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ABSTRACT A long-standing biological question is how evolution has shaped the
genomic architecture of dikaryotic fungi. To answer this, high-quality genomic re-
sources that enable haplotype comparisons are essential. Short-read genome assem-
blies for dikaryotic fungi are highly fragmented and lack haplotype-specific informa-
tion due to the high heterozygosity and repeat content of these genomes. Here, we
present a diploid-aware assembly of the wheat stripe rust fungus Puccinia striiformis
f. sp. tritici based on long reads using the FALCON-Unzip assembler. Transcriptome
sequencing data sets were used to infer high-quality gene models and identify viru-
lence genes involved in plant infection referred to as effectors. This represents the
most complete Puccinia striiformis f. sp. tritici genome assembly to date (83 Mb, 156
contigs, N50 of 1.5 Mb) and provides phased haplotype information for over 92% of
the genome. Comparisons of the phase blocks revealed high interhaplotype diversity
of over 6%. More than 25% of all genes lack a clear allelic counterpart. When we in-
vestigated genome features that potentially promote the rapid evolution of viru-
lence, we found that candidate effector genes are spatially associated with con-
served genes commonly found in basidiomycetes. Yet, candidate effectors that lack
an allelic counterpart are more distant from conserved genes than allelic candidate
effectors and are less likely to be evolutionarily conserved within the P. striiformis
species complex and Pucciniales. In summary, this haplotype-phased assembly en-
abled us to discover novel genome features of a dikaryotic plant-pathogenic fungus
previously hidden in collapsed and fragmented genome assemblies.

IMPORTANCE Current representations of eukaryotic microbial genomes are haploid,
hiding the genomic diversity intrinsic to diploid and polyploid life forms. This hidden
diversity contributes to the organism’s evolutionary potential and ability to adapt to
stress conditions. Yet, it is challenging to provide haplotype-specific information at a
whole-genome level. Here, we take advantage of long-read DNA sequencing tech-
nology and a tailored-assembly algorithm to disentangle the two haploid genomes
of a dikaryotic pathogenic wheat rust fungus. The two genomes display high levels
of nucleotide and structural variations, which lead to allelic variation and the pres-
ence of genes lacking allelic counterparts. Nonallelic candidate effector genes, which
likely encode important pathogenicity factors, display distinct genome localization
patterns and are less likely to be evolutionary conserved than those which are pres-
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ent as allelic pairs. This genomic diversity may promote rapid host adaptation
and/or be related to the age of the sequenced isolate since last meiosis.

KEYWORDS Dikaryon, basidiomycetes, genomics, plant pathogens

The Basidiomycota and the Ascomycota constitute the two largest fungal phyla and
contain many of the most damaging crop pathogens (1). The dominant life phase

for most basidiomycete species is dikaryotic, where two haploid nuclei coexist within
one cell (2). To date, about 475 basidiomycete fungal genome sequences representing
some 245 species are available in the public domain (as of September 2017 [https://
www.ncbi.nlm.nih.gov/genome/]). These genome references are either representations
of the haploid life stage of a species (3) or collapsed and mosaic assemblies of the
dikaryotic state (4–7). Hence, information about the interhaplotype variation in dikary-
otic Basidiomycota beyond single nucleotide polymorphisms (SNPs) and small inser-
tions and deletions (indels) is very limited. The absence of haplotype-phased informa-
tion limits the studies of genome architecture and evolution, particularly for the rust
fungi of the order Pucciniales, many of which are extremely destructive pathogens of
economically important crops, including cereals, coffee, and soybean (8–13).

Stripe, stem, and leaf rusts are the three rust diseases that impact wheat production,
one of the most important staples in human diets. Of these, stripe rust caused by
Puccinia striiformis f. sp. tritici is currently the most damaging disease, with estimated
annual losses of $1 billion USD (14, 15). As a biotrophic pathogen, P. striiformis f. sp.
tritici colonizes living hosts and extracts large amounts of nutrients from plant cells
through specialized structures called haustoria. The large tax on host energy reserves
caused by P. striiformis f. sp. tritici infection results in yield losses mostly associated with
poor grain filling (16).

The full life cycle of P. striiformis f. sp. tritici involves asexual and sexual reproductive
phases associated with the production of specific spore types (13, 16). The damage to
wheat occurs during the asexual cycle and results from repeated infections throughout
the growing season that cause exponential amplification of dikaryotic urediniospores.
P. striiformis f. sp. tritici infects more than 30 varieties of Berberis spp. and Mahonia spp.
to complete its full sexual life cycle, which involves four additional spore stages and
sexual recombination during meiosis (17–19). Sexual reproduction is restricted geo-
graphically to the Himalayan region (Nepal, Pakistan, and China), where it leads to high
levels of genetic diversity that are largely absent in other parts of the world. This makes
the extended Himalayan region the center of P. striiformis f. sp. tritici diversity and the
main source for new highly virulent P. striiformis f. sp. tritici isolates (12, 20).

Genetic resistance in the host plant, particularly race-specific resistance, is often
used in the field to reduce damage by pathogenic rust fungi (21, 22). Race-specific
resistance is generally conferred by dominant resistance (R) genes in the host, which
recognize specific avirulence (Avr) alleles within the pathogen. Mechanistically, Avr
alleles encode variants of virulence effector proteins, and the R gene typically encodes
a nucleotide-binding leucine-rich repeat (NB-LRR) protein that detects the Avr protein
within the infected plant cell. In the case of P. striiformis f. sp. tritici, more than 75 yellow
rust resistance genes (Yr) have been cataloged to date. A given P. striiformis f. sp. tritici
isolate has a characteristic spectrum of Avr alleles that can be distinguished on a set of
wheat tester lines containing these Yr genes (23). The collective virulence phenotypes
on such differential sets defines the P. striiformis f. sp. tritici pathotype. Wheat stripe rust
epidemics are associated with the appearance of genetically novel pathotypes which
are not recognized by currently employed R genes and hence grow on commercial
wheat cultivars. As such, incursions of exotic stripe rust isolates with new virulence
traits can play a role in disease outbreaks, for instance, the Warrior P. striiformis f. sp.
tritici lineage, which invaded Europe in 2011, was highly successful because it was
virulent on the wheat cultivars grown at that time (24, 25). In addition to this novel
exotic incursion, it has been well-documented that P. striiformis f. sp. tritici rapidly
evolved new virulence traits on a continental scale in Australia following its introduc-
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tion in 1979 (26). However, the mechanisms underlying the evolution of these new
pathotypes remain understudied, as no genetic locus contributing to the evolution of
virulence has yet been identified in P. striiformis f. sp. tritici. While new combinations of
alleles generated during sexual recombination can lead to the emergence of new
pathotypes, the contributions of other genetic and molecular events to pathogen
evolution during asexual reproduction are unclear. Presumably, the occurrence of
mutations explains the loss of Avr specificities and the adaptation to otherwise-resistant
wheat cultivars (13, 26).

Most agriculturally important fungi are haploid with small genomes (27). Rusts, on
the other hand, are dikaryotic in the asexual phase and have expanded genomes with
large amounts of repetitive sequence (6, 7). It is likely that the separation of rust
genomes into two haploid copies contributes to their rapid evolution. Existing P.
striiformis f. sp. tritici genome sequences suffer from the use of short-read sequencing
technologies, which prevent characterization of individual haploid genomes, while the
high percentage of repetitive DNA reduces the size of contigs that can be assembled
(4, 5, 28). The overall similar gene content of each genome causes the reads from allelic
variants to collapse upon assembly, producing a consensus sequence that loses hap-
lotype (phasing) information. Read mapping to the consensus reference revealed that
the two genomes are highly heterozygous for SNPs (5, 7), but differences in effector and
gene content are undetectable. These problems can be addressed to some extent by
using traditional Sanger long-sequence reads or strategies such as fosmid-to-fosmid
sequencing (6, 7); however, these approaches are expensive. Opportunities to resolve
the questions at higher resolution have arisen from new technologies that generate
very long sequencing reads (�10 kb) (29, 30).

Here, we used long-read sequencing to provide a near-complete haplotype-phased
genome assembly for an isolate representing the first pathotype of P. striiformis f. sp.
tritici detected in Australia in 1979 (26). Our assembly provides the most complete P.
striiformis f. sp. tritici genome reference to date, with over 97% of all basidiomycete
benchmarking universal single-copy orthologs (BUSCOs) captured (31). In addition,
phased haplotype information for over 92% of the genome enabled us to detect high
interhaplotype diversity at the nucleotide and structural levels, which identified allelic
variation and showed that 25% of all genes lack a clear allelic counterpart. We identified
over 1,700 candidate effector genes which are more often spatially associated with
each other and conserved BUSCOs than with repetitive elements. Nonallelic candidate
effectors that lack counterparts in the alternate haploid genome region are less likely
to be evolutionarily conserved in other rust fungi. Thus, the highly contiguous haplo-
type assembly has allowed discovery of novel genome features that may be linked to
the rapid evolution of this devastating pathogen.

