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ARTICLE INFO ABSTRACT
Keywords: Purpose: To create a diagnostic framework for clinical behavior and pathological tissue prognosis
Ovarian tumor in ovarian cancer by using machine-learning (ML) methods based on multiple biomarkers.

Tumor markers

Experimental design: Overall, 713 patients with ovarian tumors at Sun Yat Sen Memorial Hospital
Machine learning

were randomized into training and test cohorts. Four supervised ML classifiers, namely Support
Vector Machine, Random Forest, k-nearest neighbor, and logistic regression were used to derive
diagnostic and prognostic information from 10 parameters commonly available from pretreat-
ment peripheral blood tests and age. The best prediction model was selected and validated by
comparing the accuracy and the area under the ROC curve of each prediction model and by
applying the external data of Guangdong Maternal and Child Health Center.

Results: ML techniques were superior to conventional regression-based analyses in predicting
multiple clinical parameters pertaining to ovarian tumor. Ensemble methods combining weak
decision trees and RF showed the best reference in diagnosis, especially for malignant ovarian
cancer. The values for the highest accuracy and area under the ROC curve for malignant ovarian
cancer from benign or borderline ovarian tumors with RF were 99.82 % and 0.86 (micro-average
ROC curve), respectively. The greatest accuracy and AUC for the diagnosis of pathological tissue
with logistic regression curve were 78.0 % and 0.95 (micro-average ROC curve), respectively. In
external validation, the random forest prediction model had an accuracy of 0.789 for applying
data from external centers to verify tumor benignity and malignancy, and the logistic regression
model had an accuracy of 0.719 for predicting the nature of the tumor.

Conclusions: An ovarian tumor can be diagnosed and characterized before initial treatment via ML
systems to provide critical diagnostic and prognostic information. The use of predictive algo-
rithms can facilitate customized treatment options with patient preprocessing stratification.

1. Introduction

Ovarian neoplasms are one of the most common malignancies found in women and are responsible for maximum deaths related to
reproductive system tumors. This is likely because ovarian tumors lack specific manifestations at the early stage, and most patients
already have advanced-stage cancer at the time of diagnosis and often present with remote metastases [1]. The 2024 National
Comprehensive Cancer Network (NCCN) ovarian cancer guideline considers that the main treatment option for ovarian cancer is
surgery [2]. The type of ovarian tumor can only be confirmed after histopathological samples have been collected intraoperatively.
This means that patients cannot receive treatment before undergoing surgery, which causes significant trauma to patients. And for the
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patients who are diagnosed with advanced tumor will have to pay more for the treatment. Therefore, it is important for the early
detection of ovarian cancer.

Diagnosing ovarian cancer and developing a suitable treatment plan remains a clinical challenge as pathological samples can only
be obtained after carrying out invasive surgery. An increasing number of studies are now dedicated to predicting the diagnosis prior to
surgery. The advances in machine-learning methodologies and artificial intelligence may likely hold the answers to this clinical
predicament. In recent years, machine learning (ML) has found widespread application, the disease prognosis and prediction to
identifying potential adverse drug events [3] It is not surprising that decision-support based on ML models is becoming increasingly
common in clinical settings. Because of the complexity of ovarian tumor diagnosis, an increasing number of scientists are now trying to
apply ML methods to build predictive models for ovarian tumor diagnosis.

