddle MR, Sio TT, Van Houten HK, Foote RL, Keole SR, Schild SE, Laack N, Daniels TB, Crown W, Shah ND, Miller RC.

Photon and proton radiation therapy utilization in a population of more than 100 million commercially insured patients. Int J

Radiat Oncol Biol Phys. 2017;99:1078–82.

5. Woodhouse KD, Hwang WT, Vapiwala N, Jain A, Wang X, Both S, Shah M, Frazier M, Gabriel P, Christodouleas JP,

Tochner Z, Deville C. Sociodemographic disparities in the utilization of proton therapy for prostate cancer at an urban

academic center. Adv Radiat Oncol. 2017;2:132–9.

6. Pan HY, Jiang J, Shih YCT, Smith BD. Adoption of radiation technology among privately insured nonelderly patients with

cancer in the United States, 2008 to 2014: a claims-based analysis. J Am Coll Radiol JACR. 2017;14:1027–33.e2.

7. Amini A, Raben D, Crawford ED, Flaig TW, Kessler ER, Lam ET, Maroni P, Pugh TJ. Patient characterization and usage

trends of proton beam therapy for localized prostate cancer in the United States: a study of the National Cancer Database.

Urol Oncol. 2017;35:438–46.

8. Mahal BA, Chen YW, Efstathiou JA, Muralidhar V, Hoffman KE, Yu JB, Feng FY, Beard CJ, Martin NE, Orio PF, Nguyen

PL. National trends and determinants of proton therapy use for prostate cancer: a National Cancer Data Base study.

Cancer. 2016;122:1505–12.

9. Frank SJ, Blanchard P, Lee JJ, Sturgis EM, Kies MS, Machtay M, Vikram B, Garden AS, Rosenthal DI, Gunn GB, Fuller

CD, Hutcheson K, Lai S, Busse PM, Lee NY, Lin A, Foote RL. Comparing intensity-modulated proton therapy with intensity-

modulated photon therapy for oropharyngeal cancer: the journey from clinical trial concept to activation. Semin Radiat

Oncol. 2018;28:108–13.

10. Manzar GS, Lester SC, Routman DM, Harmsen WS, Petersen MM, Sloan JA, Mundy DW, Hunzeker AE, Amundson AC,

Anderson JL, Patel SH, Garces YI, Halyard MY, McGee LA, Neben-Wittich MA, Ma DJ, Frank SJ, Whitaker TJ, Foote RL.

Comparative analysis of acute toxicities and patient reported outcomes between intensity-modulated proton therapy

(IMPT) and volumetric modulated arc therapy (VMAT) for the treatment of oropharyngeal cancer. Radiother Oncol. 2020;

147:64–74.

11. Blanchard P, Garden AS, Gunn GB, Rosenthal DI, Morrison WH, Hernandez M, Crutison J, Lee JJ, Ye R, Fuller CD,

Mohamed ASR, Hutcheson KA, Holliday EB, Thaker NG, Sturgis EM, Kies MS, Zhu XR, Mohan R, Frank SJ. Intensity-

modulated proton beam therapy (IMPT) versus intensity-modulated photon therapy (IMRT) for patients with oropharynx

cancer—a case matched analysis. Radiother Oncol. 2016;120:48–55.

12. Sio TT, Lin HK, Shi Q, Gunn GB, Cleeland CS, Lee JJ, Hernandez M, Blanchard P, Thaker NG, Phan J, Rosenthal DI,

Garden AS, Morrison WH, Fuller CD, Mendoza TR, Mohan R, Wang XS, Frank SJ. Intensity modulated proton therapy

versus intensity modulated photon radiation therapy for oropharyngeal cancer: first comparative results of patient-reported

outcomes. Int J Radiat Oncol Biol Phys. 2016;95:1107–14.

13. Baumann BC, Mitra N, Harton JG, Xiao Y, Wojcieszynski AP, Gabriel PE, Zhong H, Geng H, Doucette A, Wei J, O’Dwyer

PJ, Bekelman JE, Metz JM. Comparative effectiveness of proton vs photon therapy as part of concurrent

chemoradiotherapy for locally advanced cancer. JAMA Oncol. 2019;5:237–46.

14. Argirion I, Zarins KR, McHugh J, Cantley RL, Teeramatwanich W, Laohasiriwong S, Kasemsiri P, Naruikon J, Srimanta P,

Chinn SB, Vatanasapt P, Rozek LS. Increasing prevalence of HPV in oropharyngeal carcinoma suggests adaptation of

p16 screening in Southeast Asia. J Clin Virol. 2020;132:104637.

15. Mahal BA, Catalano PJ, Haddad RI, Hanna GJ, Kass JI, Schoenfeld JD, Tishler RB, Margalit DN. Incidence and

demographic burden of HPV-associated oropharyngeal head and neck cancers in the United States. Cancer Epidemiol

Biomarks Prev. 2019;28:1660–7.

16. Jones DA, Smith J, Mei XW, Hawkins MA, Maughan T, van den Heuvel F, Mee T, Kirkby K, Kirkby N, Gray A. A systematic

review of health economic evaluations of proton beam therapy for adult cancer: appraising methodology and quality. Clin

Transl Radiat Oncol. 2020;20:19–26.