RESULTS AND DISCUSSION
Haplotype-aware genome assembly of an Australian Puccinia striiformis f. sp.

tritici isolate. The main aim of this study was to generate a high-quality reference
genome for P. striiformis f. sp. tritici. For this purpose, we sequenced a single pustule
isolate of the Australian founder pathotype P. striiformis f. sp. tritici 104E137A-, collected
in 1982 (this strain is abbreviated Pst-104E). We sequenced 13 PacBio SMRT cells and
obtained a total of 13.7 Gb of data with an average read length of 10,710 bases and a
read length N50 of 15,196 bases (see Table S1A in the supplemental material). We
assembled these data using the diploid-aware assembler FALCON-Unzip (29) to obtain
a synthetic haplotype-phased reference genome. The FALCON-Unzip assembler is
designed to phase structural variations and associated SNPs into distinct haplotype
blocks. This process gives rise to a primary assembly (primary contigs) and linked
haplotype blocks (haplotigs). The haplotigs represent the alternative genome structure
with respect to primary contigs. FALCON-Unzip does not always link physically con-
nected phase blocks, and primary contigs can represent sequences from either of the
two haploid genomes (29).
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Previous unphased P. striiformis f. sp. tritici genome assemblies ranged in size from
53 to 115 Mb (4, 5, 7, 28). In an attempt to reconcile the differences in reported genome
sizes, we used GenomeScope to estimate the haploid genome size, using k-mer
frequencies (30-mers) in two Illumina short-read data sets of Pst-104E (32). Based on this
analysis, we estimated a haploid genome size of 68 to 71 Mb, with a heterozygosity
(SNPs and indels) rate of approximately 1.2%. We assembled our long-read data into
156 primary contigs with a total length of 83 Mb after manual curation. The corre-
sponding phased haplotype blocks were contained in 475 haplotigs with a total size of
73 Mb (Table 1).

These assembly statistics are a vast improvement over information available from
previous assemblies in terms of connectivity and number of contigs (Fig. 1A). The

TABLE 1 Summary of Pst-104E genome assembly and annotationa

Parameter

Primary assembly Haplotype assembly

Primary contigs with haplotigs Primary contigs without haplotigs Haplotigs

No. of contigs 99 57 475
No. of bases 79,770,604 3,585,012 73,478,481
TE coverage (%) 53.72 67.17 52.82
No. of genes 15,303 625 14,321
Avg gene length 1,210 1,290 1,189
Avg no. of introns/gene 3.45 2.70 3.42
No. of genes/10 kb 1.92 1.74 1.95
No. of BUSCOs 1395 49 1,293
No. of BUSCOs/10 kb 0.17 0.14 0.18
No. of candidate effectorsb 1,523 49 1,390
No. of candidate effectors/10 kb 0.19 0.14 0.19
aSummary statistics for the genome assembly according to the three different contig categories as described in the main text.
bCandidate effectors were predicted based on the machine-learning algorithm EffectorP and transcriptional upregulation during infection of wheat, as described in the
text.

FIG 1 The Pst-104E genome assembly is highly contiguous and complete. (A) Comparison of the Pst-104E primary and haplotig assemblies with the two most
complete publicly available P. striiformis f. sp. tritici genome assemblies, Pst-78 and Pst-130. The histograms and the left y axis show log10 counts of contigs
within each size bin. The dots and the right y axis show the cumulative sizes of small to large sorted contig lengths. Each dot represents a single contig of the
given size, shown on the x axis. Each plot also shows the number of contigs or scaffolds, total assembly size, N50 of the assembly, and NG50 assuming a genome
size of 85 Mb. NG50 is the N50 of an assembly considering the estimated genome size instead of the actual assembly size. This enables comparisons between
different-sized assemblies. (B) Genome completeness was assessed using benchmarking universal single-copy orthologs (BUSCOs) for Basidiomycota (odb9) as
proxy. The graph shows BUSCO results for Pst-104E primary (p), haplotig (h), and nonredundantly combined (ph) assemblies, in comparison to all publicly
available P. striiformis f. sp. tritici genome assemblies with gene models, including Pst-78, Pst-130, Pst-21, Pst-43, Pst-0821, and Pst-887. The analysis was
performed on the protein level, using publicly available gene models. An asterisk indicates the actual number of identified BUSCOs for the complete Pst-104E
ph assembly before filtering gene models for similarity with genes related to transposable elements.
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primary assembly has a contig N50 of 1.3 Mb, compared to a scaffold N50 of 0.5 Mb for
Pst-78 or contig N50 of 5.1 kb for Pst-130, often referred to as the reference genome (4,
25, 28). In addition, we identified 1,302 (97.5%) of the 1,335 benchmarking genes
(BUSCO v2; http://busco.ezlab.org/v2) (31) that are highly conserved in basidiomycetes,
with only 10 (0.7%) missing in our combined assembly before filtering for genes related
to transposable elements (TE). Our final assembly had 1,292 (96.8%) complete BUSCOs,
with 19 (1.4%) missing. Compared to the wide variation in BUSCOs that identified from
previous assemblies, ranging from 35.7% for Pst-887 to 95.6% for Pst-78 (Fig. 1B). In
summary, our assembly currently represents the most complete P. striiformis f. sp. tritici
reference in terms of contiguity, haplotype-phased information, and gene content. This
advance provides a new resource to investigate genome architecture and interhaplo-
type variation for this dikaryotic plant pathogen.

High levels of interhaplotype block variation. The Pst-104E primary assembly
covers 83 Mb in a total of 156 primary contigs. Within this assembly, 99 primary contigs
(~80 Mb) are associated with 475 haplotigs (~73 Mb), representing phased information
for 92% of the primary contigs. These primary contigs are referred to as primary contigs
with haplotigs. Overall, short-read mapping coverage analysis strongly supported our
genome assembly. When we mapped short reads against the primary assembly, we
observed a bimodal distribution of coverage, with a haploid genome coverage around
~60-fold and a diploid genome coverage of ~120-fold (Fig. S1A). Regions with ~60-fold
coverage are sequences that are distinct enough between the two haplotypes that only
short reads originating from these specific sequences can be mapped. Regions with
~120-fold coverage are sequences that are similar enough in the two haplotypes that
short reads from both haplotypes collapse on the primary contig sequence when
mapped against primary contigs only.

In contrast, when reads were mapped against both primary contigs and haplotigs,
we found haplotigs and phased primary contig regions, which align haplotigs, dis-
played ~60-fold coverage (Fig. S1E and F). These are regions of the Pst-104E genome
that are phased into two haplotype blocks. In addition, primary contig regions that lack
an associated haplotig display mostly ~60-fold coverage (Fig. S1C and G), suggesting
that these are largely sequences specific to one haplotype and not collapsed highly
similar regions of corresponding chromosome copies. Only a minor fraction of primary
contigs show ~120-fold coverage (Fig. S1D and G) when mapped against primary
contigs and haplotigs, indicating the presence of a low residual of unphased sequences
in our assembly.

Of the 57 primary contigs (~3.6 Mb) without associated haplotigs (Table 1), 51
(~3.4 Mb) are likely single-haplotype-specific sequences, because they display similar
mean read coverage (~60-fold) to phased haploid regions of the genome (Fig. S1). This
high level of phasing enabled us to investigate interhaplotype variation on a whole-
genome scale. Previous studies using Illumina short reads mapped against the con-
sensus merged haplotype assemblies estimated P. striiformis f. sp. tritici interhaplotype
variation based on heterozygous SNPs between 0.5% and 1% (5, 7, 28). Taking a similar
approach, we identified approximately 0.5% (416,460 heterozygous SNPs) of the ge-
nome as variable when mapping lllumina short reads against primary contigs only.
However, we estimated a dramatically higher level of interhaplotype variation when
using this phased assembly. For this analysis, we aligned all haplotigs with their
corresponding primary contigs and estimated variations by using Assemblytics (33, 34).
Assemblytics defines six major categories of structural variations, including insertions
and deletions, tandem repeats identified by overlapping alignments and other types of
repeats suggested by gapped nonunique contig alignments (see Fig. 2A for illustration
of the six different variant categories) and divides these according to size into bins
(Fig. 2A). This analysis revealed that structural variation comprised 6.4% (~5.10/
79.77 Mb) of the primary assembly space compared to corresponding haplotigs
(Fig. 2A) (33). The variation between two primary contigs and their respective haplotigs
is illustrated in the dot plots shown in Fig. 2B and C, with large-scale inversions,
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deletions, and insertions in haplotigs associated with two primary contigs. It is likely
that the actual difference between the two haplotypes is higher than the estimated
6.4%, because calculations were restricted to a maximal variant size of 10 kb and did
not include primary contigs without haplotigs, which account for another ~3.6%.
Overall, the dramatic difference in estimated interhaplotype variation between previ-
ous assemblies (5, 7, 28) and short-read-based prediction programs (32) is likely caused
by the fact that most of the observed variations are contained in size bins greater than
500 bases, which are not detectable with Illumina short-read data and highly frag-
mented assemblies.