As early as 1990, Jacobs et al. used ultrasound scoring, menopausal status, and serum cancer antigen 125 (CA125) concentration to
establish a risk of malignancy index (RMI) [4]. The model estimated the probability that pelvic masses would be benign or malignant.
It provides the basis for the development of a predictive model for the diagnosis of ovarian tumors. In 2005, Zhangs et al. found that
serum concentrations of CA125, transferrin, transthyretin, apolipoprotein al, and p2-microglobulin were closely associated with
ovarian tumors; apolipoprotein al and transthyretin showed a down-regulated trend, while a cleaved fragment of the inter-trypsin
inhibitor heavy chain H4 showed an up-regulated trend in patients with cancer®. Based on this finding in 2009, an ovarian malig-
nancy risk index system (OVA1) was developed with CA125, f2-microglobulin, transferrin, apolipoprotein a1, and transthyretin [5].
The importance of tumor markers for the prediction of ovarian tumors was demonstrated in 2015 when OVA1 was licensed by the FDA
for the screening of ovarian tumors [6]. In 2011, Moore et al. proposed the risk of ovarian malignancy algorithm (ROMA) [7] by
assessing patients’ menopausal status, serological CA125 and human epididymis protein 4 (HE4) levels. ROMA had a sensitivity of
93.8 % and a specificity of 74.9 % for the diagnosis of ovarian cancer in the whole population [8,9]. This study attracted widespread
attention, and subsequent studies showed that serological tumor markers HE4 and CA125 [10,11] had a high sensitivity in predicting
ovarian tumors, while value of tumor markers in predicting ovarian tumors is gradually recognized. In 2019, Kawakami applied
Gradient Boosting Machine, Support Vector Machine, Random Forest, Conditional random forest, Bayesian machine-learning methods,
including neural network and elastic network regression, to investigate the superiority of clinical factors in predicting the diagnosis of
ovarian tumors, determine the likelihood of ovarian tumor resection, and assess prognosis [12].

The human brain is limited in its ability to integrate and process large amounts of sample data, and artificial intelligence has shown
to be more efficient, faster, and more accurate to integrate, analyze, and synthesize complex clinical data. As ML methods are widely
used to predict the diagnosis, recurrence, and prognosis of malignant tumors, early diagnosis of ovarian tumors has become a challenge
for gynecological oncologists owing to their early symptoms and lack of specific presentation [13-15]. ML is an emerging research area
that offers a variety of useful methodologies that can handle large dimensional datasets, and it excels in providing methods that can
efficiently and effectively evaluate a large number of variables to construct an accurate model for prediction [16,17]. In 2021, Farinell
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Fig. 1. Flowchart representing the modeling procedure in this study.
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et al. applied the public Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases to explore new serological markers for
ovarian tumors with the expectation of improving diagnostic sensitivity and specificity for ovarian tumor diagnosis [18]. Despite the
study finding that new tumor markers have better diagnostic value for ovarian cancer, clinical validation is still lacking. At the same
time, a number of researchers have pursued DNA methylation to identify patients with early-stage ovarian tumors. Li et al. analyzed
the DNA methylation profile of malignant ovarian tissues and non-malignant tissues. However, the differences showed poor diagnostic
value in early ovarian tumors [19]. The diagnostic accuracy rate is significantly improved when DNA methylation is combined with
CA125 levels, indicating the significance of tumor markers.

Early diagnosis of ovarian tumors is a still a long way off. Previous studies have focused on a single type of epithelial ovarian tumor
to the exclusion of other histological types of ovarian tumors, and the large number of predictors has made it difficult to apply the
model in clinical practice.

This study builds on previous research by using tumor markers from 713 patients with ovarian tumor prior to initial surgical
treatment to develop multiple ML models and validates the models with data from 69 patients with ovarian tumor from another study
center to assess the optimal predictive model for ovarian tumor diagnosis for clinical application. The model was validated using data
from 59 patients with ovarian tumor from another study center to assess the optimal predictive model for clinical application.

2. Materials and methods
2.1. Patients and tumor characteristics

The data source of this study came from 713 patients with ovarian tumor from Sun Yet Sen Memorial Hospital between September
25, 2009 and December 22, 2020 and 59 patients with ovarian tumor from Guangdong Province Women and Children’s Hospital
between September 8, 2020 and May 8, 2022. This study was approved by the ethics committee of Guangdong Women and Children
Hospital. Baseline characteristics were retrospectively collected from electronic medical. The data from Sun Yet Sen Memorial Hospital
was used as the training data for model development and validated the model to select the best model. The 59 patients from
Guangdong Hospital were used as analytical data to validate the model’s efficacy (Fig. 1). All patients were diagnosed based on the
pathological findings following the surgical procedure. None of the patients with ovarian cancer received preoperative chemotherapy
or radiotherapy. The histological type was classified based on the criteria of the World Health Organization (WHO). Patient de-
mographic and histology data are listed in Table 1.

