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Abstract: Silver nanoparticles (Ag NPs) play important roles in the development of plasmonic
applications. Combining these nanoparticles with graphene can yield hybrid materials with enhanced
light–matter interaction. Here, we report a simple method for the synthesis of graphene–silver
nanoparticle hybrids on highly oriented pyrolytic graphite (HOPG) substrates. We demonstrate by
scanning tunneling microscopy and local tunneling spectroscopy measurements the electrostatic
n-type doping of graphene by contact with silver. We show by UV-Vis reflectance investigations that
the local surface plasmon resonance (LSPR) of Ag NPs partially covered with graphene is preserved
for at least three months, i.e., three times longer than the LSPR of bare Ag NPs. The gradual loss
of LSPR is due to the spontaneous sulfurization of non-covered Ag NPs, as revealed by scanning
electron microscopy and energy-dispersive X-ray spectroscopy. We show that the Ag NPs completely
sandwiched between graphene and HOPG do not sulfurize, even after one year.

Keywords: silver nanoparticles; local surface plasmon resonance; graphene; hybrid
nanostructures; scanning tunneling microscopy; tunneling spectroscopy; atomic force microscopy;
UV-Vis spectroscopy

1. Introduction

Noble metallic nanoparticles (NPs) are extensively applied for chemical and biological sensing
due to their local surface plasmon resonance (LSPR) [1,2] and surface-enhanced Raman scattering
(SERS) properties [3,4]. In particular, the optical properties of gold (Au) and silver (Ag) nanoparticles
are highly investigated due to their enhanced interaction with light [5–10]. Their LSPR can be tuned by
controlling the size, shape, dispersion, and uniformity of the NPs, and also the dielectric constant of the
surrounding medium [11–17]. Nanostructured Ag is the best material for plasmonics due to the absence
of interband absorptions and low optical loss at optical frequencies [18]. However, silver has poor
stability under ambient conditions, forming Ag2S on its surface. This leads to morphological changes
of the NPs and significant diminishing of the optical properties [19]. Preserving the high surface
plasmon resonance intensity of silver nanoparticles is of key importance in potential applications.
The most common approach to improve the chemical stability of Ag nanostructures is to form core–shell
structures by passivating the surface of Ag with a protective shell, which can be either organic or
inorganic (see [20] for a recent review). This coating should be at the same time thick enough to fully
protect Ag NPs and thin enough to conserve the strong near-field interaction in SERS-based sensing
experiments. In this respect, graphene seems to be the ideal protective coating [21], since it is atomically
thin and impenetrable to standard gases, including helium [22,23]. Nevertheless, for large-area
graphene grown by chemical vapor deposition (CVD), the oxygen can infiltrate through defects and
grain boundaries [24].
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The synthesis of Ag NPs can be realized over a wide range of strategies [25], depending on the
required shape of the nanoparticles. The most commonly used method is the chemical reduction in a
bottom-up approach. The size and shape of produced Ag NPs depend on many factors, such as the
temperature, the concentration of the silver precursor, and the strength of chemical interaction between
the capping agent and various crystallographic planes of silver [26]. In this work, we present a simple
method for the preparation of Ag NPs and graphene–silver nanoparticle hybrids directly onto highly
oriented pyrolytic graphite (HOPG) substrates. The morphology, optical, and electronic properties
of the hybrid nanomaterials are investigated by atomic force microscopy (AFM), UV-Vis reflectance
spectroscopy, and scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS),
respectively. Electron transfer from silver to graphene is observed by local STS measurements on
graphene-covered silver nanostructures. We show that a graphene overlayer can preserve the LSPR of
Ag NPs, however its protective efficiency is limited by the area of graphene coverage. We demonstrate
by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) that the Ag
NPs completely sandwiched between graphene and HOPG are protected from sulfur, even 14 months
after preparation.

2. Materials and Methods

Bulk silver of 99.99% purity (Metal-Art Zrt., Budapest, Hungary) was placed in an electrically
heated tungsten boat for evaporation. Thin silver films of 7 nm nominal thickness were evaporated
onto HOPG substrates at a background pressure of 5 × 10−7 mbar and rate of 0.1 nm s−1. During the
process, the substrate remained at room temperature. Immediately after silver deposition and opening
of the vacuum chamber, the thin silver films were covered with CVD graphene, which was synthesized
as described in a previous paper [27]. For the transfer of large-area graphene samples grown on copper
foil, we applied a polymer tape. The copper foil was etched using a mixture of CuCl2 aqueous solution
(20%) and HCl (37%) in a 4:1 volume ratio. The tape holding the graphene was rinsed in distilled
water, dried, and pressed onto the deposited silver thin film. Graphene-covered silver thin films were
obtained by lifting the tape with tweezers. In order to drive the surface diffusion of deposited silver
and to form the Ag nanoparticles, subsequent annealing of both bare and graphene-covered thin silver
films was performed at 400 ◦C under inert gas (Ar) atmosphere for 90 min. We used these annealing
parameters, which worked earlier for the preparation of gold nanoparticles, as reported recently [27].