Over half of the Pst-104E genome is covered by repetitive sequences. We
annotated primary contigs and haplotigs independently based on our observations of
high levels of heterozygosity between the two (Fig. 2; Fig. S2). We first identified and
classified TEs by using the REPET pipeline (35) to the order level, based on the Wicker
classification (36). We further transferred superfamily annotations from the underlying
BLAST (37) hits if they agreed with the REPET annotations and with each other. There
was no major difference between TE coverage of primary contigs (54%, ~45 Mb) and
haplotigs (53%, ~39 Mb) (Fig. S2). However, primary contigs that lacked haplotigs had
a larger proportion of TEs, with a total coverage of 67%, which may explain their
increased fragmentation, reduced contig length, and inability to assign haplotigs
(Table 1). The composition of TE superfamilies on primary contigs versus haplotigs was

FIG 2 The Pst-104E genome is characterized by high levels of interhaplotype variation. (A) Summary of interhaplotype variation between primary contigs and
their respective haplotigs, analyzed using Assemblytics. Each plot indicates the number of bases that are spanned by the specific variation category, which is
illustrated by a cartoon. The number labeling each histogram represents the percentage of the total size of primary contigs with haplotigs that are contained
within this variation type and size bin. (B and C) Two representative whole-genome alignments of primary contigs 019 and 028 with their respective haplotigs.
This illustrates the large-scale variations summarized in panel A.
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very similar (Fig. S2). Both retrotransposons (class I) and DNA transposons (class II) cover
30% of the genome each (note that distinct TEs belonging to different categories can
overlap). For class I transposons, the long terminal repeat (LTR) order was the most
prominent, with ~27% coverage, and within this order elements from the Gypsy and
Copia superfamilies were most prominent. The only other class I orders with greater
than 1% genome coverage were LARD and DIRS elements. Class II elements were
dominated by TIR elements, with a genome coverage of ~20%, with significant con-
tributions of elements belonging to the hAT, MuDR, PIF-Harbinger, Tc1-Mariner, and
CATCA superfamilies. More than 6% of the genome was covered by class II elements
that could not be classified below the class level and showed no homology to
previously identified TEs. This was in contrast to the minimal coverage by unclassifiable
class I elements (0.05%).

Overall, this is the highest number of identified transposable elements detected in
any P. striiformis f. sp. tritici genome assemblies so far, as previous reports varied from
17% to 50% (4, 7, 28). Such an increased content of identified transposable elements is
likely due to the increased contiguity and the absence of any unidentified bases (Ns) in
our assembly (Fig. 1).

Next, we reasoned that younger, less divergent TEs are mostly likely to contribute to
current genome evolution. Therefore, we estimated TE ages on primary contigs, which
are more contiguous than haplotigs, based on their divergence from the consensus
sequence of each element (Fig. S3A and B; see also File 1 in the information available
on our study’s github page at https://github.com/BenjaminSchwessinger/Pst_104_E137
_A-_genome) (38). This enabled us to investigate how much of the genome is covered
by relatively young TEs (�100 Mya in our approximation) with high copy numbers (�50
copies) (Fig. S3C). The genome coverage of these younger high-copy-number TEs
followed the overall coverage analysis closely (Fig. S2B and C and S3C). Class I LTR
elements, especially Copia and Gypsy superfamily members, and class II elements
belonging to the TIR order and unclassified class II elements likely contribute to current
genome evolution. In the future, the availability of further high-quality genome assem-
blies for rust fungi will provide greater insights into TE evolution in Pucciniales and their
contribution to genome evolution.

High levels of interhaplotype structural variation lead to variable gene content
between primary contigs and haplotigs. We also annotated gene models on primary
contigs and haplotigs independently by using extensive sets of newly generated and
publicly available transcriptome sequencing (RNA-seq) data (39). This is in contrast to
previously published P. striiformis f. sp. tritici genomes that were annotated nearly
exclusively using ab initio gene-finding approaches without gene expression data (4, 5,
7, 28). The newly generated RNA-seq data sets were obtained from dormant and
germinated urediniospores, wheat leaf tissue 6 and 9 days postinfection (dpi), and
haustoria-enriched fractions. These data sets were complemented by publicly available
RNA-seq data from germinated spores and infected wheat tissue sampled at 13
different time point-plant genotype combinations (39). We used these extensive ex-
pression data in a comprehensive genome annotation pipeline (40–44) and identified
15,928 and 14,321 gene models on primary contigs and haplotigs, respectively, after
filtering for genes related to TE function (Table 1; see also Table S1B) (45, 46). The
protein sequences of these genes were functionally annotated using a number of
bioinformatic tools (Table S1B; see also File 2 at our github website, as described above
for File 1 and reported in our “Data Availability” section at the end of the Materials and
Methods section) (31, 47–51). We obtained very similar annotation levels for primary
contigs and haplotigs with about 52% of all proteins having at least one functional
annotation in the following categories; GO terms, InterPro match, Pfam domain,
EggNog term, KEGG pathway annotation, Merops catalytic domain, or carbohydrate
hydrolyzing enzymatic domains (CAZy) (31, 47–51). The level of functional annotation
for P. striiformis f. sp. tritici proteins identified as BUSCO orthologs was near complete
with only three proteins in total (�0.1%) lacking any functionally recognizable domain
(Table S1B). This pattern was reversed when characterizing candidate effectors (see
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identification below) as approximately 83% of all proteins lacked a conserved functional
domain.

Overall, the haplotype-phased assembly did not show biased distribution of any
particular gene annotation group (Table S1B); this is consistent with the high level of
haplotype phasing. This encouraged us to investigate the relationship between the two
haplotype-phased block assemblies (primary contigs compared to haplotigs) in terms
of gene content. One must keep in mind that these two assemblies do not actually
represent the true haploid genomes, because of potential haplotype switching be-
tween primary contigs and haplotigs and the inability to assign independent contigs to
a specific haploid genome copy (29). However, a relational comparison between the
two assemblies is still valuable in order to investigate the approximate interhaplotype
gene diversity. Therefore, to simplify the analysis, we treated primary contigs and
haplotigs as two representative genetic units. We used Proteinortho in synteny mode
to identify allele pairs between the primary contigs and haplotigs (52). We identified a
total of 10,921 potential syntenic allele pairings, including 10,785 primary proteins and
10,860 haplotig proteins (Table S1C; see Files 3 and 4 at our study’s github repository
for allelic variation comparisons). Of these, 9,756 were properly paired where the
haplotig gene models were located on an associated haplotig that overlapped with the
primary gene model when targeted whole-genome alignments were performed
(Fig. S4A and Table S1B). These correspond to “classic” alleles in a diploid organism.
Another 450 pairs were not directly linked, as the haplotig containing the allelic
ortholog did not overlap with the primary gene model, although it was associated with
the primary contig (Fig. S4B; File 3). These may be simple rearrangements linked to
inversions or repeat duplications. A further 715 pairs were completely unlinked, as the
allele-containing haplotig was not associated with the respective primary contig in our
assembly (Fig. S4C; File 4). We randomly selected 176 of these loci and investigated
them manually by whole-genome alignment of haplotigs to primary contigs, followed
by microsynteny analysis of the identified gene loci (34, 53, 54). An example of this
analysis is illustrated in Fig. 3. In this case, an ~40-kb region present in both primary
contig 014 and haplotig 027_006 showed microsynteny for three genes each, namely,
Pst104E_05635-05637 and Pst_104E_24450-24452, respectively (Fig. 3D), while the over-
all macrosynteny was not conserved (Fig. 3A to C). This may have been caused by
genetic transposition of the identified region from the chromosomal region corre-
sponding to a haplotig that fully aligned with primary contig 014 into the sequence of
the chromosomal region corresponding to haplotig 027_006. We found support for
such allele transposition, either via cut-and-paste or copy-and-paste mechanisms, in
71/176 cases. The remaining cases could not be categorized confidently and may
represent complex genomic regions, genetically linked contigs that were broken up
during the assembly process, gene duplication events, or misassemblies. Based on this
manual inspection, we estimated that approximately 280 loci ([71/176] � 715 total
pairs) contain alleles that might be rearranged in one of the two haploid genomes. We
identified a further 912 loci that clustered at the protein level, yet their genomic
location was not syntenic between the two haplotype-phased block assemblies (see
File 5 at our study’s github repository). We refer to these genes as interhaplotype
paralogs. In summary, our findings suggest that over 3% (~1,192/30,249) of all genes
are closely related at the protein level but do not reside in regions displaying mac-
rosynteny.