The study concentrated on establishing a diagnostic model for ovarian neoplasms using tumor markers in the clinic. In all, 10
clinical predictors were collected, which included age (when diagnosed with ovarian neoplasm),height, weight, BMI (admission
index), and common tumor markers (within 3 months before surgery for primary ovarian neoplasm). The post-operative pathological
tumor type was included as an outcome variable.

2.2. Inclusion and exclusion criteria
The inclusion criteria were:
(1) The patient was admitted for examination of a pelvic mass;

(2) The patient received their first surgical treatment at our research center;
(3) Appropriate tumor markers were analyzed/quantified in our hospital prior to surgery;

Table 1
Clinical characteristics of the 713 patients with ovarian tumor.

Benign ovarian tumor Borderline ovarian cancer Malignant ovarian cancer P-value
N 304 98 311
Histologic stage
Epithelial 94 98 263
Germ cell 197 0 36
Sex cord stromal 9 0 10
Rare type 4 0 2
Clincical characteristics

mean median IQR mean median IQR mean median IQR P-value
Age (year) 34.25 30.00 25.00-42.00 39.33 33.5 24.00-54.00 48.08 49.00 40.0-59.0 <2.2e710
BMI (kg/m?) 21.75 21.41 19.56-23.33 22.28 21.55 19.39-24.19 22.32 22.21 20.07-24.09 0.032
Tumor marker
AFP (ng/mL) 2.84 1.95 1.34-29 3.139 2.05 1.462-2.788 1980.16 2.52 1.76-3.56 0.019
CEA (ng/mL) 1.579 1.40 0.90-2.00 24.56 1.4 0.825-2.227 42.85 1.5 0.8-2.75 0.300
CA125 (U/mL) 28.17 15.10 11.57-22.82 237.47 30.50 19.75-85.53 116.1 303 66.8-12.02 <2.2¢e71¢
CA199 (U/mL) 27.96 14.7 7.80-27.70 179.86 15.15 7.825-41.805 524.9 12.6 5.9-37.4 0.31
CA72-4 (U/mL) 4.606 1.6 1.1-3.4 6.44 2.5 1.30-7.38 51 7.9 2.25-37.25 2.7xe °
HE4 (pmol/mL) 47.04 44.83 38.88-50.09 104.6 55.77 47.23-77.75 456.51 1921.4 73.41-547.15 <2.2¢e71¢
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(4) The post-surgery pathology results were suggestive of a tumor of ovarian origin.
The exclusion criteria were:

(1) Patients with missing post-operative pathological outcomes or pathological reports that could not clearly identify ovarian tu-
mors or presence of metastatic tumors of any other origin;

(2) Patients with rare pathologic ovarian tumor types (total sample size: <5 cases);

(3) Inclusion of patients with three or more missing key preoperative examination data (including height, weight, and tumor
markers)

(4) Patients who refused to apply clinical information to clinical trials.

3. ML analysis
3.1. Missing values [20]

To ensure that the data can be completely used, we retained more complete original data as much as possible during data screening.
The miceforest project (miceforest - PyPI)was applied for multiple imputation for missing data. Multiple imputation creates m > 1
complete data sets. Each of these datasets is analyzed by standard analysis software. The m results are pooled into a final point estimate
plus standard error by pooling rules (“Rubin’s rules”). Fig. 1 illustrates the three main steps in multiple imputation: imputation,
analysis, and pooling.

3.2. Feature scaling

Tumor markers should be standardized for smooth data analysis. This technique is to re-scale feature’s value with the distribution
value between 0 and 1 is useful for the optimization algorithms, such as gradient descent, that are used within ML algorithms that
weight inputs.