17. van Mastrigt GAPG, Hiligsmann M, Arts JJC, Broos PH, Kleijnen J, Evers SMAA, Majoie MHJM. How to prepare a

systematic review of economic evaluations for informing evidence-based healthcare decisions: a five-step approach (part

1/3). Expert Rev Pharmacoecon Outcomes Res. 2016;16:689–704.

18. Thielen FW, Van Mastrigt G, Burgers LT, Bramer WM, Majoie H, Evers S, Kleijnen J. How to prepare a systematic review

of economic evaluations for clinical practice guidelines: database selection and search strategy development (part 2/3).

Expert Rev Pharmacoecon Outcomes Res. 2016;16:705–21.

Huang et al (2021), Int J Particle Ther 351

Cost-effectiveness models of PBT for HNC



19. Wijnen B, Van Mastrigt G, Redekop WK, Majoie H, De Kinderen R, Evers S. How to prepare a systematic review of

economic evaluations for informing evidence-based healthcare decisions: data extraction, risk of bias, and transferability

(part 3/3). Expert Rev Pharmacoecon Outcomes Res. 2016;16:723–32.

20. Li G, Qiu B, Huang YX, Doyen J, Bondiau PY, Benezery K, Xia YF, Qian CN. Cost-effectiveness analysis of proton beam

therapy for treatment decision making in paranasal sinus and nasal cavity cancers in China. BMC Cancer. 2020;20:599.

21. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, Augustovski F, Briggs AH, Mauskopf J, Loder

E; CHEERS Task Force. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Value

Health. 2013;16:e1–5.

22. Philips Z, Bojke L, Sculpher M, Claxton K, Golder S. Good practice guidelines for decision-analytic modelling in health

technology assessment: a review and consolidation of quality assessment. Pharmacoeconomics. 2006;24:355–71.

23. [NICE] National Institute of Health and Care Excellence. Developing NICE guidelines: the manual. https://www.nice.org.

uk/process/pmg20/chapter/introduction. Published October 31, 2014. Updated October 20, 2020. Accessed August 10,

2020.

24. Shemilt I, Mugford M, Byford S, Drummond M, Eistenstein E, Knapp M. Incorporating economics evidence. In: Higgins J,

Thomas J, Chandler J, Cumpston M, Li T, Page M, Welch V, Flemyng E, Mellor L, eds. Cochrane Handbook for

Systematic Reviews of Interventions. Chichester, UK: J Wiley and Sons; 2008:chapter 15. Cochrane Book Series.

25. Cooper N, Coyle D, Abrams K, Mugford M, Sutton A. Use of evidence in decision models: an appraisal of health

technology assessments in the UK since 1997. J Health Serv Res Policy. 2005;10:245–50.

26. Lundkvist J, Ekman M, Ericsson SR, Jönsson B, Glimelius B. Proton therapy of cancer: potential clinical advantages and

cost-effectiveness. Acta Oncol. 2005;44:850–61.

27. Ramaekers BLT, Grutters JPC, Pijls-Johannesma M, Lambin P, Joore MA, Langendijk JA. Protons in head-and-neck

cancer: bridging the gap of evidence. Int J Radiat Oncol Biol Phys. 2013;85:1282–8.

28. Sher DJ, Tishler RB, Pham NL, Punglia RS. Cost-effectiveness analysis of intensity modulated radiation therapy versus

proton therapy for oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2018;101:875–82.

29. Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn M, Kuntz KM, Meltzer DO, Owens DK, Prosser LA,

Salomon JA, Sculpher MJ, Trikalinos TA, Russell LB, Siegel JE, Ganiats TG. Recommendations for conduct,

methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and

medicine [published correction appears in JAMA. 2016;316:1924]. JAMA. 2016;316:1093–103.

30. Patel SH, Wang Z, Wong WW, Murad MH, Buckey CR, Mohammed K, Alahdab F, Altayar O, Nabhan M, Schild SE, Foote

RL. Charged particle therapy versus photon therapy for paranasal sinus and nasal cavity malignant diseases: a

systematic review and meta-analysis. Lancet Oncol. 2014;15:1027–38.

31. Fan M, Kang JJ, Lee A, Fan D, Wang H, Kitpanit S, Fox P, Sine K, Mah D, McBride SM, Tsai CJ, Riaz N, Dunn LA,

Sherman EJ, Michel L, Singh B, Ganly I, Wong RJ, Boyle JO, Cohen MA, Lee NY. Outcomes and toxicities of definitive

radiotherapy and reirradiation using 3-dimensional conformal or intensity-modulated (pencil beam) proton therapy for

patients with nasal cavity and paranasal sinus malignancies. Cancer. 2020;126:1905–16.

32. McDonald MW, Liu Y, Moore MG, Johnstone PAS. Acute toxicity in comprehensive head and neck radiation for

nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated

radiation therapy. Radiat Oncol. 2016;11:32.

33. Brodin NP, Kabarriti R, Pankuch M, Schechter CB, Gondi V, Kalnicki S, Guha C, Garg MK, Tomé WA. A Quantitative
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