We identified 4,761 primary and 2,931 haplotig genes that did not cluster at the
protein level when we used Proteinortho, and hence these may represent singletons,
with singletons defined as genes of a diploid/dihaploid organism that lack alleles or
interhaplotype paralogs (Table S1C). Of the 4,761 primary genes, 663 were located in
regions where the assembly was not haplotype phased based on coverage analysis
using Illumina short-read data (File 6). From these results, we identified 7,029 true
singletons (File 7) when we compared both haplotype-phase block assemblies, and
1,506 of these singletons are referred to as single haplotype genes (File 8) because they
lacked any BLAST hit (blastn, e value of �0.01) when we used the gene sequence as a
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query against the alternate haplotype-phase block sequence. These single-haplotype
genes are often linked in clusters, because for 1,164 single-haplotype genes, at least 1
of their nearest neighbors is also a haplotype-specific gene, compared to 212 of an
equally sized random subsample of all genes (Fisher’s exact test, P � 2.3 � 10�109).
Similarly, 1,492 haplotype-specific genes are located in regions where primary contigs
and associated haplotigs do not align, indicating haplotype-specific regions. Single-
haplotype genes are highly enriched in these regions, as only 251 of an equally sized
random subsample of all genes displayed a similar location (Fisher’s exact test, P �

4.5 � 10�265). Taken together, these findings suggest that there are numerous large
presence/absence structural polymorphisms between the two haploid genomes that
can span multiple adjacent genes and therefore contain many of the haplotype-specific
genes. To study the overall conservation of these single-haplotype genes, we queried
them against the EnsemblFungi cDNA and NCBI nr databases (blastn, e value of �0.01)
(55, 56). Out of 1,506 genes, 1,424 had at least one significant hit in either database,
with the top hits in all cases being fungal sequences. The remaining 82 genes lacked
any sequence homology to known fungal genes. These genes were significantly shorter
compared to all genes (mean lengths of 538 bases versus 1,538; two-sided Student’s

FIG 3 Allele transposition in the Pst-104E genome. (A to C) Dot plots of whole-genome alignments generated using the mummer toolset, where the x axis
represents primary contig and the y axis shows the haplotig sequence. (A) The whole-genome alignments of haplotigs_027_xxx to primary contig 014. (B) The
whole-genome alignment of haplotigs_027_xxx to primary contig 027. (C) The whole-genome alignment of haplotigs_014_xxx to primary contig 014. Black lines
indicate alignments in the forward direction, and red lines indicate alignments in the reverse direction in the haplotig sequence. The black rectangles highlight
an ~40-kb region in haplotig_027_006 that does not align to primary contig 027 yet aligns to a region in primary contig 014, which is not covered by an
associated haplotig of 014. (D) Microsynteny analysis of this extended region, with primary contig 014 on top and haplotig_027_006 on the bottom. Gene
models identified as alleles are labeled with their locus tag and shaded with a light blue background. Vertical gray shading illustrates the blastn identity between
sequences on both contigs, according to the scale shown in the right bottom corner next to the sequence scale bar. Start and stop positions for each contig
sequence are given at the start and the end of each contig.
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t test, P � 2.38e�07). We identified expression evidence for 27/82 of these genes,
including 7 of 10 predicted candidate effectors. This is consistent with observations in
other fungi for which isolate-specific genes tend to be shorter and are expressed at
lower levels than genes that are conserved between isolates (57). Overall, the high
levels of nonallelic genes (~25%) and single-haplotype genes (~5%) illustrate that the
large interhaplotype polymorphism on the nucleotide and structural levels (Fig. 2 and
3B and C) results in significant differences in gene content.

Candidate effector gene prediction using machine learning and in planta
expression data. The diversity of plant pathogen effectors makes them impossible to
identify based on protein sequences alone (58). Only a small number of effectors have
thus far been confirmed in rust fungi, namely, AvrP123, AvrP4, AvrL567, AvrM, RTP1,
PGTAUSPE-10-1 (59), AvrL2 and AvrM14 (60), PstSCR1 (61) and PEC6 (62). At the
sequence level, effectors do not share common domains or motifs, apart from the
presence of a signal peptide. To predict candidate effectors in Pst-104E, we utilized a
combination of gene expression analysis and machine learning methods. First, we
predicted fungal rust secretomes based on a protocol optimized for recovering fungal
candidate effectors (63). We observed large differences in secretome sizes across rust
proteomes, e.g., the stripe rust isolate Pst-887 had a small secretome compared to
Pst-104E (Table S1D). Overall the number of secreted proteins appeared to correlate
with completeness of P. striiformis f. sp. tritici genome assemblies based on BUSCO
analysis (Fig. 1B; Table S1D). This implies that it is difficult to perform comprehensive
orthology analyses between current P. striiformis f. sp. tritici assemblies, given that
many appear to be incomplete in terms of BUSCOs and therefore are likely incomplete
for other gene families also, including secreted proteins.

To predict candidate effectors, we used the machine-learning approach EffectorP on
all secreted proteins without predicted transmembrane domains (63). Overall, we
identified 1,069 and 969 candidate effectors from primary contigs and haplotigs,
respectively (File 9). We complemented this in silico approach with a detailed expres-
sion analysis of Pst-104E genes that encode secreted proteins. We used gene expression
data and k-means clustering to predict clusters in the secretome that are differentially
expressed during infection and exhibit similar expression profiles (Fig. 4; File 10). For
the primary contigs of Pst-104E, this resulted in eight predicted clusters. The expression
profiles of three clusters (clusters 2, 3, and 8) resembled the expected expression
patterns of haustorially delivered cytoplasmic rust effectors, namely, high expression in
haustorial tissue and at the infection time points of 6 and 9 dpi, as well as low
expression in spores (Fig. 4A). In total, there are 809 genes in clusters 2, 3, and 8, of
which 306 (~38%) were also identified by EffectorP as candidate effectors (Table S1E).
Upon closer inspection of primary contig expression patterns, cluster 8 in particular
exhibits the highest overall haustorial expression and overall lowest expression in
spores, indicating it is likely to contain cytoplasmic effectors. Interestingly, while cluster
8 shows the lowest percentage of EffectorP-predicted candidate effectors (26%), it has
the highest percentage of proteins with a predicted nuclear localization signal (NLS)
(Table S1E) (64). We also observed that proteins in cluster 8 are mostly larger (average
length of 410 amino acids [aa]) than other known rust effectors (the largest is AvrM,
at 314 aa), which might indicate that P. striiformis f. sp. tritici utilizes a class of larger
effector proteins that target host nuclei. Similarly, oomycete pathogens secrete a
class of cytoplasmic effectors called Crinklers that carry NLSs (65, 66), but these are not
candidate effectors predicted by EffectorP, possibly due to their larger size. Therefore,
we included both in planta-upregulated secreted proteins as well as EffectorP-
predicted proteins as candidate effectors. In total, we identified 1,572 candidate
effectors on primary contigs when we combined predictions based on in planta
expression analysis and EffectorP. We identified similar expression patterns for secreted
proteins on haplotigs. Clusters 11, 13, 14, and 15 shared a similar expression profile to
clusters 2, 3, and 8 and contained 673 genes (Table S1F and G). Of these, 234 (~37%)
were also identified by EffectorP, amounting to a total of 1,388 candidate effectors on
haplotigs. Overall, we identified a set of 1,725 nonredundant candidate effectors,
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counting allelic candidate effector pairs only once, when we combined all candidate
effectors on primary contigs and haplotigs (File 11).

Candidate effector genes are spatially associated with conserved genes and
with each other. For many filamentous plant pathogens a “two-speed genome” has
been suggested to contribute to rapid evolution in terms of candidate effector vari-
ability (67). For example, in fungal plant pathogens such as Fusarium oxysporum and
Verticillium dahliae, lineage-specific genomic regions and/or dispensable chromosomes
are enriched for TEs and candidate effector genes (68, 69, 70). In several Phytophthora
spp., candidate effectors have been reported to localize in gene-sparse, TE-rich regions,
which show signs of accelerated evolution (67, 71). It is not known if rust genomes have
a comparable genome architecture that facilitates rapid evolution of candidate effector
genes. Therefore, we investigated the genomic location of candidate effectors in
relation to several genomic features, including TEs, neighboring genes, BUSCOs, other
candidate effectors, and AT content (Fig. 5 and 6; Fig. S5 and S6). We focused mostly
on candidate effectors on primary contigs, because the primary assembly is far more
contiguous than its haplotigs, thereby facilitating our analysis (Fig. 1). In addition, we
made use of our haplotype-phased assembly and investigated if allelic candidate
effector variants show features distinct from haplotype singletons. In all cases, we used
a random subset of genes and BUSCO gene sets as control groups. We envisioned
BUSCO genes as a particularly well-suited control group, as these are conserved within
the phylum of Basidiomycetes (31) and can therefore be considered part of the P.
striiformis f. sp. tritici core genome. On the contrary, candidate effector genes are
reported to be more specific on the class, species, or isolate level (6, 73). This obser-
vation also holds true for Pst-104E, because we only observed 40 BLAST hits outside the
class of Pucciniomycetes for 1,725 nonredundant candidate effectors when we used
EnsemblFungi cDNA as the reference (blastn, 1e�5).

We first tested if candidate effectors are located in gene-sparse regions compared to
all genes or BUSCOs. For this analysis, we generated density plots using the distances
from the 5= and 3= ends of each gene to its closest neighbor in either direction (67).