3.3. Data splitting

The dataset from Sun Yet Sen Memorial Hospital was split into training and validation cohorts with repeated random sampling.
Briefly, 80 % data was established as the training group, others are used to build validation. There was no significant difference (P >
0.20). Data from The Guangdong Province Women’s and Children’s Hospital were used as analytical data for external validation of the
model’s efficacy.

3.4. Feature selection [21]

There are 11 variables in our research, including histology, age, BML, and various tumor markers as shown in Table 1. To effectively
prepare this high-dimensional data for ML and facilitate clinical work, we employed a data dimensionality reduction strategy, namely
feature selection, to help derive a clean and most relevant subset of data to predict the outcome. Feature selection is a major problem in
ML, where the purpose is to find the optimal subset of features. Feature selection eliminates irrelevant or redundant features, reduces
the number of features, enhances model accuracy, and reduces runtime. This study used sequential backward selection (SBS) to reduce
the dimensionality of the initial feature space under the constraint of minimized performance degradation of the classifier to improve
the computational efficiency of the model.

3.5. Supervised ML classifiers

In this study, four types of supervised machine learning classifiers were implemented via Python: Support Vector Machine (SVM),
Random Forest (RF), k-nearest neighbor (KNN), and Logistic Regression (LR). Classifiers were trained using a training dataset, and
their predictive performance was assessed in the test dataset. The correctness of the classification, and the receiver operating char-
acteristic curve (ROC) for validation determined the suitability of the grader.

3.5.1. RF classifier [22]

Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the forest. It is based on two ML techniques: bagging and random feature
selection. In bagging, each tree is trained using a bootstrap sample of training data. During the process of training, each tree is grown
using a particular bootstrap sample. By virtue of these techniques, the RF classifier avoids overfitting and stratifies samples by
considering complex interactions between variables.

3.5.2. SVM classifier
A SVM is a binary classification model whose basic design is a linear classifier defined by maximizing the interval on the feature
space. This distinguishes it from a perceptron; the SVM also includes a kernel trick, which makes it essentially a non-linear classifier.


https://pypi.org/project/miceforest/

Y. Sun and B. Wen Heliyon 10 (2024) 36994

The learning algorithm for SVM is an optimization algorithm for solving convex quadratic programming. SVM has been extensively
used for classification, regression, novelty detection tasks, and feature reduction.

3.5.3. LR classifier

LR is a generalized linear model. It assumes that the dependent variable follows a Bernoulli distribution, whereas linear regression
assumes that the dependent variable follows a Gauss distribution. It can be argued that LR is theoretically supported by linear
regression, but LR introduces a non-linear element through the Sigmoid function, so it can easily handle classification problems.
Furthermore, LR algorithms are ML algorithms that are more widely used in different domains. This study focuses on the multi-
classification problem by mirroring the soft max function and the output of multiple neurons, mapped into the (0,1) interval, thus
applied to the multi-classification problem.

3.5.4. KNN classifier

The KNN rule is a classical, yet powerful technique in non-parametric classification. It is commonly used in a variety of applications
such as grouping, feature selection, object detection, and model recognition. Because of its simplicity, effectiveness, and intuitiveness,
the KNN classifier tries to identify as many KNNs of a test sample in the functional space of the training data set. It assigns a class label
to the test sample via a majority vote among its KNNs. Despite its simplicity, the KNN classifier offers a number of interesting ad-
vantages. First, the performance of the KNN classification depends only on a parameter k, which is the number of closest neighbors
found. Second, as a non-parametric grader, it does not require prior knowledge of sample likelihood distributions in the classification
problem. Finally, when the constraint k/N is close to zero (where N is the total number of training samples), the KNN classification
accuracy can converge to twice the accuracy of the optimal Bayesian classifier.