The Ag NPs and graphene–Ag NP hybrid structures were investigated by tapping mode AFM
measurements performed on a MultiMode 8 (Bruker France S.A.S, Champs sur Marne, France),
along with STM and STS measurements using a DI Nanoscope E (Bresso, Italy) operating under
ambient conditions. The optical reflectance properties of the samples were measured in the wavelength
range of 200 to 1000 nm using an Avantes AvaSpec-HS1024 × 122TEC fibre optic spectrometer (Avantes
BV, Apeldoorn, The Netherlands). We used a bifurcated probe for illumination and detection with
200 µm core diameters. The reflectance spectra of the samples were recorded by collecting the
specular reflected light under normal incidence illumination with an Avantes AvaLight DH-S-BAL
balanced UV-Vis light source (Apeldoorn, The Netherlands). Scanning electron microscopy (SEM) and
energy-dispersive X-ray spectroscopy (EDX) investigations were performed with Thermo Scientific
Scios2 (Brno, Czech Republic) and Oxford X-max 20 (Oxford, UK) instruments, respectively.

3. Results and Discussion

The surface of 7 nm Ag deposited onto HOPG is shown in Figure 1a, as measured by AFM.
The as-deposited thin film is not continuous and can be characterized by a root mean square roughness
(RMS) of 7.5 nm. Annealing at 400 ◦C resulted in flat nanoparticles (Figure 1b) formed due to the
surface diffusion and aggregation of silver clusters. The nanoparticles can be characterized by having
a mean height of 26 ± 4.9 nm (Figure 1c) and equivalent disk radius of 40 ± 9.6 nm (Figure 1d).
We applied this method earlier for the preparation of flat gold nanoparticles with similar dimensions
and surface coverage [26].
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Figure 1. (a) Atomic force microscopy (AFM) image of 7 nm Ag as-deposited onto highly oriented 

pyrolytic graphite (HOPG) substrate. (b) AFM image of the same sample as in (a) after annealing at 

400 °C. Mean height (c) and equivalent disc radius (d) distribution of 161 Ag NPs formed during 

annealing. 

We also prepared graphene-covered samples by transferring the two-dimensional carbon sheet 

onto the as-deposited silver thin film. Typical AFM images of the graphene–Ag hybrid 

nanostructures obtained after a similar annealing procedure are shown in Figure 2. Elongated 

structures, as well as large, nanoparticle-free graphene–HOPG areas, are also observed (Figure 2a). 

Closer investigation of the elongated structures reveals graphene-covered groups of Ag NPs, as 

shown in Figure 2b (graphene–Ag NP–HOPG sandwich structure). 

 

Figure 2. (a) AFM image of graphene-covered Ag nanostructures formed on HOPG substrate during 

annealing at 400 °C. Bare nanoparticles are also observed between the two white dashed lines, which 

mark a discontinuity of the graphene overlayer. (b) Larger magnification of AFM image 

corresponding to the square marked with green lines in (a), showing graphene–Ag NP–HOPG 

sandwich structure. 

Graphene–Ag NPs were also investigated by STM and STS in order to study the effect of silver 

contact on the density of electronic states of graphene. Figure 3a shows a STM image of a graphene-
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Figure 1. (a) Atomic force microscopy (AFM) image of 7 nm Ag as-deposited onto highly oriented
pyrolytic graphite (HOPG) substrate. (b) AFM image of the same sample as in (a) after annealing
at 400 ◦C. Mean height (c) and equivalent disc radius (d) distribution of 161 Ag NPs formed
during annealing.