FIG 4 Identification of candidate effectors based on detailed expression analysis of secreted proteins of both Pst-104E assemblies. (A) Clustering of Pst-104E
secretome expression profiles for genes located on primary contigs. Blue color intensity indicates the relative expression level based on rlog-transformed read
counts in spores, germinated spores, haustoria, and in wheat tissue at 6 and 9 days postinfection. For example, cluster 8 shows the lowest relative expression
in spores and the highest in haustoria, compared to the other clusters. (B) Clustering of Pst-104E secretome expression profiles for genes located on haplotigs.
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When we compared gene distance density hexplots, we observed very similar distri-
butions between candidate effectors and all genes. Candidate effectors in general did
not appear to be located in gene-sparse regions, and neither did BUSCOs (Fig. 5A).
Similar effects have been reported for other rust species, such as the oat crown rust
pathogen Puccinia coronata f. sp. avenae (74). Next, we tested if candidate effectors are
linked to TEs, as observed for other plant-pathogenic fungi (75). We compared the
minimum distance of all genes, BUSCOs, and candidate effectors to TEs. Candidate
effectors globally did not display a preferential association with TEs compared with
genes in general (Fig. 5B). However, on close examination of the relative spatial
distribution of TEs, candidate effectors, and BUSCOs on the 30 largest contigs, we could
identify some regions where candidate effectors are closely associated with TEs
(Fig. S5). The observation that candidate effectors are not associated globally with TEs
is consistent with reports of other rust fungi, including P. coronata f. sp. avenae,
Puccinia graminis tritici, and Melampsora larici-populina (6,74). In the case of P. striiformis
f. sp. tritici, we aim to address the question of the involvement of TEs in the evolution
of novel virulences by resequencing Pst-104E mutant progeny with distinct virulence
profiles collected in Australia between 1980 and 2003 (26).

FIG 5 Candidate effector genes are spatially associated with conserved genes and with each other. (A) Nearest-neighbor gene distance density hexplots for
three gene categories, including all genes, BUSCOs, and candidate effectors. Each subplot represents a distance density hexplot with the log10 3=-flanking and
5=-flanking distance to the nearest-neighboring gene plotted along the x axis and y axis, respectively. (B) Violin plots for the log10 distance to the most proximal
transposable element for genes in each category without allowing for overlap. (C) Violin plots for the log10 distance to the most proximal gene in the same
category for subsamples of each category equivalent to the smallest category size (n � 1,444). (D) Violin plots for the minimum distance (log10) of candidate
effectors and BUSCOs to each other or a random subset of genes (n � 1,444). The P values for panels B, C, and D were calculated using the Wilcoxon rank-sum
test after correction for multiple testing (Bonferroni; alpha � 0.05) on the linear distance in bases.
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The observation that candidate effectors and BUSCOs show similar localization
patterns relative to all genes and TEs led us to investigate if these two gene groups are
spatially associated and if each group clusters with itself. We first compared the
minimum distance between genes of the same group when subsampling to an equal
number of genes in each group. Indeed, when we compared the minimum distances
between candidate effectors, we found that these were less than the minimum
distances between a random subset of genes (Fig. 5C). BUSCOs were also more closely
associated with each other than a random subset of genes. Consistently, when we
investigated the number of candidate effectors that clustered within a minimum given
distance, we found that they were more clustered than BUSCOs or an equal-sized
random subset of all genes (Fig. S6). A similar trend was observed, although to a lesser
degree, for BUSCOs. Clustering of candidate effectors was also identified as a feature of
several smut fungi, including Ustilago maydis and Sporisorium scitamineum (3, 76). In
these related basidomycete plant pathogens, candidate effector gene clusters are born
via tandem duplication, and linked TEs are hypothesized to contribute to the rapid
evolution of these genes.

The observed spatial association of both BUSCOs and candidate effectors with
themselves led us to investigate if these two gene groups are spatially associated with
each other. Indeed, candidate effectors were located more closely with BUSCOs and
vice versa than was a random subsample of all genes (Fig. 5D). This was a surprising
observation, because BUSCOs are defined by their overall conservation, while candidate
effectors are far less conserved. In obligate biotrophic fungi, a subset of effectors may
be essential, because host colonization is an absolute requirement for survival. There-
fore, there may be selection pressure on obligate biotrophs to favor recombination
events that link some essential effectors to other essential genes (e.g., BUSCOs) to
ensure their inheritance and conservation within the species complex. This is in contrast
to plant pathogens that are also able to grow saprophytically, such as Zymosepto-
ria tritici, V. dahliae, U. maydis, and Phytophthora infestans (3, 75, 77, 78). In addition, the
genetic variation within P. striiformis f. sp. tritici isolates in its center of genetic diversity
is high, and sexual recombination may generate diverse effector complements that
allow colonization of taxonomically distinct hosts, including barberry and grasses. In
these natural environments, the composition of effector complements may be selec-
tively neutral, and these processes may not facilitate effector gene compartmentaliza-
tion. Once P. striiformis f. sp. tritici leaves the Himalayan region and invades large
wheat-growing areas, sexual recombination is absent and hence effector gene com-
partmentalization is not possible.

The candidate effector allele status influences association with conserved
genes and evolutionary conservation. We next investigated if the distance between
candidate effectors and BUSCOs is correlated with their allelic variation. We calculated
the normalized Levenshtein distance of cDNA and amino acid alignments for all allele
pairs. The normalized Levenshtein distance measures the required single-character
edits (insertions, deletions, or substitutions) to convert two strings into each other, e.g.,
an alignment of two allele sequences, while accounting for differences in sequence
length. It can therefore be used as a proxy for sequence variation between two alleles
(79). We did not observe any significant difference between the Levenshtein distances
at the cDNA level when we compared BUSCOs and candidate effectors, whereas alleles
of all other genes were more variable than candidate effectors (Table 2). This was in
contrast to the variation seen at the protein level, where candidate effectors were more
variable than BUSCOs (Table 2). This suggests that for candidate effectors, changes at
the DNA level are more likely to result in changes to the protein sequence. We therefore
also calculated the ratio of nonsynonymous to synonymous mutations for all alleles
(dN/dS ratio) wherever possible (80). Indeed, analysis of the dN/dS ratios supported our
previous observation that for candidate effectors, changes in the DNA sequence were
more likely to alter the protein sequence (Table 2). This suggests that candidate
effectors evolve faster than BUSCOs and most other allele pairs even though they are
spatially associated with BUSCOs. The sequence variation in candidate effector allele
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pairs was not correlated with distance to the closest BUSCO, based on either Leven-
shtein distances on the protein level or dN/dS as a proxy (Spearman correlation,
�|0.06|; P � 0.15). Subsequently, we investigated if candidate effector singletons were
more distant from BUSCOs than their paired-allele counterparts. These singletons have
either diverged dramatically from their ancestral allele counterparts, were lost due to
structural rearrangements and mutations, or encode de novo-evolved candidate effec-
tors. The candidate effector singletons were found to be located more distantly from
BUSCOs than paired-allele candidate effectors (Fig. 6A) but were not more distant from
other genes in general (Fig. 6B). Nonetheless, we reasoned that these candidate effector
singletons might be more likely to be isolate or species specific, given their distinct
genomic locations compared to paired-allele candidate effectors. We tested if candi-
date effector singletons are more likely to lack orthologs in publicly available P.
striiformis f. sp. tritici genomes or other genomes of Pucciniales species (81). Out of a
total of 453 candidate effector singletons, 116 lacked an ortholog in five other P.
striiformis f. sp. tritici genomes, compared to 118 out of 1,272 allelic candidate effectors.
Singletons are therefore more likely to be isolate specific than are paired-allele candi-
date effectors (Fischer’s exact test, P � 1.36e�16). We observed a similar trend when we
compared Pst-104E with the six publically available Pucciniales genomes. Of 985
candidate effectors lacking orthologs in other rust fungi, 313 were singletons and 672
allelic, also showing an enrichment for candidate effector singletons (Fischer’s exact
test, P � 4.45e�26).

Conclusions. Using long-read sequencing technology, we are now starting to
uncover the genomic diversity of dikaryotic fungi that was previously hidden by a
reliance on short-read sequence assemblies. We used this approach to generate a
highly contiguous haplotype-phased assembly of the Australian founder P. striiformis f.
sp. tritici pathotype. We are now able to describe the levels of interhaplotype diversity,
on both the structural and gene levels. It is difficult to fully evaluate the significance of
observed levels of variations without additional experiments and in the absence of
similar studies. With over 6.4% variation, the interhaplotype diversity of Pst-104E is
higher than that reported for P. coronata f. sp. avenae, which ranges between 2.1 and
2.7% (74). It is also higher than the variation observed between two isolates of Z. tritici

TABLE 2 Candidate effector alleles are more variable than BUSCO alleles on the protein
level

Comparison and parametera BUSCOs
Candidate
effectors Other genes

No. of loci with Levenshtein distance CDS 1,198 1,214 8,509
% of genes showing variationb 81 66 79
Median 0.0069 0.0044 0.0074
Mean 0.0288 0.0409 0.0579
Wilcoxon rank-sum test vs candidate effectorsc ~9.47e�02 NA ~1.21e�10

No. of loci with Levenshtein distance protein 1,198 1,214 8,509
% of proteins showing variationb 65 60 70
Median 0.0028 0.0060 0.0075
Mean 0.0264 0.0474 0.0637
Wilcoxon rank-sum test vs candidate effectorsc ~9.46e�05 NAf ~1.86e�10

No. of loci with dN/dS ratiod 859 619 5,403
% of loci showing variatione 75 87 85
Median 0.0802 0.3972 0.2840
Mean 0.2012 0.4797 0.3432
Wilcoxon rank-sum test vs candidate effectorsc ~2.42e�54 NA ~1.91e�06
aSummary of normalized Levenshtein distances and dN/dS ratios calculated for CDS alignments and codon-
based amino acid sequence alignments.