4. Results
4.1. Statistics

Differences in predictors between benign, malignant, and intersectional ovarian tumors were examined by Students’ t-test. Sig-
nificant differences have been observed between benign and intersectional ovarian cancer for age, CA125, CEA, CA199, and HE4 (P <
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Fig. 2. Different prediction models differ between benign, borderline, and malignant ovarian tumors based on sequence backward selection (SBS).
A. The KNN model differ between benign, borderline, and malignant ovarian tumors based on SBS. B. The SVM diagnostic model differ between
benign, borderline, and malignant ovarian tumors based on SBS. C. The LR model differ between benign, borderline, and malignant ovarian tumors
based on SBS. D. The RF model differ between benign, borderline, and malignant ovarian tumors based on SBS.
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0.05). Between benign and malignant ovarian tumors, there were differences in age, CA125, CA72-4, and HE4 (P < 0.05). There were
differences in age, height, BMI, CA125, AFP, CA72-4, and HE4 between benign and malignant tumors (P < 0.05). For each pathological
histological type, differences in age, BMI, AFP, CA125, CA72-4, and HE4 were observed between epithelial and germ-line ovarian
tumors (P < 0.05), but only HE4 was different between epithelial and intersex stromal tumors or types of rare tumors (P < 0.05). In
contrast, there were differences in age, BMI, and CA125 between germ cell tumors and gonadal interstitial cell tumor of the mesen-
chymal cells of the sex cords. For the rare tumor types, differences existed in age, BMI, CA125, and HE4 for germ cell tumors and in age,
BMI, and CA199 for ovarian sex cord stromal tumor (P < 0.05).

4.2. Features selection

Sequential backward selection (SBS) was performed on the training dataset with 570 patients’ data. The X-axis represents the
number of features used in each experiment, while the Y-axis is the accuracy of the classification prediction models. Fig. 2 shows the
feature selection of ML to diagnose benign, borderline, and malignant ovarian tumors. During the progress of behavior prediction, the
KNN model had the highest accuracy when the model incorporated up to four predictors, namely age, height, CA125, and CA72-4. The
accuracy did not improve after adding more predictors. The SVM predictive model incorporated five predictors per SBS, including age,
weight, AFP, CA72-4, and HE4. The LR model had the highest prediction accuracy with only one predictor, i.e., HE4. The accuracy
decreased when more predictors were added. The RF incorporated eight predictors after SBS, namely height, weight, AFP, CEA,
CA125, CA199, CA72-4, and HE4. Fig. 3 presents the outcome of feature selection of models that predict the type of tumor pathology. A
KNN prediction model of ovarian tumor pathological tissue type was developed, and the model showed best prediction when six
predictors were included in the SBS namely age, weight, BMI, CA125, CEA, and HE4 (Fig. 4). The SVM predictive model for patho-
logical tissue type incorporated six predictors per SBS including height, weight, AFP, CA199, CA72-4, and HE4.

4.3. Difference between benign, borderline, and malignant ovarian tumors

Different prediction models differ in their ability to differentiate between benign, borderline, and malignant ovarian tumors
through SBS. As shown in Fig. 2A, the KNN model had the highest accuracy when the model incorporated up to four predictors, namely
age, height, CA125, and CA72-4. The accuracy did not improve after adding further predictors. The KNN predictive model had an
accuracy of 0.748 for internal validation and 0.748 for external validation in benign, borderline, and malignant ovarian tumors. Its
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Fig. 3. Different prediction models have different pathologic tissue ovarian tumors based on sequence backward selection (SBS). A. The KNN model
different pathologic tissue ovarian tumors based on SBS. B. The SVM diagnostic model different pathologic tissue ovarian tumors based on SBS. C.
The LR model different pathologic tissue ovarian tumors based on SBS. D. The RF model different pathologic tissue ovarian tumors based on SBS.
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Fig. 4. Difference between benign, borderline, and malignant ovarian tumors. A. The KNN diagnostic model was well predicted for both benign and
malignant tumors with AUCs of 0.88, 0.55, and 0.90. B. The SVM diagnostic model was well predicted for both benign and malignant tumors with
AUCs of 0.84 and 0.85. C. The LR model was predicted benign, borderline, and malignant tumors with AUCs of 0.67, 0.50, and 0.72. D. The RF
model was predicted benign, borderline, and malignant ovarian tumors with AUCs of 0.86, 0.88, and 0.80.