We also prepared graphene-covered samples by transferring the two-dimensional carbon sheet
onto the as-deposited silver thin film. Typical AFM images of the graphene–Ag hybrid nanostructures
obtained after a similar annealing procedure are shown in Figure 2. Elongated structures, as well as
large, nanoparticle-free graphene–HOPG areas, are also observed (Figure 2a). Closer investigation
of the elongated structures reveals graphene-covered groups of Ag NPs, as shown in Figure 2b
(graphene–Ag NP–HOPG sandwich structure).
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Figure 2. (a) AFM image of graphene-covered Ag nanostructures formed on HOPG substrate during
annealing at 400 ◦C. Bare nanoparticles are also observed between the two white dashed lines,
which mark a discontinuity of the graphene overlayer. (b) Larger magnification of AFM image
corresponding to the square marked with green lines in (a), showing graphene–Ag NP–HOPG
sandwich structure.
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Graphene–Ag NPs were also investigated by STM and STS in order to study the effect of
silver contact on the density of electronic states of graphene. Figure 3a shows a STM image of a
graphene-covered Ag nanostructure with a maximum height of 45 nm. The atomic-resolution inset
image reveals the honeycomb lattice of the graphene overlayer. STS measurements were performed
both on the top of the nanostructure (red symbol in Figure 3a) and on nearby graphene–HOPG
(Figure 3a, white symbol). The dI/dU spectra shown in Figure 3b were obtained by numerically
differentiating and averaging 25 different current (I)–voltage (U) characteristics for each area. A clear
shift is observed between the two average dI/dU spectra, with p-doped graphene on HOPG (Dirac
point around 70 mV) and slightly n-doped graphene on the Ag NP (Dirac point around –10 mV).
This local probe measurement is in agreement with previous results, where electron transfer from Ag
NPs to graphene was demonstrated by Raman spectroscopy [28].
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Figure 3. (a) Scanning tunneling microscopy (STM) image of a graphene-covered Ag nanostructure.
Dark-colored regions correspond to graphene on the HOPG substrate. Tunneling parameters: I = 0.4 nA,
U = 0.8 V. Atomic-resolution STM image of silver-supported graphene is shown in the inset. (b) The
dI/dU spectra measured on graphene–HOPG (dashed line) and graphene–Ag (red line). The STS
measurements were performed at the graphene–HOPG and graphene–Ag positions marked in (a) with
white and red symbols, respectively.

Next, we discuss the optical properties of the prepared samples. The reflectance spectra of the
as-deposited Ag thin film (Figure 1a), bare Ag NPs (Figure 1b), and graphene-covered Ag NPs (Figure 2)
are shown in Figure 4a. While the spectrum of the as-deposited Ag thin film is featureless, we observe a
reflectance minimum at 379 nm for the sample with bare Ag NPs, which is attributed to the LSPR of the
nanoparticles. The LSPR is more pronounced for the graphene-covered Ag NPs, which is redshifted to
396 nm. This redshift can be partly induced by the increased effective refractive index of the medium,
due to the presence of a graphene overlayer [29]. On the other hand, the LSPR frequency (ωLSPR) is
closely related to the bulk plasmon frequency (ωP) of the metal through [30]:

ωLSPR ≈
ωP

√
1 + 2εm

=

√
Ne2/mε0

1 + 2εm
(1)

where N is the density of electrons in the NPs, e is the electronic charge, m is the effective mass of
the electron, and ε0, εm are the permittivity of free space and the surrounding medium, respectively.
The transfer of electrons from Ag NPs to graphene, as demonstrated in Figure 3, decreases N and
also induces a redshift of the LSPR wavelength. In addition, possible electrostatic coupling [31]
between closely spaced graphene-encapsulated Ag NPs, as well as the formation of larger NPs (see
Figure 5a) [32], can also contribute to the observed total LSPR redshift of 17 nm. The reflectance
decreased at all wavelengths compared to the reflectance from bare Ag NPs, which is attributed to the
enhanced light absorption of graphene [33].
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Figure 4. (a) Optical reflectance spectra of the as-deposited Ag thin film (black), the Ag NPs produced
by annealing (blue), and the graphene-covered Ag NPs (red). The LSPR of Ag NPs (blue dashed line) is
redshifted when covered with graphene (red dashed line). (b) Optical reflectance spectra measured after
one month on bare Ag NPs (orange) and on graphene–Ag NPs (black). For better comparison, the initial
spectra from (a) are also shown (blue dashed and red dashed lines, respectively). The spectrum of
graphene–Ag NPs measured after 3 months is also plotted (green).