bPercentage of genes or proteins for which the normalized Levenshtein distance is �0.
cCalculated using the Wilcoxon rank-sum test with correction for multiple testing (Bonferroni; � � 0.05).
dNumber of loci for which dN/dS ratios could be calculated using yn (Yang and Nielsen [80]).
ePercentage of loci for which dN/dS was not 0.
fNA, not applicable.
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(isolates 3D7 versus MG2, 4.9%), an ascomycete pathogen of wheat that undergoes
frequent sexual cycles (57, 75), and two isolates of V. dahliae (JR2 versus VdLs17, 1.7%),
an ascomycete pathogen of tomatoes that propagates almost exclusively asexually (72).
These comparisons suggest that the observed interhaplotype diversity of P. striiformis
f. sp. tritici is high. Pst-104E belongs to the “North Western European” (NW European)
lineage of P. striiformis f. sp. tritici, which has undergone long-term asexual reproduc-
tion. The NW European P. striiformis f. sp. tritici lineage can be traced back to its first
sampling in the mid-1950s in the Netherlands, and it has not shown any signs of sexual
recombination since (20, 82, 83). Consistent with this, two P. coronata f. sp. avenae
isolates that showed much less interhaplotype variation than Pst-104E were from
populations that reproduce both sexually and asexually on common buckthorn and
oat, respectively (74). Frequent sexual recombination is likely to reduce interhaplotype
diversity and to purge mutations that are deleterious in the monokaryon stage (84). On
the other hand, long-term clonal lineages might accumulate polymorphisms that clear
unwanted Avr genes but also contribute to genomic decay. It has long been hypoth-
esized that prolonged clonal reproduction in the absence of sexual recombination and
chromosomal reassortment will lead to high levels of heterozygosity between chro-
mosomes that were initially homologous, a phenomenon known as the Meselson effect
(85). This also suggests that P. striiformis f. sp. tritici isolates from the center of genetic
diversity may display less interhaplotype diversity and a reduced allelic variation due to
sexual recombination. This is an aspect of P. striiformis f. sp. tritici biology that we are
aiming to test in future studies. With respect to this, it would be interesting to
determine whether Pst-104E is still viable as a monokaryon in the absence of selection
to retain gene function related to infection of barberry. The accumulation of large-scale
polymorphisms and potentially deleterious mutations in each haploid genome of
Pst-104E might have been buffered in the dikaryon stage, but it is likely that it
represents a terminal lineage of P. striiformis f. sp. tritici, in agreement with Muller’s
rachet hypothesis (84). Isolates from the NW European lineage show a reduction in
teliospore production on wheat, the entry point into the P. striiformis f. sp. tritici sexual
cycle, compared to isolates from the Himalayan region where sexual reproduction is
common (86). Also, successful sexual reproduction under laboratory conditions has

FIG 6 The candidate effector allele status influences association with conserved genes. (A) Violin plots for the log10

distance to the most proximal BUSCO for candidate effectors in each category. The Kruskal-Wallis one-way analysis
of variance of all three categories showed a significant difference between the three samples (P, ~2.36e�06). (B)
Violin plots for the log10 distance to the most proximal gene for candidate effectors in each category. The
Kruskal-Wallis one-way analysis of variance of all three categories showed no significant difference between the
three samples (P, ~0.08). The P values in panels A and B were calculated using the Wilcoxon rank-sum test after
correction for multiple testing (Bonferroni; alpha � 0.05) on the linear distance in bases. *, Wilcoxon rank-sum test
comparisons with interhaploid genome paralogs lacked statistical power due to the small sample size (n � 28).
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been reported only for P. striiformis f. sp. tritici isolates that emerged recently from the
center of diversity in the Himalayan region (87), but not for isolates that have under-
gone long term clonal reproduction such as the NW European lineage (personal
communication J. Rodriguez-Algaba). Lastly, P. striiformis f. sp. tritici populations of the
NW European lineage have been completely replaced by more recent P. striiformis f. sp.
tritici incursions in Europe and Australia (14, 24).

In the future, it will be important to generate high-quality genomes for more P.
striiformis f. sp. tritici isolates, including from sexual populations in the Himalayan
regions (88). This will enable us to understand the roles of sexual and asexual repro-
duction in the genome evolution of a dikaryon in the wild versus agricultural settings.
For now, the near-complete haplotype-phased genome of Pst-104E provides a first
haplotype-aware insight into the genetic architecture of a dikaryotic rust fungus that is
pathogenic on wheat. In itself, it is a high-quality reference genome enabling investi-
gation of the rapid and devastating evolution of the fungus to virulence during its
asexual reproduction cycle in all wheat-growing areas today.

MATERIALS AND METHODS
Puccinia striiformis f. sp. tritici pathotype, growth conditions, and spore amplification. The

isolate of pathotype 104E137A- was collected from the field in 1982 (Plant Breeding Institute accession
number 821559�415), tested, and propagated as described previously (26). This pathotype is virulent on
Heines VII (Yr2, Yr25), Vilmorin 23 (Yr3), hybrid 46 (Yr4), and Stubes Dickkopf, Nord Deprez, Suwon92/
Omar & Avocet S (26). The rust propagated for PacBio sequencing was produced by selecting a single
pustule of the original isolate (increase 0415Ga) on wheat plants of the susceptible variety Morocco. The
initial inoculation involved rubbing leaves of the susceptible host with spores from a sterile cotton tip.
Plants were incubated under plastic in the dark at 9.5°C for 18 h before being transferred to a greenhouse
microclimate set at 22°C � 2°C. After 6 days, plants were observed and all leaves were removed except
for one leaf which showed signs of infection by a single fleck indicating that rust pustule was soon to
erupt from the location. After pustule eruption, the single pustule selection was repeated to ensure that
the starter material for propagation was a single genotype. Multiplication of rust was performed on
Triticum aestivum cv. Morocco. For multiplication, 20 seeds of cultivar Morocco were placed as a single
layer into 4-inch pots filled with pasteurized soil and watered with a half-strength solution of liquid
fertilizer (Aquasol; Yates). At full coleoptile emergence, each pot was treated with 50 ml maleic hydrazide
solution (2 ml liter�1 Slow Grow 270; Kendron). At full leaf emergence, plants were inoculated by rubbing
with the pustules formed in the previous step and incubated as described previously. Once four pots of
cultivar Morocco were heavily infected, spores were collected and inoculated onto 64 4-inch pots, and
a differential set was established to check pathotype identity and purity. Rust spores were collected from
the 64 pots by using a GRA-101 large-spore cyclone (Tallgrass Solutions) attached to a domestic vacuum
cleaner. Spores were dried over silica gel for 7 days before being sieved through a 50-�m sieve and then
stored at �80°C until DNA extraction.

DNA extraction and genome sequencing. DNA was extracted from dried dormant P. striiformis f. sp.
tritici urediniospores as described in detail elsewhere (89). PacBio sequencing was performed at the
Ramaciotti Centre (Sydney, Australia). For library preparation, the 20-kb BluePippin kit (PacBio) was used.
DNA libraries were sequenced on a PacBio RSII instrument using P6-C4 chemistry. In total, we sequenced
13 SMRT cells (Table S1A). DNA samples from the same P. striiformis f. sp. tritici pathotype were also
sequenced with Illumina short-read technology. We sequenced one TruSeq library on a HiSeq 2000
instrument as a 100-bp end library at the University of Western Sydney (Sydney, Australia). We sequenced
one TruSeq PCR Free 250-bp end library on an Illumina MiSeq instrument at the Ramaciotti Center
(Sydney, Australia).

Genome assembly and manual curation. For genome assembly, we used FALCON-Unzip github tag
1.7.4 with the parameters described in Files 12 and 13 at our study’s github repository (our study’s github
page at https://github.com/BenjaminSchwessinger/Pst_104_E137_A-_genome) (29). We checked the
resulting contigs for eukaryotic contamination by blastn searches against the NCBI nucleotide reference
database (downloaded 4 May 2016) (37). None of the contigs had predominant noneukaryotic sequences
as best BLAST hits at any given position. We performed two manual curation steps. In the first step, we
reasoned that some of the primary contigs without haplotigs may actually represent haplotigs that could
not be connected to their respective primary contigs in the assembly graph because there was too large
a difference between the two haplotypes. We aligned all primary contigs without haplotigs to primary
contigs with haplotigs by using mummer version 3 (34). We screened the best alignments of each
primary contig without a haplotig for percentage alignment, length of alignments, and whether they
aligned to regions in the primary contigs that previously had not been covered by a haplotig alignment.
By using this approach, we reassigned 55 primary contigs without haplotigs (~6 Mb) to haplotigs
(Table S1H). In the second step of manual curation, we removed all contigs with a mean coverage of
greater 2,000� based on Illumina short-read data. In total, we removed 18 primary contigs (~0.6 Mb) and
7 haplotigs (~0.2 Mb), of which most were mitochondrial contigs based on blastn analysis. The final
assembly contained 156 primary contigs (~83 Mb) and 475 haplotigs (~73 Mb) (Table S1H).