ROC to predict tumor behavior is shown in Fig. 4A, with AUCs of 0.88, 0.55, and 0.90 for benign, borderline, and malignant tumors,
respectively. The SVM diagnostic model incorporated five predictors per SBS including age, weight, AFP, CA72-4, and HE4 (Fig. 2B).
The SVM diagnostic model had an internally validated prediction accuracy of 0.696 for benign, borderline, and malignant ovarian
tumors and an externally validated prediction accuracy of 0.692. The SVM diagnostic model was well predicted for both benign and
malignant tumors with AUCs of 0.84 and 0.85, respectively (Fig. 4B), but the diagnostic ability for borderline ovarian tumors was poor
at 0.63. Within the LR model, the SBS process is as described in Fig. 2C. The highest prediction accuracy was seen with only one
predictor, namely HE4. The accuracy reduced when other predictors were added. The AUCs of the LR model were 0.67, 0.50, and 0.72
for benign, borderline, and malignant tumors, respectively (Fig. 4C). RF incorporated eight predictors after SBS (Fig. 2D), namely
height, weight, AFP, CEA, CA125, CA199, CA72-4, and HE4. The RF model has an internal validation accuracy of 0.99 and an external
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validation accuracy of 0.727. Its ROC is shown in Fig. 4D, and AUCs for benign, borderline, and malignant ovarian tumors were 0.86,
0.88, and 0.80, respectively. The LR model applied age, weight, CA19, CA125, CA72-4, and the RF model was built based on age, BMI,

AFP, CEA, CA125, and CA72-4.

4.4. Diagnosis of histologic types of ovarian tumors with classifiers

A KNN prediction model of ovarian tumor pathological tissue type was developed and the model showed best prediction when the
six predictors included in the SBS were age, weight, BMI, CA125, CEA, and HE4(Fig. 3A), with an accuracy of 0.79 for internal
validation and 0.76 for external validation. The AUCs of epithelial, germ cell, interstitial sex cord, and rare types of ovarian tumors
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Fig. 5. Diagnosis of histologic types ovarian tumors using the ML model. A. The KNN diagnostic model was predicted germ cell, interstitial sex cord,
and rare types of ovarian tumors with AUCs of 0.65, 0.69, 0.47, and 0.50. B. The SVM diagnostic model was predicted germ cell, interstitial sex cord,
and rare types of ovarian tumors with AUCs of 0.86, 0.89, 0.99, and 0.48. C. The LR model was predicted germ cell, interstitial sex cord, and rare
types of ovarian tumors with AUCs of 0.87, 0.90, 0.74, and 0.85. D. The RF model was predicted germ cell, interstitial sex cord, and rare types of

ovarian tumors with AUCs of 0.8, 0.,2, 0,61, and 0.97.



Y. Sun and B. Wen Heliyon 10 (2024) 36994

were 0.65, 0.69, 0.47, and 0.50 (Fig. 5A), respectively. The SVM predictive model for pathological tissue type incorporated six pre-
dictors per SBS (Fig. 3B), including height, weight, AFP, CA199, CA72-4, and HE4. The SVM model was excellent in identification of
epithelial, germ cell, and rare type tumors, but underperformed in interstitial sex cord ovarian tumor, with an accuracy of 0.65 for
internal validation and 0.68 for external validation. The ROC of the SVM model is as shown in Fig. 5B. The AUCs of epithelial, germ
cell, interstitial sex cord, and rare types of ovarian tumors were 0.86, 0.89, 0.99, and 0.48, respectively. The LR model showed the best
outcome in the diagnosis of pathological tissue type. The model applied age, weight, CA199, CA125, and CA72-4 in the SBS (Fig. 3C).
The accuracy of internal validation was 0.747 and that of external validation was 0.783. The ROC of the LR model is as shown in
Fig. 5C. The AUCs of epithelial, germ cell, interstitial sex cord, and rare types of ovarian tumors were 0.87, 0.90, 0.74, and 0.85,
respectively. Surprisingly, the RF model did not perform well in diagnosing pathological tissue types, especially for interstitial sex cord
ovarian tumor. A RF model built by SBS incorporating age, BMI, AFP, CEA, CA125, and CA72-4 (Fig. 3D) had an internally validated
accuracy of 0.99 and an externally validated accuracy of 0.72 to diagnose ovarian tumor pathological tissues. The ROC of the RF model
is as shown in Fig. 5D. The AUCs of epithelial, germ cell, interstitial sex cord, and rare types of ovarian tumors were 0.8, 0.,2, 0,61, and
0.97, respectively.