Further, we investigated how the optical properties of Ag NPs and graphene–Ag NPs kept under
ambient conditions vary in time. We performed the same reflectance measurements on the same
samples one month and three months after preparation. The corresponding spectra are shown in
Figure 4b. It can be clearly observed that due to spontaneous sulfurization, the optical reflectance
spectrum of bare Ag NPs already loses its features after one month, similar to earlier reports [19,21].
In contrast, graphene-covered Ag NPs have well-defined LSPR, even after three months. This is in
agreement with the Raman spectroscopy data reported very recently [34], which show the stability of
graphene-covered Ag NPs after 10 weeks. Nevertheless, the amplitude of the resonance decreases and
the LSPR gradually shifts towards larger wavelengths, i.e., the reflectance minimum is observed at 418
and 433 nm after one and three months, respectively. Further reflectance measurements revealed that
the LSPR of graphene-covered Ag NPs vanished in approximately nine months after preparation.

For a more detailed study of spontaneous sulfurization, we investigated the graphene-covered
Ag NPs by SEM and EDX. The SEM image of freshly prepared and partially covered Ag NPs is shown
in Figure 5a. The edge of the graphene is marked with red lines as guides for the eye. The left part of
the image shows bare Ag NPs similar to the ones measured by AFM (Figure 1b), while we can observe
several graphene-encapsulated groups of Ag NPs (as in Figure 2b) on the right part of the image.
Nanoparticles with similar shape and size can be observed in both non-covered and graphene-covered
areas. However, due to the confinement induced by the graphene overlayer, the encapsulated NPs are
closer to each other. Moreover, they tend to coalesce and to form larger nanoparticles. EDX analysis of
bare and graphene-encapsulated NPs show characteristic Ag peaks near 3 keV, as shown in Figure 5b.
Additionally, on graphene-covered areas, a Si peak is observed at 1.74 keV (Figure 5b, black), which is
probably due to contamination during graphene transfer (it is missing on areas with bare Ag NPs).
For comparison, the EDX spectrum of the freshly evaporated 7 nm Ag thin film is also displayed.
The same measurements were performed on samples kept under ambient conditions for 14 months,
as shown in Figure 5c,d. Figure 5c shows nanoparticles partially covered with graphene. Non-covered
nanoparticles are observed in the right part of the image, between the two red lines marking the
graphene edges. It is clear that the structure of nanoparticles changed remarkably and they have a
less-defined shape after 14 months. In contrast, the graphene-encapsulated NPs observed on the lower
left part of Figure 5c have the same shape as freshly prepared NPs. EDX analysis of aged non-covered
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nanoparticles (Figure 5d, red) reveals the presence of sulfur (peak at 2.3 eV), which is the spectroscopic
signature of spontaneous sulfurization from air.Materials 2020, 13, x FOR PEER REVIEW 6 of 8 
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Figure 5. (a) SEM image of freshly prepared Ag NPs partially covered with graphene. The graphene
edges are marked with red lines as guides for the eye. (b) EDX spectra measured on freshly prepared
7 nm Ag thin film (blue), bare Ag NPs (red), and graphene–Ag NPs (black). (c) SEM image of Ag NPs
partially covered with graphene, 14 months after preparation. Graphene edges are marked with red
lines as guides for the eye. (d) EDX spectra measured on bare Ag NPs (red) and graphene–Ag NPs
(black), 14 months after preparation.

Importantly, no sulfur is observed on graphene-encapsulated Ag NPs (Figure 5d, black), even after
14 months. Here, we have to stress that the total graphene coverage of graphene-coated samples is
40–50% as a result of the transfer process (graphene breaks easily at grain boundaries). This infers
that the gradual loss of plasmonic properties shown in Figure 4b is primarily due to the exposed areas
where sulfurization of non-covered Ag NPs occur.

4. Conclusions

We reported a simple method for the synthesis of graphene–silver nanoparticle hybrids on HOPG
substrates. We showed that in the case of a graphene overlayer, the Ag NPs tend to coalesce and to
form larger nanoparticles. STM and STS measurements performed on graphene–Ag NPs revealed
charge transfer from silver resulting in the n-doping of graphene. We demonstrated by optical
reflectance investigations that a graphene overlayer preserves the local surface plasmon resonance
properties of Ag NPs for at least three months, although the LSPR is gradually redshifted. We showed
by SEM and EDX that graphene can protect Ag NPs from ambient sulfur for more than one year.
Nevertheless, with the applied transfer process, only 40–50% of Ag NPs are coated and the observed
loss of plasmonic properties is primarily attributed to the spontaneous sulfurization of non-covered
NPs. The long-term stability of LSPR could be significantly improved by increasing the total graphene
coverage. Such protection of Ag NPs by an atomically thin cover layer can be very useful, for example
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in LSPR shift-based sensor applications, photocatalysis, or the preparation of advanced substrates for
surface-enhanced Raman spectroscopy.
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