Schwessinger et al. ®

January/February 2018 Volume 9 Issue 1 e02275-17 mbio.asm.org 16

https://github.com/BenjaminSchwessinger/Pst_104_E137_A-_genome
http://mbio.asm.org


Coverage analysis and identification of unphased regions in primary contigs. We aimed to
assess the coverage within contigs and between contigs by mapping Illumina short-read data on primary
contigs (p) and primary contigs and haplotigs (ph) at the same time. We reasoned that unphased regions
of primary contigs should have about twice the coverage of phased regions when mapped against ph
and similar coverage when mapping for p versus ph. We trimmed Illumina short reads by using
Trimmomatic v0.35 (90) (with the settings Illuminaclip:adapter.fa, 2:30:10; leading, 3; trailing, 3; sliding-
window, 4:25; minlen, 35) and assessed read quality with FastQC v0.11.4 (91). Reads were mapped
against primary contigs only or against primary contigs and haplotigs by using BWA-MEM v0.7.15-r1142-
dirty and the standard parameters (92). The coverage for each position was calculated with samtools
v1.3.1 and a depth of the “-aa” flag (93). Unphased regions on primary contigs were defined as outlined
above and converted to bed format. See the jupyter notebook Pst_104E_v12_coverage_analysis_
submission_21092017 in our github information.

We also performed a detailed coverage sequence depth analysis on 1-kb sliding windows by using
200-base intervals. We generated corresponding bed files with the window function in pybedtools for
primary contigs and haplotigs. In addition, we generated corresponding sliding window bed files for
primary contig regions that aligned with haplotig regions and for regions that lacked an associated
haplotig. For this purpose, we combined initial sliding window bed files (see above) with .gff files
illustrating the primary contig region that aligned with haplotigs (94, 95). The later .gff files were based
on Assemblytics alignments of haplotigs to their respective primary contigs, determined by using
nucmer (33). These bed files were used to calculate the mean base sequence depth, based on the
samtools function bedcov (93). For details on how we generated the Assemblytics-based .gff file, see
Pst_104E_v12_defining_alleles submission_21092017.ipynb. For details on this part of the coverage
analysis, see the Revision_coverage_analysis.ipynb file in our gihub repository.

Repeat annotation. Repeat regions of the primary contigs and haplotigs were predicted indepen-
dently. We used the REPET pipeline v2.5 (35, 96) for repeat annotation, in combination with Repbase
v21.05 (45). First, we used TEdenovo to predict novel repetitive elements following the developer’s
instructions and the parameters given in our github File 14. The set of TEs provided by TEdenovo were
used to annotate all repetitive elements by using TEanno following the developer’s instructions,
including the methodological advice, and the parameters given in File 15. Annotation was performed on
genome version 0.4 and subsequently filtered for version 1.0 (Table S1G). We transferred the superfamily
annotation according to the methods described by Wicker (36) for all elements from the underlying
database hits if these agreed with each other and the REPET annotation. See jupyter notebooks
Pst_104E_v12_TE_filtering_and_summary_p_contigs submission_21092017 and Pst_104E_v12_TE_
filtering_and_summary_h_contigs submission_21092017 in our github repository for full analysis details.

Estimation of TE age. We estimated TE age based on the divergence of each sequence from the
consensus sequence (38). We calculated the mean percent identity for all identified TEs
(repbase2005_aaSeq, repbase2005_ntSeq, and de novo-identified repeats via TEdenovo) using the REPET
pipeline function PostAnalyzeTELib.py -a 3 (File 1). We used the function T � D/t to roughly approximate
TE age, where T is the elapsed time since the ancestral sequence, D is the estimated divergence based
on percent identity calculated via the REPET pipeline [D � (1 � mean percent identity)/100], and t is the
substitution rate per site per year. We estimated t to be ~2 � 10�9, based on previous publications (97,
98). For details, see the notebook Revision_TE_filtering_and_summary_p_contigs.ipynb at our study’s
github respository.

Gene model annotation. We annotated genes on primary contigs and haplotigs independently. We
combined RNA-seq-guided ab initio predictions by using CodingQuarry v2.0 (41) and BRAKER v1.9 (42)
with de novo transcriptome assembly approaches of Trinity v2.2.0 (99) and PASA v2.0.1 (40). Gene models
were unified using EvidenceModeler v1.1.1 (40) and the weights reported in File 16.

We mapped the trimmed RNA-seq reads described in this study (see below) and previously (39)
against primary contigs and haplotigs by using hisat2 v2.1.0 (-max-intronlen 10000 -min-intronlen 20
-dta-cufflinks) (44). For ab initio predictions, we reconstructed transcripts using stringtie v1.2.3 (-f 0.2)
(100). We ran CodingQuarry (-d) in the pathogen mode in SignalP4 (101) for secretome predictions on
the soft-masked genome by using RepeatMasker v4.0.5 (-xsmall -s -GC 43). Similarly, we used the
stringtie-reconstructed transcripts as a training set for the ab initio prediction pipeline BRAKER 1 v1.9 (42)
and used the nonrepeat masked genome as a reference.

We used Trinity v2.2.0 to obtain P. striiformis f. sp. tritici transcripts both in the de novo mode and in
the genome-guided mode (99). Several RNA-seq samples contained host and pathogen RNA, as they
were prepared from infected wheat tissue. We first mapped all reads to primary contigs and haplotigs
by using hisat2 (see above). We extracted mapped RNA-seq reads by using Piccard tools SamToFastq.
Only the reads mapping against P. striiformis f. sp. tritici contigs were used in the de novo pipeline of
Trinity (-seqType fq). For genome-guided assembly, we used bam files generated with hisat2 as the
starting point for Trinity (-jacard_clip, -genome_gudied_max_intron 10000). We used the PASA pipeline
v2.0.2 to align both sets of Trinity transcripts against P. striiformis f. sp. tritici contigs with BLAT and GMAP
and the parameters given in File 17 (40).

The different gene models were combined using EvidenceModeler v.1.1.1 to get the initial gene sets
for primary contigs and haplotigs (40). These were filtered for homology with proteins encoded in
transposable elements. We used blastp to search for homology in the Repbase v21.07 peptides database,
with an e value cutoff of 1e�10. In addition, we used transposonPSI to filter out genes related to TE
translocation (46). We used the outer union of both approaches to remove genes coding for proteins
associated with transposable elements from our list of gene models.
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Protein annotation. For initial protein annotation, we used the fungus-centric annotation pipeline
funannotate v0.3.10. This included annotations for proteins with homology to those reported in the
databases swissprot (uniref90; downloaded 22 September 2016) (49), to carbohydrate-active enzyme
(dbCAN, downloaded 22/9/2016) (48), to peptidases (Merops v10.0) (51), for proteins with eggnog terms
(eggnog v4.5) (102), and SignalP4 (101). This annotation was complemented by using InterProScan
v5.21-60 (-iprlookup -goterms -pa) (47), eggnog-mapper v0.99.2 (-m diamond and -d euk) (50), SignalP
3 (103), and EffectorP v1.01 (63, 104).

Biological material and molecular biology methods for P. striiformis f. sp. tritici gene expres-
sion analysis. We investigated P. striiformis f. sp. tritici gene expression in five different developmental
stages or tissue types. We extracted total RNA from dormant spores, germinated spores after 16 h and
6 and 9 dpi of wheat, and from haustoria isolated from wheat leaves at 9 dpi.

In the case of dormant spores, spores were harvested from infected wheat at 14 to 18 dpi, dried
under vacuum for 1 h, and stored at �80°C until use. For germination, fresh spores were heat treated for
5 min at 42°C and sprinkled on top of sterile Milli-Q (MQ) water. The container was covered with
Clingfilm, and spores were incubated at 100% humidity at 10°C in the dark for 16 h before harvest. For
infection assays, dormant spores were heat treated for 5 min at 42°C, mixed with talcum powder
(1:7 [wt/wt]), and sprayed homogenously with a manual air pump onto 7-day-old wheat seedlings wetted
with water by using a spray bottle. Plants were maintained in a container at 100% humidity in the dark
at 10°C for 24 h. At this point, plants were transferred to a constant temperature growth cabinet at 17°C
with a 16:8 light cycle. We collected infected wheat leaf samples 6 and 9 dpi. Haustoria were purified
from wheat leaves at 9 dpi (105). Infected wheat leaves (~20 g) were surface sterilized with 70% ethanol,
washed, and blended in 250 ml of 1� isolation buffer (1� IB; 0.2 M sucrose, 20 mM morpholinepro-
panesulfonic acid [pH 7.2]). The homogenate was passed consecutively through 100-�m and 20-�m
meshes to remove cell debris. The filtrate was centrifuged at 1,080 � g for 15 min at 4°C, and the
resulting pellets were resuspended in 80 ml 1� IB containing 30% (vol/vol) Percoll. The suspension was
centrifuged at 25,000 � g for 30 min at 4°C. The upper 10 ml of each tube was recovered, diluted 10
times with 1� IB, and centrifuged at 1,080 � g for 15 min at 4°C. The pellets were resuspended in 20 ml
of 1� IB containing 25% (vol/vol) Percoll and centrifuged at 25,000 � g for 30 min at 4°C. The upper
10 ml of each tube was recovered, diluted 10 times in 1� IB, and centrifuged at 1,080 � g for 15 min
at 4°C. Pellets were stained with concanavalin A-Alexa Fluor 488 to visualize haustoria under a fluores-
cence microscope. The final pellets were frozen in liquid nitrogen and stored at �80°C prior to RNA
isolation.