4.5. External data validation model

To further explore the potential for use of ML models in clinical work, this study innovatively validated the diagnostic predictive
ability of ML models by introducing multicentric data. This study applied clinical data of ovarian tumor patients from 2020 to 2022 at
Guangdong Women’s and Children’s Hospital to validate the predictive effect of the ML model. After applying the inclusion and
exclusion criteria, 58 patients were finally included to validate the model predicted efficiency. These included eight cases of benign
tumors, seven of borderline tumors, and 43 malignant tumors. There were 42 epithelial tumors, five germ cell tumors, nine sex-cord
mesenchymal cell tumors, and two rare types of tumors. Due to the lack of preoperative CA72-4 data for patients in Guangdong
Maternal and Child Hospital, the mean CA72-4 value for the training group was used instead. Finally, as shown in Table 2, the accuracy
of diagnosis of benign, borderline, and malignant ovarian tumors from external data by the RF prediction model was 0.789. The
accuracy of applying LR models to predict diagnosis based on pathologic tissues of epithelial cells, germ cells, sex-cord mesenchymal
cell, and rare types of ovarian tumors from external data was 0.719 (Table 3).

5. Discussion

During the past decade, with the greatest advancements seen in clinical medicine, accurate prediction of the diagnosis of a disease
has become the focus of significant research studies to alleviate challenges for doctors. There is now a considerably great deal of new
technology available and significant cancer data has been collected and is available for the medical research community. With the
development of artificial intelligence, ML has become a popular tool for medical researchers. These techniques allow us to discover and
identify models and their inter-relationships, based on complex data sets, while being able to effectively predict the future outcomes of
a type of cancer. Clearly, this innovative approach is an important tool in the area of precision medicine that can facilitate the choice of
optimal treatment strategies [23]. By manipulating many factors in the data at once, it may lead to a better understanding of the
complex mechanisms underlying cancer genesis and progression.

Ovarian tumors are among the most complex pathological types known, and treatment options vary according to the pathological
type of tumor [24]. In practice, however, the inability to predict the nature of the tumor often leads to inadequate preparation for
surgery or misdiagnosis of the pathological type, which can cause significant harm to the patient. Early diagnosis of ovarian tumors is
therefore paramount. This study launched the comparison of multiple supervised learning algorithms to identify the approach with the
most favorable performance. We believe we have innovatively introduced multi-center data to validate the prediction effect of ML
models. The importance of HE4 and CA125 in determining the nature of tumors has been highlighted in previous predictive models for
ovarian tumors [8,10,11,25]. Another study included 32 clinical datas to determine the nature of ovarian tumors [12]. However, past
studies have neglected practical clinical scenarios where too many predictors could over-adapt a predictive model and render it un-
necessary for general application. These studies were also limited by their single-center design, which has limited relevance for the
treatment of ovarian tumors.