RNA for all samples was isolated as follows. Total RNA was isolated using the Qiagen plant RNeasy
kit following the manufacturer’s instructions. Initial RNA quality and purity checks were performed on a
NanoDrop ND-1000 UV-vis spectrophotometer. Samples were treated with DNase I (New England
Biolabs), following the manufacturer’s instructions. Samples were purified using the Qiagen plant RNeasy
kit following the cleanup protocol, and RNA was eluted from columns in 50 �l of RNase-free water. The
concentration and integrity of all final RNA samples were verified on the Agilent 2100 bioanalyzer, using
the RNA 6000 nano and pico kits. Three biological replicates were processed.

RNA samples were sequenced at the Ramaciotti Centre (Sydney, Australia) on an Illumina HiSeq 2000
instrument as 100-bp paired-end reads. Approximately 10 �g of total RNA per biological sample was
processed with the TruSeq RNA sample preparation kit v2.

Differential expression analysis. We trimmed Illumina RNA-seq reads by using Trimmomatic v0.35
(90) (parameters of Illuminaclip:adapter.fa, 2:30:10; leading, 3; trailing, 3; slidingwindow, 4:25; minlen, 35),
and we assessed read quality with FastQC v0.11.4 (91). We mapped reads using gene models as a guide
and STAR v020201 (106). We first generated a genome reference in the genomeGenerate mode using our
.gff for gene models (-runMode genomeGenerate –sjdbGTFfile -sjdbGTFtagExonParentTranscript Parent).
We mapped our RNA-seq reads against this reference by using STAR in the alignReads mode
(-runMode alignReads readFilesCommand gunzip – c outFilterType BySJout – outFilterMultimapNmax
20 -alignSJoverhangMin 8 -alignSJDBoverhangMin 1, -outFilterMismatchNmax 999 -alignIntronMin
20 -alignIntronMax 10000 -alignMatesGapMax 1000000 -outSAMtype BAM SortedByCoordinate
-outSAMstrandField intronMotif -outFilterIntronMotifs RemoveNoncanonical -quantMode GeneCounts).
We used featureCounts v1.5.3 and our gene annotation to quantify the overlaps of mapped reads with
each gene model (-t exon -g Parent) (107). We identified differentially expressed genes in either haustoria
or infected leaves relative to expression levels in germinated spores (|log fold change|, �1.5; adjusted
P � 0.1) using the DESeq2 R package (108). k-means clustering was performed on average rlog-
transformed values for each gene and condition. The optimal number of clusters was defined by using
the elbow plot method and circular heat maps drawn using Circos (109). Scripts regarding the gene
expression analysis can be found in the gene_expression folder of the github repository.

We compared the expression pattern of alleles in different clusters (Table S1F and G) in jupyter
notebook Pst_104E_v12_secretome_expression_cluster_analysis submission_21092017 in the github
repository.

BUSCO analysis. We used BUSCO2 v2.0 4 beta to identify core conserved genes and to assess
genome completeness (31). In all cases, we ran BUSCO2 in the protein mode, using the Basidiomycota
reference database downloaded 9 January 2016 (-l basidiomycota_odb9 -m protein). We combined
BUSCO identification on primary contigs and haplotigs nonredundantly to asses completeness of the
combined assembly. For details, see jupyter notebook Pst_104E_v12_BUSCO_summary submission_
21092017 in the github repository.

Interhaplotype variation analysis. We mapped trimmed reads against primary contigs using
BWA-MEM v0.7.15-r1142-dirty with the standard parameters (92). We called SNPs with FreeBayes default
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parameters (110) and filtered the output with vcffilter v1.0.0-rc1 (-f “DP �10” -f “QUAL �20”) (111). SNP
calls were summarized by using real-time genomic vcfstats v3.8.4 (112).

We aligned all haplotigs to their corresponding primary contigs by using nucmer of the mummer
package (-maxmatch -l 100 -c 500) (34). We fed these alignments into Assemblytics to estimate the
interhaplotype variation for each primary contig-haplotig pairing (33). For this analysis, we used a unique
anchor length of 8 kb, based on the length of identified TEs in our P. striiformis f. sp. tritici assembly and
a maximum feature length of 10 kb. For consistency, we used nucmer alignments filtered by Assemb-
lytics for the allele status analysis (see below). Analysis and summary of variations is shown in jupyter
notebook Pst_104E_v12_assemblytics_analysis submission_2109 2017 and Pst_104E_v12_nucmer_and_
assemblytics submission_21092017 in the github repository.

Allele status analysis. We used proteinortho v5.16 in synteny mode with default parameters
(-synteny) to identify alleles between the primary assembly and haplotigs (52). We parsed the results and
defined three major allele status categories, as follows. Allele pairs were parsed from the poff-graph
output file. Interhaploid genome paralogs were parsed from the proteinortho output file and checked for
absence in the poff-graph output file. Potential singletons were defined as gene models that were absent
from both of these two output files. Alleles were further subdivided into alleles for which the primary and
associated haplotig gene models were located on contigs that aligned with each other at the position
of the primary gene model (Fig. S2A), alleles for which the primary and associated haplotig gene models
were located on contigs that did not align with each other at the position of the primary gene model
(Fig. S2B), and alleles for which the allele of a primary gene model was not located on a haplotig
associated with the respective primary contig (Fig. S2C). Potential singletons were screened for being
located in regions of the primary assembly that were unphased based on Illumina coverage analysis (see
above). Genes located in these regions were defined as unphased and removed from the initial list. All
other gene models constitute haplotype-specific singletons. Analysis details can be found in the jupyter
notebooks Pst_104E_v12_defining_alleles submission_21092017 and Pst_104E_v12_missing_allele_QC
submission_21092017.

Allele variation analysis. We assessed the variation of allele pairs by using three approaches. We
calculated the Levenshtein distance (79) on the CDS alignments of two alleles on the codon-based
protein alignments, and we calculated the dN/dS ratios by using these two alignment sets with yn00
paml version 4.9 (80). The CDS of two alleles were aligned using muscle v3.8.31 (113), and codon-based
alignments were generated using PAL2NAL v14 (114). The Levenshtein distance was calculated in python
using the distance module v0.1.3. Analysis details can be found in jupyter notebook Pst_104E_v12_
post_allele_analysis submission_21092017.

Genome architecture analysis. We used bedtools v2.25.0 (94) and the python module pybedtools
(95) to perform various genome analysis tasks. This included the calculation of nearest neighbors using
the closest function. Details of the analysis can be found in jupyter notebooks Pst_104E_v12_post_
allele_analysis submission_21092017 and Pst_104E_v12_effectors submission_21092017.

Orthology analysis of candidate effector analysis. We performed orthology analysis with pro-
teinortho v5.16 (-singles) (52) of all nonredundant candidate effectors with publicly available P. striiformis
f. sp. tritici genomes. Pst-130 (4) and Pst-78 (28) protein sets were downloaded from MycoCosm (9 May
2017) (81). Pst-0821, Pst-21, Pst-43, and Pst-887 were downloaded from yellowrust.com (30 March 2017)
(5). We performed a similar analysis to search for candidate effector orthologs in Pucciniales excluding
P. striiformis f. sp. tritici genomes. Puccinia triticina 1-1 BBBD Race 1 (28), Puccinia graminis f. sp. tritici
v2.0 (6), Puccinia coronata f. sp. avenae isolates 12SD80 and 12NC29 (74), and Melampsora lini CH5 (115)
genomes were downloaded from MycoCosm (9 May 2017). The Puccinia sorghi genome (116)
(ASM126337v1) was downloaded from NCBI (9 May 2017).

Data and statistical analysis. We used the python programing language (117) in the jupyter
notebook environment for data analysis (118). In particular, we used pandas (119), numpy (120),
matplotlib (121), and seaborn for data processing and plotting. Statistical analysis was performed using
the Scipy (120) and statsmodel toolkits.

Data availability. The data generated in the course of this study, which is registered as Bioproject
number PRJNA396589, were assigned NCBI accession numbers as follows: short read archive accession
numbers SRX311905 and SRX311918 to SRX311920 for the PacBio 10- to 20-kb BluePippin kit, RSII, and
13 SMRT cells; SRX311916 and SRX311917 for the genomic DNA TruSeq library of the HiSeq 2000 100-bp
paired-end library; SRX311915 for the genomic DNA TruSeq PCR-free MiSeq, 250-bp paired-end library;
and SRX3191029 to SRX3191043 for the TruSeq v2 RNA-seq samples and HiSeq 2000 100-bp paired-end
library.

Bioinformatic scripts, additional supplemental data files, and genome annotations can be found on
our manuscript’s github page, https://github.com/BenjaminSchwessinger/Pst_104_E137_A-_genome.
The genome is also available with MycoCosm (https://genome.jgi.doe.gov/Pucstr1/Pucstr1.home.html).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio
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