In this study, we constructed a diagnostic model based on previous studies of ovarian tumor prediction models, using the most
diagnostically useful tumor markers in ovarian tumors as predictors. In the analysis of benign, borderline, and malignant data, we
found that the SVM model performed poorly, possibly because of the poor performance of characteristic tumor markers for different
tumor types. This may be because the SVM model is mainly used for linearly separable classification; whereas, different types of tumor
cells secrete different characteristic tumor markers. On the other hand, KNN and LR are unique in their best performance in the
diagnosis of benign and malignant tumors, but they do not give good results in the prediction of borderline tumors. Unfortunately,
even the best-performing RF model failed to identify borderline tumors in the multicenter validation, which may be because of the

Table 2
The accuracy of predicting benign, borderline, and malignant ovarian tumors from external data by the RF model.
Benign tumors Borderline tumors Malignant tumors N
True 8 7 43 58
Pred_randomforest 6 0 52 58
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Table 3
The accuracy of applying LR models to predict diagnosis based on pathologic tissues.
Epithelial tumors Germ cell tumors Sex-cord mesenchymal cell Rare types
True 42 5 9 2
Pred_Logistic regression 47 11 0 0

small number of borderline tumors in the training group and the fact that all borderline tumors are epithelial in nature.

To establish diagnostic models for pathological types, the non-parametric predictive models represented by KNN showed decadent
performance in the determination of pathological tumor tissue types. However, other parametric example model types had better
diagnostic predictive ability for both epithelial ovarian tumors and germ cell tumors, with AUCs of 0.86, 0.88, and 0.87 for epithelial
tumors and 0.89, 0.92, and 0.90 for germ cell tumors for SVM, LR, and RF models, respectively. Interestingly, however, even the RF
model based on the stimulation method lacked the precision to distinguish between interstitial tumor and sex cords. Likewise, even the
LR model that was most successful in diagnosing the type of pathology in the single center data lacked judgment of gonadal
mesenchymal cells when validated against multi-center data. The reason for the poor diagnostic prediction of borderline ovarian
tumors and sex cord mesenchymal stromal cell tumors is the lack of sex cord mesenchymal cell data in the training group. It can be seen
that the ML model requires very strict training group data and needs to be further improved with large samples and multi-center data to
make up for this shortcoming.

Because the approach used in this study did not incorporate information from imaging studies or pre-treatment biopsies, the ability
to accurately predict clinical behavior and treatment results prior to the procedure were limited. Therefore, further validation efforts
are required by increasing the number of input variables based on the robust ML approach to spill over into a larger independent
cohort. As tumors develop over time, the signaling between the tumor and its microenvironment, composed of fibroblasts, infiltrating
immune cells, and endothelial cells also evolves. It is believed that further future studies will fill this gap.

Although the excellent performance of ML models in ovarian tumor diagnosis relies on a large amount of training data, this study
only collected data on ovarian tumors from two centers, and there is less data on junctional tumors and gonadal interstitial tumors,
which leads to poor performance of the prediction model for the diagnosis of this type of tumor. We are also concerned that ovarian
tumors are often detected by imaging, such as ultrasound, computed tomography, and magnetic resonance imaging; thus, imaging is
also crucial for the diagnosis of ovarian tumors. A recent study in 2022 by Gao et al. used the ultrasound imaging data of 3755 patients
with ovarian tumors to automatically evaluate ultrasound images by developing a deep convolutional neural network (DCNN) model
[26] and facilitated the diagnosis of ovarian cancer more accurately than existing methods. Based on this study, larger multicenter
studies on ovarian cancer are underway and are expected to incorporate additional predictors of diagnostic significance such as im-
aging reports. Machine learning, which is a data-driven science, has opened up a promising path towards an evolving healthcare
system that is filled with exciting opportunities for precision oncology. Despite this, the technique still has some limitations. The
training data used to train ML models is what makes them as good as they are. The model cannot function properly without the
standardization and realism of the train groups. The principal architecture of current models is designed with performance evaluated
by accuracy, AUC, sensitivity, specificity, the expense of interpretability, and transparency. Although artificial intelligence frequently
exceeds traditional interpretable models, the perceived lack of transparency and lack of quantified uncertainty significantly un-
dermines the belief in artificial intelligence [27].

In summary, despite some shortcomings, Al-based algorithms can be effective tools to diagnose and evaluate patients with ovarian
tumor before initiating intervention, as demonstrated in this study.
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